
Colored Petri nets
(CPNs)

dr. Tamás Bartha

dr. István Majzik

BME Department of Measurement and Information Systems

Motivation

• Petri net model
of Dining Philosophers

2

Motivation

• Why not this way?

3

Motivation

• Distinction of tokens: colored Petri net

4

val n = 5;

colset PH = index ph with 1..n;

colset CS = index cs with 1..n;

var p: PH;

fun Chopsticks(ph(i)) =

1`cs(i) ++
1`cs(if i=n then 1 else i+1);

Motivation

• Meaning of colored tokens

5

ph(5)

ph(1)

ph(2)

ph(4) ph(3)

cs(1) cs(2)

cs(3)cs(5)

cs(4)

A more complex example (see later)

6

Colored Petri nets

• Colored Petri net (CPN)

– Extension of uncolored Petri nets with:

• Flexible data structures

• Data manipulation language

– Colored Petri nets unite:

• Graphical representation  clarity

• Well-defined semantics  formal analysis

– CPN model = net structure + declarations +

net markings, expressions + initialization

7

Main components of CPNs (overview)

• Extensions of tokens

– Data value: colored token

– Data type: color set

• Extensions of places

– Type of place: data type of accepted tokens

– Initial marking inscription: initial tokens

– Current marking: multiset of tokens matching the place’s type

• Extensions of arcs

– Arc expression: tokens moved (with variables to be bound)

• Extensions of transitions

– Guard for firing

– To fire: arc expressions shall be bound to colored tokens

8

Comparison of colored and uncolored Petri nets

Uncolored (P-T) Petri nets:

• Uncolored tokens

• Set of tokens (cardinality)

• Token manipulation

• Initial marking

• Inhibitor edges

• Edge weights

• Transition can be enabled

• Conflict between different

enabled transitions

• ~ assembly

Colored Petri nets:

• Colored tokens

• Multiset of tokens

• Data manipulation

• Initial marking inscription

• Guards

• Arc expressions (+variables)

• Binding can be enabled

• Conflict between different

bindings of the same transition

• ~ high-level programming lang.

9

Structure of colored Petri nets

Extensions of tokens

• Colored token

– Represents a data value

• Color set:

– Defines the data type

E.g., enumeration (with),
base type (int, bool, string, …)

– Can be complex (compound)

E.g., color P = product U * I

• Declaration: in formal language

– Standard ML

11

Extensions of PN places

• Color set inscription: type (color) of
the place
– Type of tokens accepted by the place

(one of the declared types)

– Visualization: written next to the place, in
italic

• Initial marking inscription
– Defines the initial marking

– A multiset of the accepted color set
(may be more than one token per color)

– Visualization: written next to the place,
underlined

• Current marking
– Description of current tokens

– Visualization: written next to the place,
number of tokens in circle and detailed
description

12

U

U U

Extensions of PN transitions

• Arc expression

– Precondition of enablement (removed tokens)
and the result of firing (placed tokens)

– Type: type of the place connected to the arc
(one transition have arcs with different types)

– Visualization: next to the arc

• Variable can be used in the expression

– Can be bound to data values (colored tokens)

– Shall have a type (the color set of tokens that
can be bound to it)

• Guard

– Boolean expression, needs to be true to enable
the transition

– Visualization: next to the transition, within []

13

U

U U

Structure of colored Petri nets: Summary

• Net structure:

– Represents the control and data flow structure of the system

– Places, transitions, arcs

• Declarations:

– Define the data structures and used functions

– Color sets, variables, arc expressions

• Markings, naming:

– Define the syntactic and data manipulation items

– Names, color sets, in/out arc expressions, guards, current

state

• Initializing expression:

– Defines the initial state of the model (constants)

14

• Elements of CPNs:

– Places

• Name

• Color set

• Initial marking

• Current marking

– Transitions

• Name

• Guard

– Arcs

• Arc expressions (incoming, outgoing)
15

A

B

T1

T2

S

3`(q,0)

color U = with p | q;

color I = int;

color P = product U * I;

color E = with e;

var x : U;

var i : I;

2`(p,0)

(x,i)

(x,i)

(x,i)

[x=q]

e

1`e

P

P E

3 3`(q,0)

2 2`(p,0)

1

1`e

if x=q then 1`(q,i+1) else empty

Initial
marking

Incoming arc
inscription

Current
marking

Guard expr.

