Colored Petri nets (CPNs)

dr. Tamás Bartha dr. István Majzik

BME Department of Measurement and Information Systems

• Why not this way?

• Distinction of tokens: colored Petri net

val n = 5; colset PH = index ph with 1..n; colset CS = index cs with 1..n; var p: PH;

```
fun Chopsticks(ph(i)) =
  1`cs(i) ++
  1`cs(if i=n then 1 else i+1);
```


• Meaning of colored tokens

A more complex example (see later)

Colored Petri nets

- Colored Petri net (CPN)
 - Extension of uncolored Petri nets with:
 - Flexible data structures
 - Data manipulation language
 - Colored Petri nets unite:
 - Graphical representation \rightarrow clarity
 - Well-defined semantics \rightarrow formal analysis
 - CPN model = net structure + declarations + net markings, expressions + initialization

Main components of CPNs (overview)

- Extensions of tokens
 - Data value: colored token
 - Data type: color set
- Extensions of places
 - Type of place: data type of accepted tokens
 - Initial marking inscription: initial tokens
 - Current marking: multiset of tokens matching the place's type
- Extensions of arcs
 - Arc expression: tokens moved (with variables to be bound)
- Extensions of transitions
 - Guard for firing
 - To fire: arc expressions shall be bound to colored tokens

Comparison of colored and uncolored Petri nets

Uncolored (P-T) Petri nets:

- Uncolored tokens
- Set of tokens (cardinality)
- Token manipulation
- Initial marking
- Inhibitor edges
- Edge weights
- Transition can be enabled
- Conflict between different enabled transitions
- ~ assembly

Colored Petri nets:

- Colored tokens
- Multiset of tokens
- Data manipulation
- Initial marking inscription
- Guards
- Arc expressions (+variables)
- Binding can be enabled
- Conflict between different bindings of the same transition
- ~ high-level programming lang.

Structure of colored Petri nets

Extensions of tokens

- Colored token
 - Represents a data value
- Color set:
 - Defines the data type
 E.g., enumeration (with),
 base type (int, bool, string, ...)
 - Can be complex (compound)
 E.g., color P = product U * I
- Declaration: in formal language
 - Standard ML

```
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```

Extensions of PN places

- Color set inscription: type (color) of the place
 - Type of tokens accepted by the place (one of the declared types)
 - Visualization: written next to the place, in italic
- Initial marking inscription
 - Defines the initial marking
 - A multiset of the accepted color set (may be more than one token per color)
 - Visualization: written next to the place, underlined
- Current marking
 - Description of current tokens
 - Visualization: written next to the place, number of tokens in circle and detailed description

Extensions of PN transitions

- Arc expression
 - Precondition of enablement (removed tokens) and the result of firing (placed tokens)
 - Type: type of the place connected to the arc (one transition have arcs with different types)
 - Visualization: next to the arc
- Variable can be used in the expression
 - Can be bound to data values (colored tokens)
 - Shall have a type (the color set of tokens that can be bound to it)
- Guard
 - Boolean expression, needs to be true to enable the transition
 - Visualization: next to the transition, within []

Structure of colored Petri nets: Summary

• Net structure:

- Represents the control and data flow structure of the system
- Places, transitions, arcs
- Declarations:
 - Define the data structures and used functions
 - Color sets, variables, arc expressions
- Markings, naming:
 - Define the syntactic and data manipulation items
 - Names, color sets, in/out arc expressions, guards, current state
- Initializing expression:
 - Defines the initial state of the model (constants)

- Elements of CPNs:
 - Places
 - Name
 - Color set
 - Initial marking
 - Current marking
 - Transitions
 - Name
 - Guard
 - Arcs
 - Arc expressions (incoming, outgoing)

Example: Control structures 1

Example: Control structures 2

Toolset of colored Petri nets

CPN: Definition of color sets

- Simple color sets
 - Uncolored tokens:
 unit
 - Base types:
 int, bool, real,
 string
 - Subset:

with 1..4;

- Enumeration:
 with true | false;
- Indexing (vector):
 index d with 1...4;

- Can be used in the definitions of the following:
 - Compound color sets
 - Variables, constants
 - Functions, operators

Compound color sets

- Ways to create compound color sets:
 - Union:

union S + T;

- Cross product (construction of tuples):
 product P * Q * R;
- Record (labelled tuples):
 record p:P * q:Q * r:R;
- List:

list int with 2..6;

Additional CPN elements: Variables

- Variables
 - Symbolic names of tokens
 - Variable declaration:
 - var proc : P;
- Constants
 - With fixed values
 - Constant declaration:

val n = 10;

val d1 = d(1):D;

- In the following expr.'s:
 - Arc expressions
 - Guards
- In the following decl.'s:
 - Color sets
 - Functions, operators
 - Arc expressions, guards, initialization expressions

Additional CPN elements: Functions

• Functions

- Side effect-free functions in SML language
- Example:

