
1

The role of formal methods

dr. István Majzik

dr. Tamás Bartha

dr. András Pataricza

BME Department of Measurement and Information Systems

2

What are formal methods?

• Mathematical techniques,

– Mainly discrete mathematics and

– Mathematical logic

to build and analyze hardware and software
systems’

– Specification,

– Designs (models),

– Implementation (behavior),

– Documentation.

3

How can a computer engineer benefit
from formal methods?

Typical example:
algorithm verification

An engineering task

• Multi-processor application

• Only one process can access a hardware resource
at a time (mutual exclusion needed)

– Example: Use of communication channel

– “Critical section” to be protected in the program

– The platform (OS, framework*) does not give support:
no semaphore, no monitor, etc.

– Only shared variables (reading or writing is atomic) can
be used

• How to do it?

– Classical solutions

– Custom algorithm
4

5

Mutual exclusion algorithm (pseudocode)

• 2 participants, 3 shared variables (H. Hyman, 1966)

– blocked0: First participant (P0) wants to enter

– blocked1: Second participant (P1) wants to enter

– turn: Who is the next to enter? (P0 if turn=0, P1 if turn=1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section (cs)

blocked0 = false;

// Do other things

}

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section (cs)

blocked1 = false;

// Do other things

}

Is this algorithm correct?

P0 P1

6

When is this algorithm correct?

• Mutual exclusion is ensured:

– Only one of the processes (P0 or P1) may be in the
critical section

• The required behavior is possible:

– P0 can enter the critical section

– P1 can enter the critical section

• No starvation:

– P0 will eventually enter the critical section

– P1 will eventually enter the critical section

• Deadlock freedom:

– There is no mutual waiting (blocking)

7

How can we check the requirements?

• By implementing and testing

– Can we construct test cases covering all possible executions
(i.e., possible overlapping instruction order)?

– Dedicated checker is needed to analyze the critical cases

– The faults are expensive to fix (found only after implementation)

• By modeling and simulation of the model

– Can we simulate all possible executions?

– Detection of problematic cases requires particular care

– Removing the faults from the model is less expensive

8

Let’s create a formal model!

• Automaton formalism:

– States and state transitions

– Variables, constants

– Expressions evaluated on variables for the execution of transitions

– Value assignment actions on execution of transitions

• Syntax (an example diagram):

9

The formal model of the process P0
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

The automaton P0:

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

10

The formal model of the process P1
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

The automaton P1:

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

}

P1

11

How can we check the requirements?

• By implementing and testing

– Can we construct test cases covering all possible executions
(i.e., possible overlapping instruction order)?

– Dedicated checker is needed to analyze the critical cases

– The faults are expensive to fix (found only after implementation)

• By modeling and simulation of the model

– Can we simulate all possible executions?

– Detection of problematic cases requires particular care

– Removing the faults from the model is less expensive

• By modeling and checking the complete state space

– Checks each possible execution: push-button state space
exploration of the model with systematic algorithm

– Automated checking of requirements: description language and
efficient verification algorithm is needed

– Faulty model: counterexample is given

12

Typical formal verification

Precise requirements
that can be checked

automatically

Formal
model

Formalized
requirements

Automated
model checker (verifier)

OK Counterexample

y n

• Low-level, or
• Higher-level, or
• Design model

13

The role of formal methods
(overview)

14

What do we aim to achieve?

• Formal analysis of real problems:

1. Problem formalization,  assumptions, abstraction

creation of formal model

2. Analysis of formal model  automated tools too

3. Interpretation, usage
of the results  applicability

• Prerequisites

1. Formal language to describe the problem

2. Method to analyze the formal model

3. Validity of results (cf. assumption, tools)

15

Step 1: Formal modeling language

• Goal of formalization: mathematically precise description
– Designs: models, engineer’s decisions (modeling language)

– Requirements: expected properties (requirement description lang.)

