Modeling with Petri nets

dr. Tamás Bartha dr. András Pataricza dr. István Majzik BME Department of Measurement and Information Systems

Modeling tools: DNAnet, Snoopy, <u>PetriDotNet</u>

b-tu

Brandenburgische Technische Universität Cottbus

The PetriDotNet modeling tool

• Features

- Graphical editor + token game + simulation
- Easy to use, many convenience functions
- Extensions: inhibitor arcs, timings, colored nets
- Supports hierarchical Petri nets
- Supports plug-ins, e.g. analysis modules
- Dynamic properties, CTL model checker
- Coloring, rotating elements, displaying arc weights
- Standard PNML format, with INA export
- Developed by us: petridotnet.inf.mit.bme.hu

PetriDotNet screenshot

Open settings.

PetriDotNet analysis features

Properties of Net AlterBit		(0,0,0,1,1,0,0,1,0,0,0,0,0,0,0,0)
Dynamic Properties Number of states: Boundedness: Deadlock freedom: Reversibility: Persistency:	108 Bounded 1-bounded (safe net) Deadlock free Reversible Non-persistent	(0,1,0,1,0,0,0,1,0,0,0,0,0) sdata(x,0) (0,1,0,1,0,0,0,1,0,0,0,0,0) lose(x) (0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0
Static Properties		CTL Expression Editor
Most specific subclass:	Petri Net	and AF EF AlterBit.buffer_x Insert
Purness:	Not Pure	or AG EG > ↓ 0 ♀ Insert full expression neg AU EU () AX EX true false
Reachability check; CTL che Save adjacency matrix; Sear Display token bounds of place	eck; <u>Save the reachability graph;</u> r <u>ch T-invariants;</u> <u>se;</u>	AF(AlterBit.wfa_0>0&EX(AlterBit.buffer_x>0))
		CTL MODEL CHECKING Expression: AF(AlterBit.wfa_0>0&EX(AlterBit.buffer_x>0)) Model: AlterBit Result: True Runtime: 0,01 s

PetriDotNet invariant analysis

Show in {1 × ack_0, 1 × ack_	variants on the net ×	Show invariants on the net $-\Box \times$ se_x_, sdata_x,0_, tout_x_} \forall Show
· · · · · · · · · · · · · · · · · · ·	P-Invariants × List of P-Invariants calculated by Martinez-Silva algorithm Calculation finished in 2,00 ms. (places=18, transitions=22)	T-Invariants - × List of T-Invariants calculated by Martinez-Silva algorithm Calculation finished in 1,00 ms. (places=18, ^ transitions=22)
lose_0_	{1 × ack_0, 1 × ack_1, 1 × empty_ack_} {1 × data_x, 1 × empty_data_, 1 × data_y} {1 × rts_x, 1 × queue_x, 1 × wfa_0, 1 × rts_y, 1 × wfa_1, 1 × queue_y} {1 × wait_0, 1 × buffer_x, 1 × ok_x, 1 × ok_y, 1 × buffer_y, 1 × wait_1}	<pre>{lose_x_, sdata_x,0_, tout_x_} {lose_y_, sdata_y,1_, tout_y_} {rack_1_, put_x_, sdata_x,0_, rack_0_, sdata_y,1_, put_y_, drop_y_, sack_0_, drop_x_, sack_1_} {lose_1_, sdata_y,1_, tout_y_, drop_y_, sack_1_} {drop_1_, sdata_y,1_, tout_y_, drop_y_, sack_1_} {lose_y_, rack_1_, put_x_, sdata_x,0_, rack_0_, dota_y, 1_, put_y_, drop_y_y_ sack_0_, dota_y, 1_, put_y_, tout_y_y_ sack_0_, dota_y, 1_, put_y_, sdata_x,0_, rack_0_, dota_y, 1_, put_y_, tout_y_y_ sack_0_, dota_y, 1_, put_y_, sdata_x,0_, rack_0_, dota_y, 1_, put_y_, sdata_y, 0_, drop_y_y_, sack_0_, dota_y, 1_, put_y_, sdata_y,0_, rack_0_, dota_y, 1_, put_y_, sdata_y,0_, rack_0_, dota_y, 1_, put_y_, dota_y, 1_, put_</pre>
lose_1_		<pre>sdata_y,1_, but_y_, tout_y_, drop_y_, sack_0_, drop_x_, sack_1_} {lose_0_, sdata_x,0_, tout_x_, sack_0_, drop_x_} {sdata_x,0_, tout_x_, drop_0_, sack_0_, drop_x_} {lose_x_, rack_1_, put_x_, sdata_x,0_, tout_x_, rack_0_, sdata_y,1_, put_y_, drop_y_, sack_0_, drop_x_, sack_1_} {lose_x_, lose_y_, rack_1_, put_x_, sdata_x,0_, tout_x_,</pre>
ack_1	СК ОК	rack_0_, sdata_y,1_, put_y_, tout_y_, drop_y_, sack_0_, drop_x_, sack_1_} OK