```
fun Chopsticks(ph(i)) =
    1`cs(i) ++
    1`cs(if i=n then 1 else i+1);
```

• Operations, operators

Infix notation

- In the following decl.'s:
 - Color sets
 - Functions, operators, constants
 - Arc expressions, guards, initialization expressions

Additional CPN elements: Expressions

- Net expressions
 - Value: evaluated with a specific binding of the variables
 - Type: set of all possible evaluations
 - Examples:

x=q 2`(x,i) if x=q then 2`i else empty Mes(s)

- Usage in:
 - Arc expressions, guards, initialization expressions

Expressions: Operations with multisets

Behavior of colored Petri nets (informal semantic)

Marking and binding

- Marking:
 - Distribution of tokens (count, by color) on the places
- Binding the arc expressions of a transition:
 - The variables are bound to data values (colored tokens)
 - For a given transition each occurrence of a variable will be bound to the same value
 - Unbound variable on outgoing arc: Can be bound to any value of its type
 - The bindings of different transitions are independent

Enabling of transitions

- Transition enabled with a given marking and binding:
 - Each input arc's expression evaluates to a multiset of tokens that is present on the corresponding input place
 - The guard is true
 - If a transition is enabled with a binding, it can fire
- Binding item for firing:
 - A pair (transition, binding), e.g., (T1, <x=p>)
 - Can be enabled with a marking \rightarrow can fire
 - In case of one transition: many bindings, many enabled binding items may be constructed; they can fire

Firing

- Transition fires with a binding (i.e., a binding item fires):
 - Removes tokens from the input places according to the arc expressions and the firing binding
 - Adds tokens from the output places according to the arc expressions and the firing binding
- Step (effect of firing on the state space):
 - The marking of the CPN changes

Reachability graph

• Node:

- A marking: count and color of tokens for each place
- May have an ID, predecessor node and successor node

• Edge:

- The firing binding item: the transition and the binding
- By definition only one firing binding item is shown in the reachability graph

CPN Tools demo

- Model of dining philosophers
- Simulation
- Reachability graph

Formal definition and semantics of colored Petri nets

Multisets

• Multiset: may contain several of the same element

- Mapping: Bag(A), to the domain of A, $a \in [A \rightarrow N]$

- Formally: $a = \sum_{x \in A} a(x) \cdot x$, alternative notation: $a = \sum_{x \in A} a(x)'x$

- Operations on multisets:
 - Comparison: $a_2 \neq a_1$ if $\exists x \in A, a_2(x) \neq a_1(x)$ $a_2 \leq a_1$ if $\forall x \in A, a_2(x) \leq a_1(x)$
 - Size: $|a| = \sum_{x \in A} a(x)$
 - Addition: $a_1 + a_2 = \sum_{x \in A} (a_1(x) + a_2(x)) \cdot x$
 - Subtraction: $a_1 a_2 = \sum_{x \in A} (a_1(x) a_2(x)) \cdot x$ if $a_2 \le a_1$
 - Scalar multiplication: $n \cdot a = \sum_{x \in A} (n \cdot a(x)) \cdot x$

Operations with multisets

Multisets (continued)

- Union of multisets: $a_1 \cup a_2 \cup \ldots \cup a_m$
 - Domain: $A_1 \cup A_2 \cup \ldots \cup A_m$
 - Item: $e_i \in \bigcup_{i=1}^{m} A_k$ if $\exists A_j, e_i \in A_j$
- Construction of tuples: $\langle A_1, A_2, ..., A_n \rangle$
 - Domain: $A_1 \times A_2 \times \ldots \times A_2$
 - Item: $\langle e_1, e_2, \dots, e_n \rangle \in \Diamond_1^n A_j$ if $\forall e_i \in A_i$
 - Generalization: $\langle a_1, a_2, ..., a_n \rangle$

Formal definition of CPNs

	$CPN = (\Sigma, P, T, A, C, G, E, M_0)$
Color sets:	$\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_\kappa\}$
Places:	$P = \{p_1, p_2, \dots, p_{\pi}\}$
Transitions:	$T = \{t_1, t_2, \dots, t_{\tau}\}$
	$P \cap T = \emptyset$
Arcs:	$A \subseteq (P \times T) \cup (T \times P)$
Color set func.:	$C: P \mapsto \Sigma$
Guards:	$G: \forall t \in T, \Big[\operatorname{Type} \big(G(t) \big) = B \wedge \operatorname{Type} \big(\operatorname{Var} \big(G(t) \big) \big) \subseteq \Sigma \Big]$