• Structure of formal languages
– Formal syntax

• Notation: language elements and their connections

– Formal semantics
• Interpretation of the notation: what is the meaning?

• What do we want to describe with formal languages?
– Functionality: behavior, conditions, …

– Structure: components, interfaces, …

– Extra-functional aspects: performance, reliability, …

• Advantages of using a formal language
– Unambiguity, verifiability

– Possibility for automated processing

16

Formal syntax (overview)

• Mathematical description:

• BNF: BL ::= true | false | pq | pq

• Metamodel:

• Abstract syntax: grammar rules

• Concrete syntax: representation

 

 1 2 3 n

(, ,) és AP, ahol

AP= P,Q,R,...

S= s , s , s ,...s

R S S

L: S 2AP

KS S R L

 



and where

17

Formal semantics (overview)

The meaning of the model following the syntax:

• Operational semantics: “for programmers”

– Defines what happens during execution (operation)

– Builds on simple items: e.g., states, events, actions

– E.g., to describe the state space for verification

• Axiomatic semantics: “for correctness proofs”

– Predicate language + set of axioms + inference rules

– E.g., for automated theorem prover systems

• Denotational semantics: “for compilers”

– Mapping to a known domain, driven by the syntax

• Known mathematical domain, e.g., computation sequence, control-flow
graph, state set, … and their operations (concatenation, union, etc.)

• Analysis of the model: analysis of the underlying mathematical domain

– E.g., for code generation

18

Step 2: Use of formal model

Part of formal methods:

A (mathematical) method that gives information about the
formal model

• Execution of the formal model
– Simulation

• Verification of the formal model: formal verification
– Verification “on its own”

• Consistency (free of contradictory statements)

• Completeness, closure

– Verification of “compliance”
• Between models and required properties (design  specification)

• Between models (original design  modified design)

• Synthesis based on the formal model:
– Generation of software (source code, configuration)

– Generation of hardware implementation

19

What is the target of formal methods?

What do we try to use FM for?

What are the challenges?

How can formal methods help?

20

An enlightening story…

• Vasa Swedish warship, 1628:
Sank right after
launching

• Problems:
– Changing requirements

(King Gustav II Adolf)
– Missing precise specification

(Shipbuilder Henrik Hybertsson)
– Uncontrolled planning

(Assistant Johan Isbrandsson)
– Ignored warnings

(Admiral Fleming)

• More information:
– Linda Rising. The Vasa: A Disaster Story with Software Analogies. The Software Practitioner,

January-February 2001.
– Richard E. Fairley and Mary Jane Willshire. Why the Vasa Sank: 10 Problems and Some Antidotes

for Software Projects. IEEE Software, March-April 2003.

21

Design of complex systems

- Minimal design

- Implicit process

- Simple tools

- Thorough design

- Defined process

- Efficient tools

- Verified design

- Defined process

- Automated tools

22

Design of complex systems

- Minimal design

- Implicit process

- Simple tools

- Thorough design

- Defined process

- Efficient tools

- Verified design

- Defined process

- Automated tools

23

Software quality

• Typical code size:

– 10 kLOC … 1000 kLOC

• Development effort:

– Large software: 0.1–0.5 man-year / kLOC

– Critical software: 5–10 man-year / kLOC

• Fault removal (verification, testing, correction):

– 45–75% effort

• Variation of fault density:

– 10–200 faults / kLOC introduced during development

– 0.01–10 faults / kLOC in the production version

Checking, debugging, correcting

24

Challenges of IT application development

• High-quality specification and design

– Complete

– Consistent, unambiguous

– Verifiable

• Verification of design

– Verification of design decisions

• Design that is proven correct for the next steps

– Avoidance or early detection of faults

• Optimization of: Quality  Cost  Development time

• Use of tools with proven correctness

– Synthesis of source code, configuration, test and monitor

Formal methods may be the basis.

25

Analyses: Verification and validation

Verification Validation

“Are we building the system right?” “Are we building the right system?”