Transition name

Declaration field

Outgoing
arc expression

Color set

Place name

Example: Control structures 1

16

IF b THEN stat1 ELSE stat2 WHILE b DO stat

[b] [b]

stat1 stat2 stat

[b] [b]

stat

REPEAT stat UNTIL b Subroutine call Start of a process

wait

start

proc.

end

start

proc.

end

cont.

param

param.

Example: Control structures 2

17

[b] [b]

Toolset of colored Petri nets

CPN: Definition of color sets

• Simple color sets

– Uncolored tokens:

unit

– Base types:

int, bool, real,

string

– Subset:

with 1..4;

– Enumeration:

with true | false;

– Indexing (vector):

index d with 1..4;

• Can be used in the

definitions of the following:

– Compound color sets

– Variables, constants

– Functions, operators

19

Compound color sets

• Ways to create compound color sets:

– Union:

union S + T;

– Cross product (construction of tuples):

product P * Q * R;

– Record (labelled tuples):

record p:P * q:Q * r:R;

– List:

list int with 2..6;

20

Additional CPN elements: Variables

• Variables

Symbolic names of tokens

– Variable declaration:

var proc : P;

• Constants

With fixed values

– Constant declaration:

val n = 10;

val d1 = d(1):D;

• In the following expr.’s:

– Arc expressions

– Guards

• In the following decl.’s:

– Color sets

– Functions, operators

– Arc expressions, guards,

initialization expressions

21

Additional CPN elements: Functions

• Functions

Side effect-free functions

in SML language

– Example:

fun Chopsticks(ph(i)) =

1`cs(i) ++

1`cs(if i=n then 1 else i+1);

• Operations, operators

Infix notation

• In the following decl.’s:

– Color sets

– Functions, operators,

constants

– Arc expressions, guards,

initialization expressions

22

Additional CPN elements: Expressions

• Net expressions

– Value: evaluated with a specific

binding of the variables

– Type: set of all possible

evaluations

– Examples:

x=q

2`(x,i)

if x=q then 2`i else empty

Mes(s)

• Usage in:

– Arc expressions, guards,

initialization expressions

23

Addition: a1 + a2

Expressions: Operations with multisets

24

Comparison: a1 ≤ a2, a1 ≠ a2

Size: |a1| Scalar multiplication: n∙a1

Subtraction: a1 - a2 (only if a2 ≤ a1)

Behavior of colored Petri nets
(informal semantic)

Marking and binding

• Marking:
– Distribution of tokens (count, by

color) on the places

• Binding the arc expressions of a
transition:
– The variables are bound to data

values (colored tokens)

– For a given transition each
occurrence of a variable will be
bound to the same value

– Unbound variable on outgoing arc:
Can be bound to any value of its
type

– The bindings of different transitions
are independent

26

U

U U

Enabling of transitions

• Transition enabled with a given
marking and binding:

– Each input arc’s expression evaluates
to a multiset of tokens that is present
on the corresponding input place

– The guard is true

– If a transition is enabled with a
binding, it can fire

• Binding item for firing:

– A pair (transition, binding),
e.g., (T1, <x=p>)

– Can be enabled with a marking  can fire

– In case of one transition: many bindings, many enabled
binding items may be constructed; they can fire

27

U

U U

Firing

• Transition fires with a binding

(i.e., a binding item fires):

– Removes tokens from the input

places according to the arc

expressions and the firing binding

– Adds tokens from the output

places according to the arc

expressions and the firing binding

• Step (effect of firing on the

state space):

– The marking of the CPN changes

28

U

U U

Reachability graph

• Node:

– A marking: count and color of tokens for each place

– May have an ID, predecessor node and successor node

• Edge:

– The firing binding
item: the transition
and the binding

– By definition
only one firing
binding item
is shown in the
reachability graph

29

1

1

NextSend = 1

NextRec = 1

Received = ""