Arc expressions:	$E: \forall a \in A, \Big[\operatorname{Type}(E(a)) = C(p)_{MS} \wedge \operatorname{Type}(\operatorname{Var}(E(a))) \subseteq \Sigma \Big]$
Initial marking:	$M_0: \forall p \in P, [\text{Type}(M_0(p)) = C(p)_{MS}]$

Notations used in the formal definition

- The type (color set) of variable v: Type(v)
- The type of expression *expr*: Type(*expr*)
- The set of variables in expression *expr*: Var(*expr*)
- A binding of variable $v: b(v) \in \text{Type}(v)$
- Evaluation (value) of expression *expr* in binding *b*: *expr*<*b*>
 where v ∈ Var(*expr*) and b(v) ∈ Type(v)
Arc expressions

- May use variables
 - Variables have types (color sets): Type(v)
 - Their value is an element of their types' multiset
- Closed arc expression: does not contain variables
- Open arc expression: contains variables that have to be bound to values
 - Binding: a specific value assignment to each variable
 - Arc expression can be evaluated with the given binding
 - Has type: Type(expr) = $C(p)_{MS}$
 - The color set (type) to which it is evaluated
 - Set of variables in the expression: Var(*expr*)

Bound and unbound variables

Bound variables

- Value binding is determined by the incoming arcs
- Consistency: a variable has only one value in each binding
 - For all in-arcs of the transition the same variable name denotes the same value
- Unbound variables
 - They can only be present in outgoing arc expressions
 - Enablement did not assign (bound) any value to them
 - Have to be bound at firing:
 - Can take any value from its color set
 - Number of possible bindings = cardinality of the color set
 - Non-deterministic choice

Guards

- Each guard is assigned to a transition
 - Expression over multisets
 - Evaluated to Boolean value
- The transition is enabled only if the guard is evaluated to "true"
 - "Filters" the enabled bindings

Enabling in colored Petri nets

• Binding of transitions

- Valid binding: $\forall v \in Var(t): b(v) \in Type(v) \land G(t)\langle b \rangle$

 $\operatorname{Var}(t) = \left\{ v \mid v \in \operatorname{Var}\left(G(t)\right) \lor \exists a \in A(t) : v \in \operatorname{Var}\left(E(a)\right) \right\}$

- Set of all valid bindings: B(t)
- A valid binding is enabled if
 - Guard is true
 - The input places contain enough colored tokens
 (cf. arc expressions E⁻(p,t)) and the inhibitor arcs
 do not inhibit the firing (cf. arc expressions E^h(p,t)):

 $\forall p \in \bullet t : E^{-}(p,t) \langle b \rangle \leq M(p) \wedge E^{h}(p,t) \langle b \rangle > M(p)$

Firing in colored Petri nets

- An enabled transition can fire if there is no enabled transition with higher priority, i.e.
 - The transitions with higher priority do not have enough tokens in their input places (see arc expressions
 E⁻(p,t')<b'>) or their inhibitor arcs disable the firing (see arc expressions E^h(p,t')<b'>),

 $\forall t', \pi(t') > \pi(t) : \exists p \in \bullet t':$

 $E^{-}(p,t')\langle b'\rangle > M(p) \lor E^{h}(p,t')\langle b'\rangle \le M(p)$

Or their guards are not satisfied (not evaluated to true)

Firing in colored Petri nets

- Steps of firing:
 - Finding enabled bindings
 - Determined by incoming arc expressions and guards
 - Transition enabled with a given binding \rightarrow it can fire
 - Firing: removal of colored tokens from incoming places, adding colored tokens to outgoing places

$$\forall p \in P : M'(p) = M(p) - \sum_{p \in \bullet t} E^{-}(p,t) \langle b \rangle + \sum_{p \in t \bullet} E^{+}(t,p) \langle b \rangle$$

- Then *M*' directly reachable from *M*: *M* $[(t,b)\rangle$ *M*'

Dynamic properties of colored Petri nets

Reachability graph (excerpt)

Dynamic properties of CPNs

- Extension of the uncolored Petri net properties to multisets
- Boundedness
 - A place is **bounded** if the number of tokens in any state is bounded
 - *n* is an upper integer bound for *p* if $\forall M \in [M_0\rangle$: |M(p)| < n
 - *m* is an upper multiset bound for *p* if $\forall M \in [M_0\rangle$: M(p) < m