Checks the conformance in and
between the development phases

Checks the result of the development

Checks the correspondence between
designs (models) and their
specification over the design phases

Compares the final system and the
user requirements

Objective process;
can be formalised and automated

Some requirements may be
subjective; acceptance checking

Sensitive to design and
implementation faults

Sensitive to the problems of
requirements too (e.g., missing req.)

Not needed, if there is an
automated mapping between the
requirement and the implementation

Not needed, if the specification is
perfect (simple enough)

26

Classic method: Cleanroom Software Engineering

• Origin:
– IBM proposal (1980s),

– US military developments (1990s)

• Goal:
– Fault avoidance instead of removal

– Verification based on formal models

• Principles:
– Use and verification of formal models

– Incremental development with quality control
(step-by-step increase of complexity)

– Statistical testing based on formal models
• Selecting the representative trajectories

• Manual validation of modeling

http://en.wikipedia.org/wiki/File:Cleanroom_entrance.jpg

27

Development of safety-critical software

• IEC 61508 standard: development guidelines

– Functional safety in electrical / electronic /
programmable electronic safety-related systems

– Base of domain-specific standards

• Guidelines of requirement-specifications:

28

Development of safety-critical software

• IEC 61508:
Guidelines of
software
design and
development

30

Evaluation of formal models

31

Challenges of formal analysis

• Realistic modeling

– Lack of knowledge, assumptions (e.g., about environment)

– But: this problem is independent from use of formal methods

• Needs special knowledge from the user

– Mathematical models and notations

– But: design modeling languages may hide them

• Complex verification and synthesis methods

– We need to know the limitations of algorithms and techniques

– Manual intervention may be needed (e.g., theorem prover systems)

– But: “push-button” tools are more and more available

• Only applicable to the “small scale” problems

– May big models/state spaces be handled using the available
resources?

– But: the performance of tools is steadily increasing

32

Evolution of formal verification

• Example: SAT tools (Boolean satisfiability)

• Capabilities of model checker tools:
– 1020  266 states initially (ROBDD, 1990)

– 10100  2328 states may be feasible (concrete example)

– 1062900 states have been analyzed too :-O

1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010
Year

N
u

m
b

e
r

o
f

v
a

ri
a

b
le

s

33

Current situation

• Constraints

– Discrete state

– Discrete time

– Discrete event

• Challenges, research directions

– Efficiency of mathematical algorithms

– Limitations of model classes (e.g., timing)

– Difficulty of model construction (e.g., abstraction)

– Expressivity of languages (e.g., requirements)

– Precise definition of design languages (e.g., UML)

systems

34

Successful approach

Design

model

(e.g., DSL)

Implementation

System design

Formal

model

Automated

model generation

Analysis

Formal verification

Back-annotation

of results

Implementation

int main() {

while (i<z){

a=x+x*b[i++];

}

}

35

Models for formal verification

• System models
– Design models:

• E.g., DSL, UML with (semi-)formal semantics

– Higher-level models:
• Control-oriented: automaton, Petri nets, …

• Data processing-oriented: dataflow net, …

• Communication-oriented: process algebra, …

– Base mathematical models:
• KS, LTS, KTS, automata, Büchi automata

• Property descriptions
– Higher level:

• Time diagram, message sequence chart (MSC)

– Base level:
• First order logic, temporal logic, reference automaton

36

The structure of the course

Base-level mathematical
formalisms

KS, LTS, KTS

Higher-level
formalisms

PN, CPN, DFN, SC

Design
models

Model
transformations

Typically
we use
these
levels

Level of
verification
algorithms

37

Success stories

38

Classical applications

• USA TCAS-II traffic control system (collision avoidance for airplanes)
– Specified in RSML language; analysis of completeness and consistency

• Philips Audio Protocol
– 1994: manual verification, then 1996: automated verification (HyTech)

• Lockheed C130J flight software
– Software development with correctness proof (CORE language + Ada)
– No total cost increase due to the reduced testing costs

