Colored Petri nets
(CPNs)

dr. Tamas Bartha
dr. Istvan Majzik

BME Department of Measurement and Information Systems

Motivation

e Petri net model L
of Dining Philosophers e oo
o S e
._ . P1_think . l
p5_think P2_think
cﬂ L::a

Motivation

e Why not this way?
——(5) Think

C) Eat >@ Chopsticks

Put

Motivation

e Distinction of tokens: colored Petri net

PH.all()
Think 8% 1 ph(1)++
1 ph(2)++
PH 1" ph(3)++
_c. 1 ph(4)++
valn =5; P 1 ph(s)
colset PH = index ph with 1..n;
. . Take
colset CS = index cs with 1..n; Chopsticks Chopstidks(p)
var p: PH;
p
fun Chopsticks(ph(i)) = P —— Cs.all()
Lcs(i) ++ e Chopsticks J% 1@%%%11
1°cs(if i=n then 1 else i+1); PH CS 1 cs(3)++
P 1 cs(4)++
1" cs(5)
Put Down Ch tidk
Chopsticks opsticks(p)

\. J

Motivation

e Meaning of colored tokens

A more complex example (see later)

1°(1,"Modellin")+
INTXDATA 1(2."g and An")+
1°(3,"alysis b")+
1'(5,"0f Colou™)+
1'(8,"red Petr")+ DATA
1°(7." Nets##")+
(n,p) 1'(8, W#‘*#) if Ok(s,r) , str | |if n=k
INTXDATA then 1°(n,p) INTxDATA andalso
Send (np) ~~ (np) _| Transmit | ©lse empty (n,p) p<>stop
Packet Packet then strp
| else str
! s e
| e
© .
! Int_0_10 1
i @‘ Receive
| 8 @ L INT T Packet
. Int_0_10 —— then k+1
| s —..else k if n=k
! then k+1
Receive : () 1 Transmit le else k
Acknow. n NifOk(s,r) Acknow. n
. then 1'n
| else empty
Sender ! Network Receiver

Colored Petri nets

e Colored Petri net (CPN)
— Extension of uncolored Petri nets with:

e Flexible data structures
e Data manipulation language
— Colored Petri nets unite:
e Graphical representation — Clarity
o Well-defined semantics — formal analysis
— CPN model = net structure + declarations +
net markings, expressions + initialization

Main components of CPNs (overview)

Extensions of tokens

— Data value: colored token

— Data type: color set

Extensions of places

— Type of place: data type of accepted tokens

— Initial marking inscription: initial tokens

— Current marking: multiset of tokens matching the place’s type
Extensions of arcs

— Arc expression: tokens moved (with variables to be bound)

Extensions of transitions
— Guard for firing
— To fire: arc expressions shall be bound to colored tokens

Comparison of colored and uncolored Petri nets

Uncolored (P-T) Petri nets:

Uncolored tokens

Set of tokens (cardinality)
Token manipulation
Initial marking

Inhibitor edges

Edge weights

Transition can be enabled

Conflict between different
enabled transitions

~ assembly

Colored Petri nets:

Colored tokens

Multiset of tokens

Data manipulation

Initial marking inscription
Guards

Arc expressions (+variables)
Binding can be enabled

Conflict between different
bindings of the same transition

~ high-level programming lang.

Structure of colored Petri nets

Extensions of tokens

e Colored token
— Represents a data value

e Color set:
— Defines the data type

E.g., enumeration (with),
base type (int, bool, string, ...)

— Can be complex (compound)
E.g., color P = product U * I

e Declaration: in formal language
— Standard ML

color U=withp | q;
color | = int;

color P = product U * |;
color E = with e;

var x : U;

vari: |;

11

Extensions of PN places

e Color set inscription: type (color) of [5 h
the place 3p+1q
— Type of tokens accepted by the place U 2p+1°q
(one of the declared types) -
— Visualization: written next to the place, in (x)
italic
e Initial marking inscription [x=p]
— Defines the initial marking Suce(x) (X)
— A multiset of the accepted color set ¥) (\ ™
(may be more than one token per color) @ @
— Visualization: written next to the place, U n U @ "
underlined q P
§ J L v,

e Current marking
— Description of current tokens

— Visualization: written next to the place,
number of tokens in circle and detailed
description