Basic principles of modeling

Purpose of system modeling

- IT systems are usually well decomposed
 - Building systems by integrating components
 - Steps, processes, threads, ...
 - Relationships between basic components:
 - Explicit logical relationship: order, causality
 - Implicit dependency: e.g. using shared resource
- Model-based analysis: qualitative and/or quantitative
 - Qualitative: proving logical correctness
 - Quantitative: performance analysis, reliability, availability, safety analysis

Building a model

- Three main model element categories:
 - Processes, containing activities
 - Resources (including: data, messages, channels)
 - Interactions between processes and resources
- Modeling: hierarchical and functional
 - Bottom up:

Basic activities -> (Composite activities ->) Subprocesses -> Composite processes

- Steps:
 - Building individual model elements
 - Integration

Typical steps of system modeling

- 1. The process model (without detailed resource usage and communication)
- 2. The resource model
 - A finite automaton part with busy/idle/... states
 - Message queue (if needed)
- 3. Integration: Fusion of corresponding transitions in the process and resource models
 - E.g.: *Occupying* fused with transition $Idle \rightarrow Busy$
 - E.g.: sending message puts message into queue

Modeling activities in Petri nets

- Basic activity: firing a transition
- Resources used: input / output places
- Execution time
 - deterministic
 - stochastic

deterministically timed transition

exponentially timed transition

Questions regarding enabledness:

- Untimed transitions fire first (higher "priority")
- What happens with time after becoming disabled?
 - Restarts (new random): "restarts" activity
 - Remains (previous time): "continues" activity

Example: Modeling resource allocation

Example: Relationships between processes

Example: Modeling a production cell

Processors

• Sequential processors:

• Parallel processor:

• Alternative processor:

Interactions

• Synchronization:

• Shared resource:

Containers for processors

• Bounded capacity container:

• FIFO container:

Using machines

• Process with dedicated machine:

• Process with shared machine:

Assembly

• Assembling parts:

• Failure during process:

Input buffer

Robot cell

- Activities
- Containers (bounded capacity)
- Resources
- Cyclic behavior

Example Petri net: Alternating bit protocol

The modeling task

Alternating Bit Protocol

- Transmission protocol for faulty channels
 - Messages can get lost (a finite number of times)
 - Contents of messages cannot change
- Goal: the protocol should ensure (with a bounded number of steps) that the message is transmitted to the receiver

Sender process

- Attaches a checking bit to the message
- Received messages are confirmed by the receiver, with the same checking bit
- If the bit attached to the message is **b**⁰, then
 - if the message is lost, the sender detects the lack of confirmation with a timeout \rightarrow sends again
 - if the sender receives a confirmation with a bit b⁰ (which is expected), then a negated bit is attached b¹ = ¬ b⁰ to the next message
 - if the sender receives a confirmation with a bit b¹ = ¬ b⁰ (despite expecting b⁰), then the confirmation is discarded (and a timeout will occur due to the lack of confirmation)

Receiving process

- Confirms receiving the message by sending back the same checking bit
- If a message with checking bit b⁰ is received, then it is confirmed by sending b⁰ back, then
 - If the bit of the next message is b¹ (correct), then sends
 b¹ back to acknowledge
 - If the bit of the next message is b^o (incorrect), then the message is discarded, but sends a confirmation (assuming that it was a repeated message due to the lack of confirmation)

Steps of building the model

- 1. Decompose the task to actors and resources
- 2. Determine the states of actors
- 3. Determine states of resources and message buffers
- 4. Create Petri net models from state-based models
- 5. Integrate actor and resource models
- 6. Check integrated model
- 7. Use the model to solve the task

Components and states

- Components (subsystems)
 - Actors: sender process, receiver process
 - Resources: data channel, confirmation channel
- Each components have its own state
 - State graph: states are circles, events are arcs
- Same events happen at the same time: synchronization

State graph of sender process

State graph of receiver process

State graph of data channel

State graph of confirmation channel

Petri net model of sender process (main loop)

Petri net model of receiver process (main loop)

Data channel and data transmission (main loop)

Confirmation channel and confirmation (main loop)

Example Petri net: Alternating bit protocol

PetriDotNet: Dynamic properties of the model

Properties of Net AlterBit				
Dynamic Properties				
Number of states:	108			
Boundedness:	Bounded			
	1-bounded (safe net)			
Deadlock freedom:	Deadlock free			
Reversibility:	Reversible			
Persistency:	Non-persistent			
Static Properties Most specific subclass: Petri Net				
Purness:	Not Pure			
<u>Reachability check; CTL check; Save the reachability graph;</u> Save adjacency matrix; Search T-invariants; Search P-invariants; Display token bounds of places;				

