Efficient Techniques for Model Checking:
Bounded Model Checking

dr. Istvan Majzik
BME Department of Measurement and Information Systems

Where are we now?

e Low level formalisms)
(KS, LTS, KTS) Temporal logics:

PLTL, CTL, CTL*

e Higher level formalisms

Model of the system Formal requirement

Model checker

OK Counterexample

Recap: presented techniques for model checking

e LTL model checking:

= Semantic tableaux: decomposing formulas based on the
model

s|l-pUg
s |-q s|-p, s|-X(pUaq)
s|-p,s;|I-pUQq sl-p,s,l-pUq

= Automata theoretic approach (supplementary material)

e CTL model checking:
= Labeling: iterative labeling of states

E(P U Q) E(P U Q)

CC{C\O

P.Q}
E(PU Q)

Overview of the presented techniques

e CTL model checking: symbolic technique

Semantics-based tehcnique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations over sets Efficient operations over ROBDD

e Model checking invariants: Bounded model checking
= Satisfiability checking for Boolean formulas with a SAT solver

= Model checking up to a given bound:
Searching for counterexamples within a bounded length
e A counterexample is a valid counterexample
e If no counterexample is found, it is only a partial result

Bounded Model Checking

SAT solvers

SAT solver:

= Searches for a model —
a variable assignment that makes the formula true

Example: bitvector (1,1,0) for formula f(X,,X,,X3)=X;AXoA—X5
NP-complete, but efficient algorithms exist
= zChaff, MiniSAT, ...

e)

S

100000 /

$ 10000 /
5
[
S 1000
IS
8 10—
£
>
Z
10
1 T T T T
1960 1970 1980 1990 2000 2010

L Year)

Goal

e Reducing the problem to a suitable problem in SAT

= Model and temporal logic property together
e Typically invariant properties:
condition on all reachable states

e Using a SAT solver for model checking

= If the property holds the SAT solver
finds no model for the formula

= If the property fails the model found by the SAT solver
induces a counterexample
e The counterexample can be used for debugging
e An efficient technique for invariant properties

The basics of bounded model checking

e We do not handle the state space all in one

e We perform checking by restricting the length of
paths

= Partial verification: checking only up to a given bound in
path length

= The bound can be iteratively increased
= In certain cases, the state space has a diameter — the
length of the longest loop-free path
e The bound can be estimated:
= Based on intuition about the problem
= Based on worst-case execution time

Informal introduction

How do we describe a path?
= Starting from the initial states: characteristic function I(s)
Lunrolling”: along potential transitions
Transition relation (where can we progress): characteristic function Cg(s,s")

Transition between s and s”: Cy(s,s")
Transition between s” and s™: Cg(s’,s")

Simpler notation: Upper index instead of primes: Cg(s%,st), Cy(st,s?) ...
How do we describe the property?
= Invariant: condition on all states — a predicate p(s)
The characterization of a counterexample (with conjunction):
= Starting from the initial state: I(s)
~Stepping” along the transition relation: Cg(s,s’)
= To a counterexample (somewhere p(s) fails): —p(s) disjunction on states of the path

A model of this formula corresponds to a counterexample!

I'nCy N Crp A N Cr
° - -® - @e—— @
—p Vs —p Vi —p Vi =P \/ —p

Notations

o Kripke structure M=(S,R,L)
e Logical formulas:

= (s): the characteristic formula of initial states in n variables
e Background: Encoding states with a bit vector of length n

= Ci(s,s): the characteristic formula of transitions in 2n variables
e The individual transitions are combined with disjunction

= path(): characteristic function of paths of length k in (k+1)n
variables

path(s",5" . 8) = A G887 T mebbeotomnes

0<i<k

= p(s): characteristic function of the property
e Based on the labeling L
e In general: can be constructed based on the state variables

10

~
o
o
—~

O Q O O:

Examples: encoding a model

Initial states:
I(x,y) = (—xA—y)

Transition relation:
CRXYXY) = (=XA=y A = XA YY) v
V(XA YA XA Y)v
v(I XA YA=XAY)V
V(I XA yA=aXAaY)