12

Extensions of PN transitions

e Arc expression

— Precondition of enablement (removed tokens) 3p+1q @
and the result of firing (placed tokens) U 2'p+1°q
f (x) \

— Type: type of the place connected to the arc
(one transition have arcs with different types)

— Visualization: next to the arc

e Variable can be used in the expression RFP]
— Can be bound to data values (colored tokens
() kSucc(x} (X))

— Shall have a type (the color set of tokens that ¥

can be bound to it) @ p @
e Guard U ’ U@1=p

— Boolean expression, needs to be true to enable
the transition

— Visualization: next to the transition, within []

13

Structure of colored Petri nets: Summary

Net structure:

— Represents the control and data flow structure of the system

— Places, transitions, arcs

Declarations:
— Define the data structures and used functions
— Color sets, variables, arc expressions

Markings, naming:
— Define the syntactic and data manipulation items

— Names, color sets, in/out arc expressions, guards, current
state

Initializing expression:
— Defines the initial state of the model (constants)

14

colorU =withp | q;
color | = int;

if x=g then 1°(q,i+1) else empty

color E = with e;
var x : U;

Initial
marking

® 3(q.,0) Current

color P = product U * [;
| marking

e e e e

Incoming arc
inscription

e Elements of CPNs:

— Places

[x=q] <§uard expr.

Outgoing

e Name .
arc expressio

e Color set .
e Initial marking Place nani?
e Current marking

— Transitions

e Name
e Guard

— Arcs
e Arc expressions (incoming, outgoing)

15

Example: Control structures 1

IF b THEN stat1 ELSE stat2 WHILE b DO stat

[[ﬂb]] [-b]

statl stat2 : : stat

16

Example: Control structures 2

REPEAT stat UNTIL b Subroutine call Start of a process

..

N

17

Toolset of colored Petri nets

CPN: Definition of color sets

e Simple color sets

Uncolored tokens:
unit

Base types:

int, bool, real,
string

Subset:

with 1. .4;

Enumeration:
with true | false;

Indexing (vector):
index d with 1. .4;

e Can be used in the

definitions of the following:

— Compound color sets
— Variables, constants
— Functions, operators

19

Compound color sets

e Ways to create compound color sets:

— Union:

union S + T;

— Cross product (construction of tuples):
product P * Q * R;

— Record (labelled tuples):
record p:P * g:Q * r:R;
— List:
list int with 2..6;

20

Additional CPN elements: Variables

e Variables e In the following expr.’s:
Symbolic names of tokens — Arc expressions
— Variable declaration: — Guards
var proc : P;
e Constants e In the following decl.’s:
With fixed values — Color sets

— Constant declaration: — Functions, operators

val n = 10; — Arc expressions, guards,
val dl = d(1):D; initialization expressions

21

Additional CPN elements: Functions

e Functions e In the following decl.’s:
Side effect-free functions — Color sets
in SML language — Functions, operators,
— Example: constants
fun Chopsticks(ph(1)) = — Arc expressions, guards,
122211- Iln o 9l e Ge) 5 initialization expressions

e Operations, operators

Infix notation

22

Additional CPN elements: Expressions

e Net expressions

— Value: evaluated with a specific
binding of the variables

— Type: set of all possible
evaluations

— Examples:
X=q
2" (x,1)
if x=q then 2 i else empty
Mes (s)

e Usage in:

— Arc expressions, guards,
initialization expressions

23

Expressions: Operations with multisets
Addition: a, + a,

rie)5|

@

"o

tde=(Rihad

Comparison: a; < a,, a; ¥ a,

£

Size: |a4
|43
A O

o

=

<>

A
A

©

|

mie

I

1
—1

9

28=c

Sca

OA
C A

~

J

ar multi

plication: n-a;

eSO 1

Subtraction: a, - a, (only if a, < a,)

d8=(aie

24

Behavior of colored Petri nets
(informal semantic)

Marking and binding

e Marking:

— Distribution of tokens (count, by 3p+1q
color) on the places

e Binding the arc expressionsof a
transition:

— The variables are bound to data x=Pp]
values (colored tokens) ())

— For a given transition each [
occurrence of a variable will be
bound to the same value U