2

2

NextSend = 1

NextRec = 1

Received = ""

A = 1`(1,"Coloured")

3

1->2

SendPack

{p="Coloured",n=1}

2->3

TranPack

{s=1,r=1,

p="Coloured",n=1}

CPN Tools demo

• Model of
dining
philosophers

• Simulation

• Reachability
graph

30

Formal definition and semantics of
colored Petri nets

Multisets

• Multiset: may contain several of the same element

– Mapping: Bag(A), to the domain of A,

– Formally: , alternative notation:

• Operations on multisets:

– Comparison:

– Size:

– Addition:

– Subtraction:

– Scalar multiplication:

32

 a A N

()
x A

a a x x


 

2 1 2 1

2 1 2 1

ha , () ()

ha , () ()

   

   

a a x A a x a x

a a x A a x a x

 1 2 1 2() ()
x A

a a a x a x x


   
 1 2 1 2 2 1() () feltéve, hogy

x A
a a a x a x x a a


    

 ()
x A

n a n a x x


   

()
x A

a a x




() '
x A

a a x x




if

if

if

Addition: a1 + a2

Operations with multisets

33

Comparison: a1 ≤ a2, a1 ≠ a2

Size: |a1| Scalar multiplication: n∙a1

Subtraction: a1 - a2 (only if a2 ≤ a1)

Multisets (continued)

• Union of multisets: a1  a2  …  am

– Domain: A1  A2  …  Am

– Item:

• Construction of tuples: A1, A2, …, An

– Domain:

– Item:

– Generalization: a1, a2, …, an

34

1 2 1, , , han

n j i ie e e A e A  

1 2 2A A A  

1 ha ,m

i k j i je A A e A  

if

if

Formal definition of CPNs

35

    

    

 

0

1 2

1 2

1 2

MS

0 0 MS

CPN (, , , , , , ,)

{ , , , }

{ , , , }

{ , , , }

() ()

:

: , Type () Type Var ()

: , Type () () Type Var ()

: , Type () ()

P T A C G E M

P p p p

T t t t

P T

A P T T P

C P

G t T G t G t

E a A E a C p E a

M p P M p C p







  

 

 





 

   



       

       

    

B

Initial marking:

Arc
expressions:

Guards:

Color set func.:

Arcs:

Transitions:

Places:

Color sets:

Notations used in the formal definition

• The type (color set) of variable v: Type(v)

• The type of expression expr: Type(expr)

• The set of variables in expression expr: Var(expr)

• A binding of variable v: b(v)  Type(v)

• Evaluation (value) of expression expr in binding b: expr

where v  Var(expr) and b(v)  Type(v)

36

Arc expressions

• May use variables

– Variables have types (color sets): Type(v)

– Their value is an element of their types’ multiset

• Closed arc expression: does not contain variables

• Open arc expression: contains variables that have to be

bound to values

– Binding: a specific value assignment to each variable

• Arc expression can be evaluated with the given binding

– Has type: Type(expr) = C(p)MS

• The color set (type) to which it is evaluated

– Set of variables in the expression: Var(expr)

37

Bound and unbound variables

• Bound variables

– Value binding is determined by the incoming arcs

– Consistency: a variable has only one value in each binding

• For all in-arcs of the transition the same variable name denotes the
same value

• Unbound variables

– They can only be present in outgoing arc expressions

– Enablement did not assign (bound) any value to them

– Have to be bound at firing:

• Can take any value from its color set

• Number of possible bindings = cardinality of the color set

• Non-deterministic choice

38

Guards

• Each guard is assigned to a transition

– Expression over multisets

– Evaluated to Boolean value

• The transition is enabled only if the guard is evaluated

to “true”

– “Filters” the enabled bindings

39

(x,q)

(x,i)
[x=q]

q

Enabling in colored Petri nets

• Binding of transitions

– Valid binding: v  Var(t): b(v)  Type(v)  G(t)b

– Set of all valid bindings: B(t)

• A valid binding is enabled if

– Guard is true

– The input places contain enough colored tokens

(cf. arc expressions E-(p,t)) and the inhibitor arcs

do not inhibit the firing (cf. arc expressions Eh(p,t)):

40

    Var() | Var G() () : Var ()t v v t a A t v E a    

: (,) () (,) ()hp t E p t b M p E p t b M p        

Firing in colored Petri nets

, () () : :

(,) () (,) ()h

t t t p t

E p t b M p E p t b M p

 


     

         

41

• An enabled transition can fire if there is

no enabled transition with higher priority, i.e.