PetriDotNet: Reachability graph (GraphViz)

PetriDotNet: CTL model checking

CTL Expression Editor	CTL MODEL CHECKING Expression: AF(AlterBit.wfa_0>0&EX(AlterBit.buffer_x>0)) Model: AlterBit Result: True Runtime: 0,01 s
$() AX EX \\ true false$	ОК

AF (AlterBit.wfa_0>0 & EX (AlterBit.buffer_x>0))	\Rightarrow True
AG (AF (AlterBit.buffer_y>0))	\Rightarrow False
AF(EG (AlterBit.buffer_x=0))	\Rightarrow True
EF (AlterBit.wfa_0>0 & AlterBit.data_x=0)	\Rightarrow True

AF(AlterBit.queue_x>0 & **AX**(AlterBit.wfa_0>0 & AlterBit.data_x>0)) ⇒ True

PetriDotNet: Invariant analysis

P Háló tulajdonságai	T-Invariants
ShowInvariants	List of T-Invariants calculated by Martinez-Silva algorithm
{lose(x), sdata(x,0), tout(x)}	Calculation finished in 15,60 ms. (places=18, transitions=22)
ShowInvariants	{rack(1), put(x), sdata(x,0), rack(0), sdata(y,1), put(y), drop(y), sack(0), drop(x), sack(1)} {lose(1), sdata(y,1), tout(y), drop(y), sack(1)} {drop(1), sdata(y, 1), tout(y), drop(y), sack(1)} {lose(y), rack(1), put(x), sdata(x,0), rack(0), sdata(y, 1), put(y), tout(y), drop(y), sack(0), drop(x),
{ack_0, ack_1, empty(ack)} Show	sack(1)} {lose(0), sdata(x,0), tout(x), sack(0), drop(x)} {sdata(x,0), tout(x), drop(0), sack(0), drop(x)} {lose(x), rack(1), put(x), sdata(x,0), tout(x), rack(0), sdata(y, 1), put(y), drop(y), sack(0), drop(x),
P-Invariants	sack(1)} {lose(x), lose(y), rack(1), put(x), sdata(x,0), tout(x), rack(0), sdata(y,1), put(y), tout(y), drop(y), sack(0), drop(x), sack(1)}
List of P-Invariants calculated by Martinez-Silva algorithm	<pre>{rack(1), put(x), sdata(x,U), rack(U), sdata(y, 1), put(y), rdata(x,U), proc(x), sack(U), proc(y), rdata(y, 1), sack(1)} // rdata(y, 1), sack(1);</pre>
Legszűk Calculation finished in 0,00 ms. (places=18, transitions=22)	(0), proc(y), rdata(y, 1), sack(1)} {rack(1), put(x), sdata(y, 0), tout(x), rack(0), sdata(y, 1), put(y), rdata(x, 0), proc(x), sack(0), drop {rack(1), put(x), sdata(x, 0), rack(0), sdata(y, 1), put(y), rdata(x, 0), proc(x), drop(y), sack(0), drop
Tisztasá {ack_0, ack_1, empty(ack)} {data_x, empty(data), data_y} {ts_x, queue_x, wfa_0, rts_y, wfa_1, queue_y} {wait_0, buffer_x, ok_x, ok_y, buffer_y, wait_1}	 (x), proc(y), rdata(y, 1), sack(1)} {lose(0), rack(1), put(x), sdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), rdata(x, 0), proc(x), sack (0), drop(x), proc(y), rdata(y, 1), sack(1)} {rack(1), put(x), sdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), drop(0), rdata(x, 0), proc(x), sack (0), drop(x), proc(y), rdata(y, 1), sack(1), sdata(y, 1), put(y), drop(0), rdata(x, 0), proc(x), sack (0), drop(x), proc(y), rdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), rdata(x, 0), proc(x), drop (y), sack(1), put(x), sdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), rdata(x, 0), proc(x), drop (y), sack(0), drop(x), proc(y), rdata(y, 1), sack(1)} (o) sack(0), drop(x), proc(y), rdata(y, 1), sack(1), sack(1), put(y), rdata(x, 0), proc(x), drop
Elérhetősegi granmentese, szomszeuossagi matrix mentese, T-invariánsok keresése; P-invariánsok keresése;	(y), sack(b), diop(x), pioc(y), rada(y, i), sack(i)/ {lose(x), lose(y), rack(1), put(x), sdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), tout(y), rdata(x, 0), proc(x), drop(y), sack(0), drop(x), proc(y), rdata(y, 1), sack(1)} {lose(x), lose(1), rack(1), put(x), sdata(x, 0), tout(x), rack(0), sdata(y, 1), put(y), tout(y), rdata(x, 0),
Helyek tokenkorlátjainak kiírása;	ОК

PetriDotNet: P-invariants (examples)

PetriDotNet: T-invariants (examples)