— Unbound variable on outgoing arc:
Can be bound to any value of its

type
— The bindings of different transitions
are independent

26

Enabling of transitions

e Transition enabled with a given ©
marking and binding: Sptiq Yos1
— Each input arc’s expression evaluates v
to a multiset of tokens that is present %)

on the corresponding input place

— The guard is true bl
— If a transition is enabled with a Suce(x))
binding, it can fire @ @
e Binding item for firing: U tq U

— A pair (transition, binding),
e.g., (T1l, <x=p>)
— Can be enabled with a marking - can fire

— In case of one transition: many bindings, many enabled
binding items may be constructed; they can fire

27

Firing
e Transition fires with a binding

(i.e., a binding item fires): 2 L) et

— Removes tokens from the input
places according to the arc

expressions and the firing binding ["‘ Pl
— Adds tokens from the output Succ(x x

places according to the arc

expressions and the firing binding @

o Step (effect of firing on the
state space):
— The marking of the CPN changes

28

Reachability graph

e Node:

— A marking: count and color of tokens for each place
— May have an ID, predecessor node and successor node

e Edge:

— The firing binding | extsend - 1
item: the transition . eceived = v
and the binding SN

— By definition . AN U
only one firing e T
binding item i;ZiPack A =1 (1,"Coloured")

is shown in the e oredn net)
reachability graph

29

e Model of
dining
philosophers

e Simulation

e Reachability
graph

CPN Tools demo

Page
PH.all{]
’_)@\ 2 e
p ++
PH 1 ph(3)++
P 1" ph(4)
L 2
Take _
Chopsticks Chopsticks(p)
p
RH C5 1 cs(4)
p
w
Put Down Chaopsticks(p)
Chopsticks
\.)

Mone

Bindar 0

30

Formal definition and semantics of
colored Petri nets

Multisets

e Multiset: may contain several of the same element

— Mapping: Bag(A), to the domain of A, a€[A— N]

— Formally: a = ZXEAa(X) - X, alternative notation: a = ZXEAa(X) 'X
e Operations on multisets:

— Comparison: a,=a if IxeAa,(X)=a(x)

a,<a if VxeAa,(x)<a(x)
— Size: a=> a(x)
— Addition: a +a, =) (a(x)+a,(x))

- X
— Subtraction: a, —a, = ZXEA(ai(X)—aZ(X))-X if a,<a
— Scalar multiplication: n-a:Z (n~a(x))-x

xeA

32

rie)5|

Operations with multisets
Addition: a, + a,

@

"o
@

do|=(Rike

Comparison: a; < a,, a; ¥ a,

£

Size: |a4
|43
A O

o

=

© 60
> >

@

|

mie

I

1
—1

9

28=c

Sca

OA
C A

~

J

ar multi

plication: n-a;

eSO 1

Subtraction: a, - a, (only if a, < a,)

d8=(aie

33

Multisets (continued)

e Union of multisets: a, va,u ... Ua

m

— Domain: A, U A, U ... UA,
- Item: e clUl'A if 3A e e A

i’
e Construction of tuples: (A;, A,, ..., A)

— Domaini A xA x...xA
- Item: (ee,,...,e,)€0/A if Ve €A
— Generalization: (a,, a,, ..., a,)

34

Formal definition of CPNs

CPN=(z,P,T,AC,G,E,M,)

Color sets: > ={0,,0,,...,0.}
Places: P={p,p,:-.., P}
Transitions: T={t.t,...t}
PNT =0
Arcs: Ac (PxT)uU(T xP)
Color set func.: C:P— X
Guards: G:VteT, [Type(G(t)) =BA Type(Var(G(t))) - Z]
Arc

expressions: E:Va€A [Type(E(a)) =C(P)ys A Type(Var(E(a))) Z]
Initial marking: M, :VpeP,| Type(M,(p))=C(P)ys |

35

Notations used in the formal definition

The type (color set) of variable v: Type(v)

The type of expression expr: Type(expr)

The set of variables in expression expr: Var(expr)
A binding of variable v: b(v) € Type(v)
Evaluation (value) of expression expr in binding b: expr

where v € Var(expr) and b(v) € Type(v)