– The transitions with higher priority do not have enough

tokens in their input places (see arc expressions

E-(p,t’)<b’>) or their inhibitor arcs disable the firing

(see arc expressions Eh(p,t’)<b’>),

– Or their guards are not satisfied (not evaluated to true)

G(t’)b’

Firing in colored Petri nets

• Steps of firing:

– Finding enabled bindings

• Determined by incoming arc expressions and guards

– Transition enabled with a given binding  it can fire

– Firing: removal of colored tokens from incoming places,

adding colored tokens to outgoing places

– Then M’ directly reachable from M: M [(t,b) M’

42

: () () (,) (,)
p t p t

p P M p M p E p t b E t p b 

  

         

Dynamic properties of
colored Petri nets

-,-,- -,-,--,13,-13,-,- -,-,13

-,3,13,1,-

-,1,31,3,-

3,-,1

1,-,3

SM,2

RM,2,1

RM,2,3

Sent, Received, Acknowledged

SA,2,3

SA,2,1

RM,2,3

RM,2,1

SA,2,3

SA,2,1

SA,2,1

SA,2,3

RM,2,3

RM,2,1

RA,2

Reachability graph (excerpt)

44

Dynamic properties of CPNs

• Extension of the uncolored Petri net properties to multisets

• Boundedness

A place is bounded if the number of tokens in any state is bounded

– n is an upper integer bound for p if

– m is an upper multiset bound for p if

• Reversibility (home state)

It is always possible to get back to a home state

– M is a home state if

– X is a home group if

45

0 : ()M M M p n   

 0 : ()M M M p m   

 0 :M M M M     

 0 :M M X M      

Dynamic properties of CPNs

• Liveness

Liveness guarantees that some of the binding items remain active

– Dead state (deadlock): no binding item is enabled

– Dead transition: none of its bindings may become enabled

– Live transition: from each reachable state there is at least one

trajectory starting where the transition is not dead (at least one

binding will become active)

46

:b BE M b   

 , () :M M b B t M b      

  0 , , () :M M M M b B t M b           

Dynamic properties of CPNs

• Fairness

Fairness represents how often can a binding item fire

– Impartial transition: fires infinitely often

– Fair transition: infinitely many enabling  infinitely many firing

– Just transition: persistent enabling  firing

(there is no persistent enabling without firing)

47

(), : OC ()bb B t       

(), : EN () OC ()b bb B t          

, , ,

(), 1:

EN () 0 : EN () 0 OC () 0b i b k b k

b B t i

k i  

   

          

Structural properties of
colored Petri nets

T invariant in CPNs

• Transition invariant

A firing sequence  that does not affect the state:

49

, ,

, ,

() () (,) (,)

ahol () () 0 minden -re

ekkor (,) (,)

p t b p t b

p t b p t b

M p M p E p t b E t p b

M p M p p

E p t b E t p b

 

 

 

    

 

    

       

  

    

 

 

where for all

then

P invariant in CPNs

• Place invariant

Idea: Equation that is satisfied in every reachable state

– Weighted token sum is constant:

– Weight function: maps the color sets of the places

to a common multiset

– WP is a P invariant:

50

     
1 21 2 invW () W () W () m

np p p nM p M p M p  

    0 0: () ()p p

p P p P

M M W M p W M p
 

    

Unfolding colored Petri nets

Possibilities to construct a CPN

• CPNs: information in both structure and data

• Extremities

– Pure structural information, no data:

• Uncolored (P/T) net (can be build as a CPN)

– No structure, only data (data and control information):

• 1 place + 1 transition, complex color sets and arc expressions

• We need the golden mean

– To have a clean, readable CPN

52

Example: Modeling possibilities

53

Control flow expressed by the structure The same in code

(“folded”)