Unrolling for 3 steps from the initial states:
I(x%,y%) A path(s®s?,s?,s%) =
= I(x%,y%) A
CR(XOIYOI Xllyl) N
CR(Xllyll leyz) N
CR(XZIyzl X3ly3)

11

Examples: encoding a model

Initial states:
I(x,y) = (—xA—y)

Transition relation:
CRXYXY) = (=XA=y A = XA YY) v
V(XA YA XA Y)v
v(I XA YA=XAY)V
V(I XA yA=aXAaY)

Unrolling for 3 steps from the initial states:
I(x%,y%) A path(s®st,s%s%) =
= I(x%,y%) A
CR(XOIYOI Xllyl) N
CR(Xllyll leyz) N
CR(XZIyzl X3ly3)

12

Formalizing the problem

Invariant p(s) to prove: Each path from the initial states ends in a
state where p(s) holds

Vi: vs® st ., (1(s°) A path(s®s,....s") = p(sh)

If p(s) fails at some point then there exists an i such that the followng
formula is satisfiable:

1(s°) A path(s®,s',...,s") A =p(s))

The model can be found by the SAT solver!

= That is, values for the (i+1)-n variables that define the path
(s9,s1,...,5")

First idea: for i=0,1,2,..., check whether for a path of length i the
following formula can hold:

1(s°) A path(s® s',....s") A =p(s')

13

Elements of the algorithm

of the state

Expressed in terms
variables

Iteration: i=0,1,2,... on the length of paths
We are investigating loop free paths: Ifpath

Ifpath(s’,s',...,s*) = path(s°,s%,...,s) A A §' %5’

0<i< j<k
Termination condition during the iteration:

= There is no loop free path with length i from the initial state, that
is, the following is not satisfied

| (s°) A Ifpath(s’,s",...;s")

= There is no loop free path with length i (from anywhere) to a bad
state (where p(s) fails), that is, the following is not satisfied

Ifpath(s®,s*....s") A =p(s')
If the iteration stops, then p(s) holds invariably

14

The algorithm

_ No more loop free
1=0 .

paths from the initial
while True do states

if not SAT(1(s°) A lfpath(s®,s,...,s"))
or not SAT((Ifpath(s°, s,...,s') A—p(s'))
then return True

if SAT(I1(s°) Apath(s®,s',...,s') A—=p(s))) Mo el ey
_ free paths to a
then return (s%,s',...,s") bad state

I=1+1

end
iteration

e If the result is True: the invariant holds.

o If the result is a model inducing a path (s9,s!,...,s"):
it is @ counterexample for the property p(s)

from an initial state

There is a path
to an error state

15

Bounded model checking with iteration

length i

[i=0
Unwmdmg the
model up to

Incrementing i {

|
|

—

e

Searching for a
counterexample
(SAT)

~

Comparing i and

the bound

N

[bound reached] l Property holds

[a counterexample
exists]

Property fails

16

Refining the algorithm

o We do not start iterating from O

= We start with a given k,
and try to generate the counterexample first:

e If such a counterexample exists, we find it quickly (without iteration)!
= We then examine whether for k+1 the iteration terminates,
and then increase the bound
e It is not guaranteed that the length of the counterexample
IS minimal
= We need some heuristic for estimating k if we aim to find a short
counterexample

o Further restrictions on the input of SAT:

= No initial states after the first (not necessarily a loop — there might
be many initial states)

= No bad states before the last state

17

The refined algorithm

e /f Starting value] There is a path of length |

h from an inital state to a bad
while True do state

: 0 0 o1 i | j There is no cylce free
If SAT(I(s”) Apath(s’,s’,...,S) A ﬁj/:\o(p(s)) il o Nexiisif fesil