36

Arc expressions

e May use variables

— Variables have types (color sets): Type(v)
— Their value is an element of their types’ multiset

e Closed arc expression: does not contain variables

e Open arc expression: contains variables that have to be

bound to values
— Binding: a specific value assignment to each variable
e Arc expression can be evaluated with the given binding
— Has type: Type(expr) = C(p)us
e The color set (type) to which it is evaluated

— Set of variables in the expression: Var(expr)

37

Bound and unbound variables

e Bound variables
— Value binding is determined by the incoming arcs

— Consistency: a variable has only one value in each binding

e For all in-arcs of the transition the same variable name denotes the
same value

e Unbound variables
— They can only be present in outgoing arc expressions
— Enablement did not assign (bound) any value to them

— Have to be bound at firing:
e Can take any value from its color set
e Number of possible bindings = cardinality of the color set
e Non-deterministic choice

38

Guards

e Each guard is assigned to a transition
— Expression over multisets
— Evaluated to Boolean value

e The transition is enabled only if the guard is evaluated
to “true”
— “Filters” the enabled bindings

[x=q]

g‘& (x,0) >O

39

Enabling in colored Petri nets

e Binding of transitions
— Valid binding: Vv e Var(t): b(v) € Type(v) A G(t){b)
Var(t) = {v|v e Var(G(t))vIae At):ve Var(E(a))}
— Set of all valid bindings: B(t)
e A valid binding is enabled if
— Guard is true

— The input places contain enough colored tokens
(cf. arc expressions E-(p,t)) and the inhibitor arcs
do not inhibit the firing (cf. arc expressions E"(p,t)):

vpeet: E"(p,t)b) <M(p) AE"(p,t)Xb) >M(p)

40

Firing in colored Petri nets

e An enabled transition can fire if there is
no enabled transition with higher priority, i.e.

— The transitions with higher priority do not have enough
tokens in their input places (see arc expressions
E-(p,t")<b’>) or their inhibitor arcs disable the firing
(see arc expressions E'(p,t)<b’>),

Vt', z(t") > z(t) :dp e ot

E™(p,t')(b") >M(p)v E"(p,t')b") <M (p)
— Or their guards are not satisfied (not evaluated to true)

—G(t)®b’)

41

Firing in colored Petri nets

e Steps of firing:
— Finding enabled bindings
e Determined by incoming arc expressions and guards

— Transition enabled with a given binding - it can fire

— Firing: removal of colored tokens from incoming places,
adding colored tokens to outgoing places

vpeP:M'(p)=M(p)- > E"(p,t)b)+> E*(t, p)b)

peet pete

— Then M’ directly reachable from M: M [(t,b)) M’

42

Dynamic properties of
colored Petri nets

Reachability graph (excerpt)

Sent, Received, Acknowledged

[}—

RA,2

44

Dynamic properties of CPNs

o Extension of the uncolored Petri net properties to multisets

e Boundedness
A place is bounded if the number of tokens in any state is bounded
— nis an upper integer bound for p if VM e [I\/I()) ; \I\/I (p)\ <n
— mis an upper multiset bound for p if VM e[M;): M(p)<m

o Reversibility (home state)
It is always possible to get back to a home state
~ Mis a home state if YM'e[Mg): M e[M")
~ Xisahome group if YM'e[My): X N[M") =

45

Dynamic properties of CPNs

e Liveness
Liveness guarantees that some of the binding items remain active
— Dead state (deadlock): no binding item is enabled
VbeBE: —M [b)
— Dead transition: none of its bindings may become enabled
VI\/I'e[M),be B(t): —||\/|'[b>

— Live transition: from each reachable state there is at least one
trajectory starting where the transition is not dead (at least one
binding will become active)

VI\/I’E[I\/IO>, Ell\/l”e[M'),Hbe B(t): I\/I"[b)

46

Dynamic properties of CPNs

e Fairness

Fairness represents how often can a binding item fire
— Impartial transition: fires infinitely often
Vb e B(t), |0| =ow: OC, (0)=w
— Fair transition: infinitely many enabling = infinitely many firing
Vb e B(t), |G| =w: EN,(0)=0=0C, (0)=w
— Just transition: persistent enabling = firing
(there is no persistent enabling without firing)

vb e B(t), Vi >1:
(EN,;(0) #0=3k >i:[EN,,(6)=0vOC,,(c) #0]]|

47

Structural properties of
colored Petri nets

T Invariant in CPNs

e [ransition invariant

A firing sequence o that does not affect the state:

M'(p)=M(p)- > E(p,t)Xby+ > E*(t p)b)

peet,beo pete,beo

where M'(p)—M(p)=0 forall p
then > E(pt)b)= > E"(t, p)Xb)

peet,beo pete.bec

49

P invariant in CPNs

e Place invariant

Idea: Equation that is satisfied in every reachable state

— Weighted token sum is constant:
Wpl (M (pl))+Wp2 (M (pz))"‘---an (M (pn)): m;,,

— Weight function: maps the color sets of the places

to a common multiset

— W, is a P invariant:

WM e[Mp): SW, (M(p) =3 W, (M,(p))

peP peP

50

Unfolding colored Petri nets

Possibilities to construct a CPN

e CPNs: information in both structure and data
o Extremities

— Pure structural information, no data:
e Uncolored (P/T) net (can be build as a CPN)

— No structure, only data (data and control information):

e 1 place + 1 transition, complex color sets and arc expressions

e We need the golden mean
— To have a clean, readable CPN

52

xample: Modeling possibilities

FSSB_MAIN P. 2

[BN_fault stafus = FAULT (g1g_yalue, B11_fault_status,
Flw] enikiin it BN _test shdus = TEST
(B _vilug, Blz_ualue =0 orelse Bla_test_stafus = TEST
Bl L3 B 1_ fault_status, then TEST
Bl i_test_stutus) else MO_TEST)

13

[B1_walue,
BI1_fault_s fafus,
El_test_stutus)

(BN _walue, B _fanlt_status,
IFEN_test_sttus = TEST
arelse Bl2_fest_statis =
then TEST
else MO_TEST)

Bl _valus, FAULT,

if BI1_feststbus = TEST
orelse B2 test_stafis = TEST

then TEST

[BH_fault_statis = NO_FAULT
else NO_TEST)

andalso
B12_ualue = 0]

(B _value,
B 1_ fault_s fadus,
BI1_tfest_status)

(E12_ualue,
El2_fault_sfatus,
Blz_test_sfatus)

(1,NO_FAULT,

IfEI1_fest status = TEST
orelse B12_fest_sfatus = TEST

then TEST

else NO_TEST)

(0,HMO_FALLT,
BN _test sfatus = TEST
orelse Bl2_test_status = TEST
then TEST
else NO_TEST)

(B12_valug,
BIZ_fanli_status,
BIZ_fest_sfatus)

el

[H] 13

>
(B12_ualue, o (1,MO_FAULT,
Blz_fault_sfatus, IFEN_fest status = TEST
Bli_test_stahus) orelse Bl2_fest_sfatis = TEST
B2 value = 1 =
LEEEmel then TEST
else MO_TEST)

Control flow expressed by the structure

B
Bl B85 BO1 85
Bl_act B 1_act
B | .
Bl2 &5 &5

vinputiBl_act BIZ_act);
toutput (BO1_act BO2_acty;

‘action

let

o wal {fault_status = BI1_fault_status, fest status=611_test status, value=
wal {fanlt_status = B12_fault_status, fest sfatus=6i2_test status, value=

in

tiifanlt_stetus =60 1_fanlt_stats, test_stautis= B0 1_test_stats, values BO1_value),
Uoqfanlt_sfatus=B02_fanlt_status, fest_sfatuis=B02_test_ status, value= BOZ_valug)

i+ Caloulate Fault Stafis +)
val BOi_fault_stafus=

if

then FAULT
lse MO_FAULT;
val BOZ_fault sttus =MO_FAULT;

i+ Calculate Values <)
val BO1_value = BI1_valug
val BO2_value=

if

then 1
else 0;

(+Caloulate Test Status
val (BO1_test_status, BO2_test stutuz) =
ifBI_test_ status = TESTorelse

then (TEST,TEST)
else (NO_TE ST,NO_TE 5T);

1 _value} = B _act;
12_value} = BI2_act;

Bl_fault_sfafuis= FAULT orelse
Bl2_fault_sfafus = FALLT orelse
Bl2_uvalue= 1

Bl_fault_sfahis= FAULT

El2_test_status = TEST

The same in code
“folded”

53

Unfolding

o Expressivity of CPNs (with priorities) equals to the
expressivity of uncoloured PNs with inhibitor edges
(and with priorities)