Unfolding

• Expressivity of CPNs (with priorities) equals to the

expressivity of uncoloured PNs with inhibitor edges

(and with priorities)

– Each CPN has a corresponding uncolored PN with

equivalent behavior (in the automaton theoretical sense

 bisimulation for the steps)

– Equivalent uncolored net: unfolded net

– Unfolding:

• Information of colored tokens is represented by the structure

• Each event of the CPN has exactly one corresponding

event in the unfolded net

54

Simple colored net

55

color A = with apple | pear;

color B = with red | yellow;

color C = with fresh | stale;

color BC = product B*C declare mult;

var x: A;

var y: B;

var z: C;

A B

BC

x y

(y,z)

p1 p2

p3

p3

p2p1

Unfolded, uncolored net

56

alma körte piros sárga

(piros,friss) (piros,ráncos)(sárga,friss) (sárga,ráncos)

apple pear red yellow

(red, fresh) (yellow, fresh) (red, stale) (yellow, stale)

Example: A simple commit protocol

Problem description:

• The system consists of three components: c1, c2 és c3

• One of them randomly becomes the coordinator which
sends a request to the other two

• The response of another component is either an abort or
commit vote

• Based on the vote of the two components the coordinator
decides: the decision is commit if the two other
components voted for commit, abort otherwise.

57

Example: Model of the simple commit protocol

• Three color sets are defined in the CPN model.
Two of them are simple color sets:

C = {0, c1, c2, c3} representing components,
D = {commit, abort} representing votes/decisions.

One compound color set:
M = C × C for requests (originator and target);
the (0, x)-like token represents that
the coordinator does not receive a request

• Five variables are used, their types: x, y, z  C;
and d1, d2  D

• The if in the arc expression has the common intuitive
meaning (as in programming languages)

• In the initial state the place p1 has 3 tokens:
M(p1)=c1+c2+c3, the other places are empty

• Empty set is denoted by 

58

Example: Model of the simple commit protocol

• Colored Petri net model:
– p1: Participants (tokens c1, c2, c3 in initial state)
– p2: Requests
– p3: Votes
– p4: Decision

59

[x<>0]

[y<>0]

Example: Model of the simple commit protocol

• Partially
unfolded
(uncolored PN)
model: c1 is the
coordinator

• Simple
optimizations
were done in
the structure
and events
(firings)

60

c
1

c
2

c
3

c
1
 koord.

c
2
 koord.

c
3
 koord.

<c
1
,c

2
> <c

1
,c

3
>

commit
szavaz.

abort
szavaz.

commit

döntés

abort

döntés

M(p
2
)=0

2 2

3 3

ü
z
e
n
e

te
k

<c
2
,c

1
> <c

2
,c

3
>

<c
3
,c

1
> <c

3
,c

2
>

vote vote

m
e
ss

a
g
e
s

decision decision

Example: Model of the simple commit protocol

61

c
1

c
2

c
3

c
1
 koord.

c
2
 koord.

c
3
 koord.

<c
1
,c

2
> <c

1
,c

3
>

commit
szavaz.

abort
szavaz.

commit

döntés

abort

döntés

M(p
2
)=0

2 2

3 3

ü
z
e
n
e

te
k

<c
2
,c

1
> <c

2
,c

3
>

<c
3
,c

1
> <c

3
,c

2
>

Similar
nets

needed
for these
parts too

vote vote

m
e
ss

a
g
e
s

decision decision

Hierarchical colored Petri nets

Hierarchical colored Petri nets

• Integration of subnets into a complex CPN

hierarchically

– Pages: Colored Petri net models (subnets)

• Page number, page name: alternatives to refer to the subnet

• The pages can be instantiated (on any level of the hierarchy)

• The marking (token distribution) is unique for each instance

– Hierarchy: Structure of the pages

• Main (prime) page: topmost level

• Secondary page instances (subpages)