- Reversibility (home state)

It is always possible to get back to a home state

- *M* is a home state if $\forall M' \in [M_0\rangle : M \in [M'\rangle$
- X is a home group if $\forall M' \in [M_0\rangle : X \cap [M'\rangle \neq \emptyset$

Dynamic properties of CPNs

• Liveness

Liveness guarantees that some of the binding items remain active

- Dead state (deadlock): no binding item is enabled

 $\forall b \in BE: \neg M[b\rangle$

- Dead transition: none of its bindings may become enabled $\forall M' \in [M\rangle, b \in B(t): \neg M'[b\rangle$
- Live transition: from each reachable state there is at least one trajectory starting where the transition is not dead (at least one binding will become active)

$$\forall M' \in [M_0\rangle, \ \exists M'' \in [M'\rangle, \exists b \in B(t): \ M''[b\rangle]$$

Dynamic properties of CPNs

• Fairness

Fairness represents how often can a binding item fire

- Impartial transition: fires infinitely often

 $\forall b \in B(t), |\sigma| = \infty : \operatorname{OC}_{b}(\sigma) = \infty$

– Fair transition: infinitely many enabling \Rightarrow infinitely many firing

 $\forall b \in B(t), |\sigma| = \infty : EN_b(\sigma) = \infty \Longrightarrow OC_b(\sigma) = \infty$

 Just transition: persistent enabling ⇒ firing (there is no persistent enabling without firing)

 $\forall b \in B(t), \forall i \ge 1:$ $\left[\text{EN}_{b,i}(\sigma) \neq 0 \Longrightarrow \exists k \ge i: \left[\text{EN}_{b,k}(\sigma) = 0 \lor \text{OC}_{b,k}(\sigma) \neq 0 \right] \right]$

Structural properties of colored Petri nets

T invariant in CPNs

Transition invariant

A firing sequence $\boldsymbol{\sigma}$ that does not affect the state:

 $M'(p) = M(p) - \sum_{p \in \bullet t, b \in \sigma} E^{-}(p, t) \langle b \rangle + \sum_{p \in t \bullet, b \in \sigma} E^{+}(t, p) \langle b \rangle$ where M'(p) - M(p) = 0 for all pthen $\sum_{p \in \bullet t, b \in \sigma} E^{-}(p, t) \langle b \rangle = \sum_{p \in t \bullet, b \in \sigma} E^{+}(t, p) \langle b \rangle$

P invariant in CPNs

Place invariant

Idea: Equation that is satisfied in every reachable state

- Weighted token sum is constant: $W_{p_1}(M(p_1)) + W_{p_2}(M(p_2)) + \dots W_{p_n}(M(p_n)) = m_{inv}$
- Weight function: maps the color sets of the places to a common multiset
- W_{P} is a P invariant: $\forall M \in [M_{0}\rangle: \sum W_{p}(M(p)) = \sum W_{p}(M_{0}(p))$

Unfolding colored Petri nets

Possibilities to construct a CPN

- CPNs: information in both structure and data
- Extremities
 - Pure structural information, no data:
 - Uncolored (P/T) net (can be build as a CPN)
 - No structure, only data (data and control information):
 - 1 place + 1 transition, complex color sets and arc expressions
- We need the golden mean
 - To have a clean, readable CPN

Example: Modeling possibilities

cpn4_0 FSSB MAIN P. 2 P In P Out 85 BII 85 BO 1 BI1_act BO 1_act P In P Out B02 BI2_act BO2_act 'input(BI1_act, BI2_act); output (BO1_act, BO2_act); action let , val (fault_status = Bi1_fault_status, test_status=Bi1_test_status, value=Bi1_value) = Bi1_act; , val (fault_status = BI2_fault_status, test_status=BI2_test_status, value=BI2_value) = BI2_act; • (+ Calculate Fault Status +) ' val BO1_fault_status= if BI1_fault_status = FAULT orelse BI2_fault_status = FAULT orelse BI2_value = 1 then FAULT else NO_ FAULT; val BO2_fault_status = NO_FAULT; (+ Calculate Values +) val BO1_value = BI1_value; val BO2_value= if BI1_fault_status = FAULT then else 0: (+Calculate Test Status+) val (BO1_test_status, BO2_test_status) = if BI1_test_status = TE ST orelse BI2_test_status = TEST then (TEST,TEST) else (NO_TEST,NO_TEST); , in '({fault_status=B01_fault_status, test_status=B01_test_status, value=B01_value); (fault_status=BO2_fault_status, test_status=BO2_test_status, value=BO2_value)) en d;

Control flow expressed by the structure

The same in code ("folded")

Unfolding

- Expressivity of CPNs (with priorities) equals to the expressivity of uncoloured PNs with inhibitor edges (and with priorities)