— Each CPN has a corresponding uncolored PN with

equivalent behavior (in the automaton theoretical sense
— bisimulation for the steps)

— Equivalent uncolored net: unfolded net
— Unfolding:

o Information of colored tokens is represented by the structure

e Each event of the CPN has exactly one corresponding
event in the unfolded net

54

Simple colored net

: color A = with apple | pear;

' color B = with red | yellow;

| color C = with fresh | stale;

(y, Z) : color BC = product B*C declare mult;
: var x: A;

| vary: B;
@ varz: C;

BC

55

Unfolded, uncolored net

56

Example: A simple commit protocol

Problem description:
e The system consists of three components: c,, ¢, €s c;

e One of them randomly becomes the coordinator which
sends a request to the other two

e The response of another component is either an abort or
commit vote

e Based on the vote of the two components the coordinator
decides: the decision is commit if the two other
components voted for commit, abort otherwise.

57

Example: Model of the simple commit protocol

Three color sets are defined in the CPN model.
Two of them are simple color sets:

C = {0, ¢, ¢,, c3} representing components,

D = {commit, abort} representing votes/decisions.
One compound color set:

M = C x C for requests (originator and target);
the (0, x)-like token represents that
the coordinator does not receive a request

Five variables are used, their types: X, y, z € C;
and dl,d2 € D

The if in the arc expression has the common intuitive
meaning (as in programming languages)

In the initial state the place p, has 3 tokens:
M(p,)=c;+C,+C;5, the other places are empty

Empty set is denoted by &

58

Example: Model of the simple commit protocol

e Colored Petri net model:
— p,: Participants (tokens c;, ¢,, ¢; in initial state)
— Pp,: Requests
— p5: Votes
— p4: Decision
L if (d,=aborf)v(d,=abort)
then abort else commit b
4
; d,+d, D’\

[M(p,)=<]

/

Example: Model of the simple commit protocol

-

. 4
e Partially P
unfolded P

c, koord.

(uncolored PN)
model: ¢, is the
coordinator

e Simple
optimizations
were done in 0
the structure °

and events A e
(firings) (}/ /A

¢, koord.

¢, koord.

messages
A
O

Example: Model of the simple commit protocol

-

-

Similar
nets
needed
for these
parts too

messages

61

Hierarchical colored Petri nets

Hierarchical colored Petri nets

e Integration of subnets into a complex CPN
hierarchically

— Pages: Colored Petri net models (subnets)
e Page number, page name: alternatives to refer to the subnet
e The pages can be instantiated (on any level of the hierarchy)
e The marking (token distribution) is unique for each instance

— Hierarchy: Structure of the pages
e Main (prime) page: topmost level

e Secondary page instances (subpages)
— Identification: page-instance ID number
— Page-hierarchy graph

63

Tools of hierarchical composition

1. Coarse (substitute) transition
— Representation of a subpage

— Interfaces between pages: places
1. On main page: "“Socket” places — insertion point of subnets

2. On subpage: "“Port” places — connection points of the subnet,
port type: input, output, input-output (bidirectional), general

2. Fusion places

— Places with same name, multiple instances,
denoting the same place at different locations