– Identification: page-instance ID number

– Page-hierarchy graph

63

Tools of hierarchical composition

1. Coarse (substitute) transition

– Representation of a subpage

– Interfaces between pages: places

1. On main page: “Socket” places  insertion point of subnets

2. On subpage: “Port” places  connection points of the subnet,

port type: input, output, input-output (bidirectional), general

2. Fusion places

– Places with same name, multiple instances,

denoting the same place at different locations

– Tokens are added / removed simultaneously

to / from each instance

64

Example: hierarchical version of the simple protocol

65

Example CPN:
Distributed database manager

Specification of the distributed database manager

• n different servers; local copy on each server, managed by a local
database manager

DBM = {d1, d2, …, dn}, n ≥ 3

• Database operations:

– Modification of local data

– Change notification of the other database managers which will update

• State of the system:

– Active: handling the update is in progress

– Passive: handling the update is finished

• States of database managers:
Inactive, Performing (updating), Waiting (for acknowledgement)

• Notification about changes: with messages

– Message header: sender and receiver database manager

MES = {(s,r) | s,r  DBM  s≠r}, Mes(s) = ∑r  DBM-{s} 1`(s,r)

– Message states: Unused, Sent, Received, Acknowledged

67

Distributed database: Declarations

68

val n = 4;

color DBM = index d with 1..n;

color PR = product DBM * DBM;

fun diff(x,y) = (x<>y);

color MES = subset PR by diff;

color E = with e;

fun Mes(s) = mult’PR(1`s, DBM--1`s)

var s, r : DBM;

Declaration field Meaning:

 1 2DBM d ,d , ,dn

 MES (,) | , DBMs r s r s r   

DBM-{s}

Mes(s) 1'(,)
r

s r


 

• DBM: database managers

• PR: DBM pairs

• MES: possible messages (headers)

• Mes(s): messages that can be sent by the DBM s

• E: simple token (uncolored)

Update

and

Send Messages

PassiveActive

Receive all

Acknowledg-

ments

e e

ee

Distributed database: System component

69

e

• System states denoted by a single token, initially ‘Passive’

Update

and

Send Messages

Receive

a

Message

InactiveWaiting Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

s

s

r

r r

rs

s

DBM DBM DBM

DBM

Distributed database: Database managers

70

• DBMs are grouped by states, each group is represented by one place

• Initially each DBM is inactive; later it can change or update

Sent

Update

and

Send Messages

Receive

a

Message

Unused

Acknowledged

Received

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

MES

MES

MES MES

MES

Distributed database: Messages

71

• Places: message buffers

• A DBM sends notifications to the others; one from the set of possible messages

Distributed database: Complete CPN model

72

Sent

Update

and

Send Messages

Receive

a

Message

InactivePassiveUnusedActiveWaiting

Acknowledged

Received Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

s

s

r

r r

rs

s

e e

ee

DBM DBM DBM

MES

MES

MES MES

e DBM
MES

• Active and Passive places: only one DBM performs change at the same time, then waits

Particularities of the model

• Causality

– Update and Send  Receive  Send Ack  Receive Ack

• Conflict

– Update and Send
enabled for each binding item s,
but only one can fire

• Concurrency

– Receive a Message
for binding items
(s,r) that are
concurrent
with themselves

73

Sent

Update

and

Send Messages

Receive

a

Message

InactivePassiveUnusedActiveWaiting

Acknowledged

Received Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

s

s

r

r r

rs

s

e e

ee

DBM DBM DBM

MES

MES

MES MES

e DBM
MES

Reachability graph for n=3

• Occurrence graph

• Abbreviated transition
names:

– SM: Update and Send
Messages

– RM: Receive a Message

– SA: Send an
Acknowledgment

– RA: Receive all
Acknowledgments

74

Dynamic properties: boundedness

Multiset Integer

– Inactive DBM n

– Waiting DBM 1

– Performing DBM n - 1

– Unused MES n*(n - 1)

– Sent, Received, Acknowledged MES n - 1

– Passive, Active E 1

75

Dynamic properties: Liveness, fairness

• Liveness
Properties

– Dead markings:
None

– Dead transition
instances: None

– Live transition
instances: All

• Fairness Properties

– Impartial transition
instances:

• Update and Send Messages

• Receive a Message

• Send an Acknowledgment

• Receive all Acknowledgments

– Fair transition instances:

• None

– Just transition instances:

• None

76

• Impartial transition: Fires infinitely often

• Fair transition: Infinitely many enabling  infinitely many firing

• Just transition: Persistent enabling  firing

Structural properties: P invariants

• M(Active) + M(Passive) = 1`e

• M(Inactive) + M(Waiting) + M(Performing) = DBM

• M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

• M(Performing) – Rec(M(Received)) = 

– Function Rec() for token mapping: Rec(s,r) = r

• M(Sent) + M(Received) + M(Acknowledged) – Mes(M(Waiting)) = 

– Function Mes() for token mapping : Mes(s): the messages can be sent by DBM s

• M(Active) – Ign(M(Waiting)) = 

– Function Ign() turns tokens with any color into token with color e  E

77

Update

and

Send Messages

PassiveActive

Receive all

Acknowledg-

ments

e e

ee

e

P invariant: the state of the system

78

M(Active) + M(Passive) = 1`e

Update

and

Send Messages

Receive

a

Message

InactiveWaiting Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

s

s

r

r r

rs

s

DBM DBM DBM

DBM

P invariant: database managers

79

M(Inactive) + M(Waiting) + M(Performing) = DBM

Sent

Update

and

Send Messages

Receive

a

Message

Unused

Acknowledged

Received

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

MES

MES

MES MES

MES

P invariants: messaging subsystem

80

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) = MES

Sent

Update

and

Send Messages

Receive

a

Message

InactivePassiveUnusedActiveWaiting

Acknowledged

Received Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

s

s

r

r r

rs

s

e e

ee

DBM DBM DBM

MES

MES

MES MES

e DBM
MES

INVINV
INV

INVINV

INV

INV

INV

2 Id

5 Id

INV 2 Id

5 Id

1 Id

4 Id

1 Id

4 -Rec

5 Id

1 Id3 Id

2 Id

3 Id

6 Id
1 Id

5 -Mes

6 -Ign

P invariants of the model

81

Sent

Update

and

Send Messages

Receive

a

Message

Waiting

Acknowledged

Received

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

s

s

DBM

MES

MES

MES

INV

INV

INV

5 Id

INV

5 Id

5 Id

5 -Mes

One of the P invariants

82

M(Sent) + M(Received) + M(Acknowledged) – Mes(M(Waiting)) = 

Sent

Update

and

Send Messages

Receive

a

Message

InactivePassiveUnusedActiveWaiting

Acknowledged

Received Performing

Send an

Acknowledg-

ment

Receive all

Acknowledg-

ments

Mes(s)

Mes(s)

Mes(s)

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)

s

s

r

r r

rs

s

e e

ee

DBM DBM DBM

MES

MES

MES MES

e DBM
MES

The complete CPN model (reminder)

83

Messaging unfolded for n=3

3 Inactive1
Passive

0
Active

0
Waiting_d(1)

0
Waiting_d(3)

0
Waiting_d(2)

0
d(1)

0
d(2)

0
d(3)

0
Sent_(1,2)

0
Sent_(1,3)

0
Sent_(2,1)

0
Sent_(2,3)

0
Sent_(3,1)

0
Sent_(3,2)

0
Ackd_(3,1)

0
Ackd_(3,2)

0
Ackd_(2,1)

0
Ackd_(2,3)

0
Ackd_(1,2)

0
Ackd_(1,3)

0
Received_(1,x)

0
Received_(2,x)

0
Received_(3,x)

0
Performing_d(1)

0
Performing_d(2)

0
Performing_d(3)

6

Unused
Update_d(3)

Send_d(1)

Send_d(2)

Send_d(3)

RAA_d(3)RAA_d(2)RAA_d(1)

Receive_(1,2)

Receive_(1,3)

Receive_(2,1)

Receive_(2,3)

Receive_(3,1)

Receive_(3,2)

SendAck_(1,2)

SendAck_(1,3)

SendAck_(2,1)

SendAck_(2,3)

SendAck_(3,1)

SendAck_(3,2)

Update_d(2)

Update_d(1)

2

2
2

22
2

84