 - − Each CPN has a corresponding uncolored PN with equivalent behavior (in the automaton theoretical sense → bisimulation for the steps)
 - Equivalent uncolored net: unfolded net
 - Unfolding:
 - Information of colored tokens is represented by the structure
 - Each event of the CPN has <u>exactly one</u> corresponding event in the unfolded net

Simple colored net

color A = with apple pear;
color B = with red yellow;
color C = with fresh stale;
color BC = product B*C declare mult;
var x: A;
var y: B;
var z: C;

Unfolded, uncolored net

Example: A simple commit protocol

Problem description:

- The system consists of three components: c₁, c₂ és c₃
- One of them randomly becomes the coordinator which sends a request to the other two
- The response of another component is either an abort or commit vote
- Based on the vote of the two components the coordinator decides: the decision is commit if the two other components voted for commit, abort otherwise.

• Three color sets are defined in the CPN model. Two of them are simple color sets:

 $C = \{0, c_1, c_2, c_3\}$ representing components,

D = {commit, abort} representing votes/decisions. One compound color set:

 $M = C \times C$ for requests (originator and target); the (0, x)-like token represents that the coordinator does not receive a request

- Five variables are used, their types: x, y, z \in C; and d1, d2 \in D
- The if in the arc expression has the common intuitive meaning (as in programming languages)
- In the initial state the place p₁ has 3 tokens: M(p₁)=c₁+c₂+c₃, the other places are empty
- Empty set is denoted by \varnothing

- Colored Petri net model:
 - p₁: Participants (tokens c₁, c₂, c₃ in initial state)
 - p₂: Requests
 - p₃: Votes
 - p_4 : Decision

- Partially unfolded (uncolored PN) model: c₁ is the coordinator
- Simple optimizations were done in the structure and events (firings)

Hierarchical colored Petri nets

Hierarchical colored Petri nets

- Integration of subnets into a complex CPN hierarchically
 - Pages: Colored Petri net models (subnets)
 - Page number, page name: alternatives to refer to the subnet
 - The pages can be instantiated (on any level of the hierarchy)
 - The marking (token distribution) is unique for each instance
 - Hierarchy: Structure of the pages
 - Main (prime) page: topmost level
 - Secondary page instances (subpages)
 - Identification: page-instance ID number
 - Page-hierarchy graph

Tools of hierarchical composition

- 1. Coarse (substitute) transition
 - Representation of a subpage
 - Interfaces between pages: places
 - 1. On main page: "Socket" places \rightarrow insertion point of subnets
 - 2. On subpage: "Port" places \rightarrow connection points of the subnet, port type: input, output, input-output (bidirectional), general

2. Fusion places

- Places with same name, multiple instances, denoting the same place at different locations
- Tokens are added / removed simultaneously to / from each instance

Example: hierarchical version of the simple protocol

Example CPN: Distributed database manager

Specification of the distributed database manager

 n different servers; local copy on each server, managed by a local database manager

 $\mathsf{DBM} = \{\mathsf{d}_1, \, \mathsf{d}_2, \, ..., \, \mathsf{d}_n\}, \, n \ge 3$

- Database operations:
 - Modification of local data
 - Change notification of the other database managers which will update
- State of the system:
 - Active: handling the update is in progress
 - Passive: handling the update is finished
- States of database managers:
 - Inactive, Performing (updating), Waiting (for acknowledgement)
- Notification about changes: with messages
 - − Message header: sender and receiver database manager $MES = \{(s,r) \mid s,r \in DBM \land s \neq r\}, \quad Mes(s) = \sum_{r \in DBM \{s\}} 1`(s,r)$
 - Message states: Unused, Sent, Received, Acknowledged

Distributed database: Declarations

Declaration field