— Tokens are added / removed simultaneously
to / from each instance

64

Example: hierarchical version of the simple protocol

INTXDATA

color INT = int;
color DATA = string;
color INTxDATA= product INT*DATA;
color INTXINT = product INT * INT;
INTxDATA var n,k, n1, n2: INT;
DATA-.. | varp, str: DATA;
A7 y “hval stop = "##HHIHE
Sender | " Netivork Tl
B SRR | 1 D N e ., | COIOT TENO-< int with 0..10;
Network INTxDATA © | Color Tent = intwith 1..10;
] .. | var s: Ten0O; varr, r1,f2:.Ten1;
[fun Ok(s:Ten0, r:Ten1) = (r&=s);
n, Transmit § ..." e e e e e e e T et eteTe'::'.s.
H i) @ Pl Packet : Receiver :
1‘(1,"M0dgllli!|\'1");r+ B INTxDATA - i
1'(2,"g and An")++ 3 3 - . -
13 alysis b")++ i % : @ [e] vex
LMl 13 o TR
‘(5,"of Colou")++ & % Ten0 :
: CSena > 1(6."red Petr")++ : ° INTXDATA :
INTXDATA 1(7,"i Nets##")++ 3 3 : : i n=k
] 1°(8," st b : ; andalso
(n.p) E @ : i INTXDATA str| | p<>stop :
5 Ten0 : 9 (n.p) then strip}
X INTXDATA : 5 : S INT : : else str
en 3 i if Ok(s,r) Transmit C ;] In
Packet W@‘OU!E “ then 1'(n,1) Acknow. i E E
‘:lg s else empty n = .
: = k v
! :‘ INTXINT Receive
B XINT ~_~ ., :]
INT 9 if Ok(s.r) Transmit k LINT
EH then 1'(n,2) Acknow ‘—@ 1
min(ni,n2) - else empty ’ n
: -
g 3 IN
Receive E K 8
: Acknow. TR W .“
L 1n2.2)INTANT....; E

then k+1
else k

- Packet
% if n=k

IEIOut

if n=k
then k+1
else k

Example CPN:
Distributed database manager

Specification of the distributed database manager

n different servers; local copy on each server, managed by a local
database manager

DBM = {d,, d,, ..., d,}, n> 3
Database operations:

— Modification of local data
— Change naotification of the other database managers which will update

State of the system:
— Active: handling the update is in progress
— Passive: handling the update is finished

States of database managers:
Inactive, Performing (updating), Waiting (for acknowledgement)

Notification about changes: with messages

— Message header: sender and receiver database manager
MES = {(s,r) | s,y € DBM A s#r}, Mes(S) = 2, _ pgwysy 1 (S1)
— Message states: Unused, Sent, Received, Acknowledged

67

Distributed database: Declarations

Declaration field Meaning:
valn=4 |
' color DBM = index d with 1..n; DBM:{dl,dz,m,dn}

' color PR = product DBM * DBM;
fun diff{x,y) = (x<>y);

color MES = subset PR by diff ~ MES={(s,r)|s,reDBMAs=r}
. color E = with e;

fun Mes(s) = multPR(1's, DBM-1's) | Mes(s)= Y. 1(s,T)

'vars, r: DBM: reDBM-{s}

« DBM: database managers

 PR: DBM pairs

« MES: possible messages (headers)

» Mes(s): messages that can be sent by the DBM s

» E: simple token (uncolored) 68

Distributed database: System component

Update
and
Send Messages

Receive all
Acknowledg-
ments

System states denoted by a single token, initially ‘Passive’

69

DBM

DBMs are grouped by states, each group is represented by one place

Update
and
Send Messages

Distributed database: Database managers

Receive
a
Message

TE

Receive all
Acknowledg-
ments

Performing

I

Send an
Acknowledg-
ment

Initially each DBM is inactive; later it can change or update

/70

Distributed database: Messages

(Mes(s) U

MES

Update
and
Send Messages

(s.1) wv

Receive
a
Message

T (s.n)
Mes(s)
MES v
MES T MES | s p
Mes(s)
| \ 4
Receive all Send an
Acknowledg- Acknowledg-
ments ment
L Mes(s) /\ (s,n) J
Acknowledged /<
MES

» Places: message buffers

« A DBM sends notifications to the others; one from the set of possible messages
71

DB

Distributed database: Complete CPN model

M

(Mes(s)

Send Messages

Update
and

1
MES

Mes(s)

(o)

MES T

Mes(s)

Receive all

ments

L Mes(s)

MES

MES

]

e
DBM
e
s r
Acknowledg-

(s.1) Wv

Receive
a
Message

(s.1)

A\ 4

MES (50

\4

Send an
Acknowledg-
ment

(s.1) J

DBM

Active and Passive places: only one DBM performs change at the same time, then waits

72

Particularities of the model

e Causality
— Update and Send — Receive — Send Ack — Receive Ack

e Conflict

— Update and Send
enabled for each binding item s,
but only one can fire

e Concurrency P .(
— Receive a Message |° - r 1 (MGSFZ R
for bindingitems 5 %0 D@ e G
(S,r) that are DBM KA:ES I J [DBM M$ DBM
concurrent Iy g
with themselves