• IEEE Futurebus+ standard
– Carnegie Mellon SMV: revealed a problem of the cache coherence protocol

• Hardware projects: ACL2 automated theorem prover
– Motorola DSP Complex Arithmetic Processor core (250 registers):

verification of DSP algorithms
– AMD 5K86 processor: verification of floating-point division algorithm

• Intel Core i7 processor
– “For the recent Intel CoreTM i7 design we used formal verification as the

primary validation vehicle for the core execution cluster”
– Symbolic simulation for the complete analysis of data paths (2700

microinstruction, 20 manyears of work) – application of Binary Decision
Diagrams

• Tools related to model-based software development
– IBM (Telelogic), Ansys (Esterel), Prover, Mentor, Verum, Conformiq, …

39

Formal verification of source code

• Java
– Bandera, PathFinder: model abstraction
– Formalization of Java VM: Abstract State Machine

• Ada
– SPARK Ada verification condition generator: for theorem prover

• C
– BLAST: software model checker for C programs (abstraction)
– CBMC: C-based bounded model checker

• C#, Visual Basic .NET
– Zing (for MS Visual Studio): analysis of concurrent OO software

• Spec# (C# superset)
– MS Research Boogie 2: Language extensions for specification
– Checking correctness criteria: with program abstraction and

theorem prover (Z3)

• Microsoft Windows Driver Kit (WDK)
– Static Driver Verifier Research Platform, SLAM 2 tool
– Static analysis of the usage conditions of Windows API

40

Example: SLAM

• Motivation: faulty drivers cause problems to the OS
– E.g., incorrect locks on resources (missing lock, missing unlock, …)

• Solution:
– Correct usage can be described with rules (e.g., state machine of locking)

– SLAM checks the satisfaction of these rules on the source code

– Uses source code abstraction: checking the states of Boolean programs

– Faulty traces (not matching the rules) have to be cross-checked

Defects 100% path
coverage

API Usage Rules
(SLIC)

Driver C
source

Platform
model

41

Example: SLAM

• Motivation: faulty drivers cause problems to the OS
– E.g., incorrect locks on resources (missing lock, missing unlock, …)

• Solution:
– Correct usage can be described with rules (e.g., state machine of locking)

– SLAM checks the satisfaction of these rules on the source code

– Uses source code abstraction: checking the states of Boolean programs

– Faulty traces (not matching the rules) have to be cross-checked

C2BP BEBOP Newton

42

Example: SLAM

• Motivation: faulty drivers cause problems to the OS
– E.g., incorrect locks on resources (missing lock, missing unlock, …)

• Solution:
– Correct usage can be described with rules (e.g., state machine of locking)

– SLAM checks the satisfaction of these rules on the source code

– Uses source code abstraction: checking the states of Boolean programs

– Faulty traces (not matching the rules) have to be cross-checked

43

Life cycle

-20%

-50%

Resource
saving

100%50

0%Manual coding

Use of “regular” automated
code generator

Design with formal
verification

Use of certified automated
code generator

-60%

40

From the V to the Y development model

effort* Source: Esterel Technologies (Ansys)

44

Life cycle

-20%

-50%

Resource
saving

100%50

0%Manual coding

Use of “regular” automated
code generator

Design with formal
verification

Use of certified automated
code generator

-60%

40

From the V to the Y development model

effort* Source: Esterel Technologies (Ansys)

V model of software development

45

Life cycle

-20%

-50%

Resource
saving

100%50

0%Manual coding

Use of “regular” automated
code generator

Design with formal
verification

Use of certified automated
code generator

-60%

40

From the V to the Y development model

effort* Source: Esterel Technologies (Ansys)

46

Summary

• What are formal methods?

– Formalism, formal language

– Formal methods and tools:
Simulation, formal verification, synthesis

• What are they good for?

– Motivation: software quality challenges

– Potential of formal methods

• What can we expect?

– Limitations

– Success stories