0 1 _ where only the first
then return (s°,s,...,S') state is initial

"

if not SAT(1(s°) A i/+\1(ﬁl(sj)) A Ifpath(s®,s',...,;s"™))

j=1

or not SAT((Ifpath(s®,s',...,s'™) A /I\p(sj) A =p(s™))
j=0

then return True _ _
There is no path of length i+1

1=1+1 where only the last state is bad
end

18

Summary: BMC

Efficient for checking invariant poperties

Sound method using loop free paths
= [f there is a counterexample up to a certain bound, it will be found
= A counterexample found is a valid counterexample

Handling the state space
= SAT solver: symbolic technique using formulas
= For up to a given unrolling a partial result is obtained

Finding the shortest counterexampe
= Can be used for test generation

Automatic method

= The bound can be determined heuristically (the diameter of the
state space)

Tools:
= E.g. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg

19

The results of Intel (hardware models)

Model k | Forecast (BDD) | Thunder (SAT)
Circuit 1 | b5 114 2.4
Circuit 2 7 2 0.8
Circuit 3 | 7 106 2
Circuit 4 | 11 6189 1.9
Circuit 5 | 11 4196 10
Circuit 6 | 10 2354 5.5
Circuit 7 | 20 2795 236
Circuit 8 | 28 — 45.6
Circuit 9 | 28 — 39.9
Circuit 10| 8 2487 5
Circuit 11 | 8 2940 5
Circuit 12 | 10 5524 378
Circuit 13 | 37 — 195.1
Circuit 14 | 41 — —
Circuit 15| 12 — 1070

20

Use for software: the problem of loops

Traversing cycles might lead to new states

Loop in the program:
state variables are
modified #0 L1

#1

#2

#3

#4

#5

P VA I

Control flow graph (CFG) Complete unrolling

Loop unrolling

e Possibilities for unrolling the model:
= Path enumeration:
e Systematicall along all possible paths

= Loop unrolling:
e Unrolling loops for a given bound

Max. 2
runs

22

Software model checking

e F-SOFT (NEC):
= Path enumeration
= Used for unix system tuilities (e.qg. pppd)

e CBMC (CMU, Oxford University):

= Supports C, SystemC
= Loop unrolling
= Support for certain system libraries in Linux, Windows, MacOS
= Handling integer arithmetic:
e Bit level (,bit-flattening”, , bit-blasting”)
= CBMC with SMT solving:

e Satisfiability Modulo Theories: extension to first order theories (e.g.
integer arithmetic)

e SATURN:

= Loop unrolling: at most 2 runs
= Full Linux kernel verifiable: for Null pointer dereferences

23

Summary: efficient techniques for model checking

e Symbolic model checking
= Charactereistic fomrulas represented as ROBDD

= Efficient for ,well structured” problems
e E.g. identical processses in a protocol

= Size depends on variable ordering

e Bounded model checking for invariant properties
= Based on satisfiability solving (SAT solver)

= Searching for counterexamples of bounded length
e A counterexample found is a valid counterexample

e If no counterexample found, it is only a partial result
(longer counterexamples might exist)

= Good for test generation

24

Properties of model checking

25

Model checking during the design phase

Requirement
analysis

—~

T

System
specification

=

T

Architectural
design

[

New applications:
Model checking code

=

Models

_

Modul
design

~

L

Modul
implementation

-

L

System

integration

L

System
testing

-

Maintenance

Strengths of model checking

e Possible to handle large state spaces
= State spaces of size 1029, but examples even for size 10190
= This is the state space of the system (e.g. network of automata)
= Efficient techniques: symbolic, SAT based (bounded)

e General method
= Software, hardware, protocols, ...

e Fully automatic tool, no intuition or strong mathematical
background is needed
= Theorem proving is much harder!

e Generates a counterexample that can be used for
debugging

Turing Award in 2007 for establishing model checking:
E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

27

Weaknesses of model checking

Scalability
= Uses explicit state space traversal

= Efficient techniques exist, but good scalability can not be
guaranteed

Mainly for control driven applications
= Complex data structures induce a large state space

Hard to generalize result

= [If the protocol is correct for 2 processes,
is it correct for N processes?

Formalizing requirements is hard
= ,Dialects” in temporal logic for different domains
= E.g.: PSL (Property Specification Language, IEEE standard)

28