73

Reachability graph for n=3

gl B,

|RM12| |RM13L‘ |A|2[|bA13L‘
-

4 29
CIENNCIEN l [Exay
xﬁ) €]

|5A13[|RM 1.2
@
,
[RM 2,3 |RM2,1L‘ | 423[|bA2.1 L‘
| 15] 7
[RM 2:1\‘ [Rm 2,3[' SA 2.1
&D) (22)
[13)
SA32
Gy
w . 4
[RM 3,2 RM 3.1 SA32 SA 31
(12) (
~
|RM3,1| |RM 3,2[' SA 31 SA32
= o)

~

@

e Occurrence graph

e Abbreviated transition
names:

— SM: Update and Send
Messages

— RM: Receive a Message

— SA: Send an
Acknowledgment

— RA: Receive all
Acknowledgments

74

Dynamic properties: boundedness

Multiset Integer
Inactive DBM n
Waiting DBM 1
Performing DBM n-1
Unused MES n*(n-1)
Sent, Received, Acknowledged MES n-1

Passive, Active E 1

75

Dynamic properties: Liveness, fairness

e Liveness e Fairness Properties
Properties — Impartial transition
— Dead markings: Instances:
None e Update and Send Messages
— Dead transition * Receive a Message
instances: None e Send an Acknowledgment

e Receive all Acknowledgments

— Fair transition instances:
e None

— Just transition instances:
e None

— Live transition
instances: All

« Impartial transition: Fires infinitely often
 Fair transition: Infinitely many enabling - infinitely many firing
 Just transition: Persistent enabling - firing

76

Structural properties: P invariants

M(Active) + M(Passive) = 1'e
M(Inactive) + M(Waiting) + M(Performing) = DBM
M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

M(Performing) — Rec(M(Received)) = &
— Function Rec() for token mapping: Rec(s,r) =r
M(Sent) + M(Received) + M(Acknowledged) — Mes(M(Waiting)) = &
— Function Mes() for token mapping : Mes(s): the messages can be sent by DBM s

M(Active) — Ign(M(Waiting)) = &
— Function Ign() turns tokens with any color into token with colore € E

77

P invariant: the state of the system

M(Active) + M(Passive) = 1'e

Update
and
Send Messages

e e

€

N/

Receive all
Acknowledg-
ments

P invariant: database managers

M(Inactive) + M(Waiting) + M(Performing) = DBM

Update Receive

and a
S Send Messages S r Message
DBM
DBM DBM
S Receive all S r Send an
Acknowledg- Acknowledg-

ments ment

Performing

79

P invariants: messaging subsystem

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

(Mes(s) v (s,1) 1

MES
Update Receive
and a
Send Messages Message
T (s.n)
Mes(s)
MES A4
MES T MES | (s
Mes(s)
|
Receive all Send an
Acknowledg- Acknowledg-
ments ment
L Mes(s) /\ (s.1) J
Acknowledged J*
MES

80

P invariants of the model

(Mes(s)

Update
and
Send Messages

Receive all
Acknowledg-
ments

L Mes(s)

DBM

/\ 5Id
(s 1
MES
Receive
a
r Message
(s.r)
e DBM il
DBM MES (s.1)
INV INV INV
\ 4
Sld S r 1ld Send an
Acknowledg-
ment
1ld
/\4 (s.1) J 4 -Rec
Acknowledged /€ 5 Id
21d
MES NV 51

INV

11d
41d

81

M(Sent) + M(Received) + M(Acknowledged) — Mes(M(Waiting)) = &

DBM

INV

5 -Mes

One of the P invariants

(Mes(s)

Send Messages

Update
and

Receive all
Acknowledg-
ments

L Mes(s)

MES

INV

51d

INV

5Id

MES

(s.1) \1

Receive
a
Message

(s.1)

\4

MES 1)

v

INV

5Id

Send an
Acknowledg-
ment

(s.1) J

82

The complete CPN model (reminder)

(Mes(s)
MES

Update
and
S Send Messages

; I
Mes(s)
MES 1

OIS

DBM MES T DBM

]

Mes(s)

S Receive all S r
Acknowledg-
ments

L Mes(s)

(s.1) Wv

Receive
a
Message

(s.1)

\4

MES s

\4

Send an
Acknowledg-
ment

(s.1) J

MES

DBM

83

Messaging unfolded for n=3

84