```
val n = 4;
color DBM = index d with 1..n;
color PR = product DBM * DBM;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff;
color E = with e;
fun Mes(s) = mult'PR(1`s, DBM--1`s)
var s, r : DBM;
```

- DBM: database managers
- PR: DBM pairs
- MES: possible messages (headers)
- Mes(s): messages that can be sent by the DBM s
- E: simple token (uncolored)

Meaning:

$$\mathbf{DBM} = \left\{ \mathbf{d}_1, \mathbf{d}_2, \dots, \mathbf{d}_n \right\}$$

$$MES = \{(s, r) \mid s, r \in DBM \land s \neq r\}$$

$$Mes(s) = \sum_{r \in DBM-\{s\}} 1'(s, r)$$

Distributed database: System component

• System states denoted by a single token, initially 'Passive'

Distributed database: Database managers

- DBMs are grouped by states, each group is represented by one place
- Initially each DBM is inactive; later it can change or update

Distributed database: Messages

- Places: message buffers
- A DBM sends notifications to the others; one from the set of possible messages

Distributed database: Complete CPN model

• Active and Passive places: only one DBM performs change at the same time, then waits
Particularities of the model

• Causality

– Update and Send \rightarrow Receive \rightarrow Send Ack \rightarrow Receive Ack

- Conflict
 - Update and Send enabled for each binding item s, but only one can fire
- Concurrency
 - Receive a Message for binding items

 (s,r) that are
 concurrent
 with themselves

Reachability graph for n=3

- Occurrence graph
- Abbreviated transition names:
 - SM: Update and Send Messages
 - RM: Receive a Message
 - SA: Send an
 Acknowledgment
 - RA: Receive all Acknowledgments

Dynamic properties: boundedness

		Multiset	Integer
_	Inactive	DBM	n
_	Waiting	DBM	1
_	Performing	DBM	n - 1
_	Unused	MES	n*(n - 1)
_	Sent, Received, Acknowledged	MES	n - 1
	Passive, Active	E	1

Dynamic properties: Liveness, fairness

- Liveness
 Properties
 - Dead markings:
 None
 - Dead transition instances: None
 - Live transition instances: All

- Fairness Properties
 - Impartial transition instances:
 - Update and Send Messages
 - Receive a Message
 - Send an Acknowledgment
 - Receive all Acknowledgments
 - Fair transition instances:
 - None
 - Just transition instances:
 - None
- Impartial transition: Fires infinitely often
- Fair transition: Infinitely many enabling \rightarrow infinitely many firing
- Just transition: Persistent enabling \rightarrow firing

Structural properties: P invariants

- M(Active) + M(Passive) = 1`e
- M(Inactive) + M(Waiting) + M(Performing) = DBM
- M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

- M(Performing) Rec(M(Received)) = ∅
 - Function Rec() for token mapping: Rec(s,r) = r
- M(Sent) + M(Received) + M(Acknowledged) Mes(M(Waiting)) = ∅
 - Function Mes() for token mapping : Mes(s): the messages can be sent by DBM s
- M(Active) Ign(M(Waiting)) = ∅
 - Function Ign() turns tokens with any color into token with color $e \in E$

P invariant: the state of the system

M(Active) + M(Passive) = 1`e

P invariant: database managers

M(Inactive) + M(Waiting) + M(Performing) = DBM

P invariants: messaging subsystem

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

P invariants of the model

One of the P invariants

 $M(Sent) + M(Received) + M(Acknowledged) - Mes(M(Waiting)) = \emptyset$

The complete CPN model (reminder)

Messaging unfolded for n=3

