Efficient Techniques for Model Checking: Bounded Model Checking

dr. István Majzik
BME Department of Measurement and Information Systems

Where are we now?

Recap: presented techniques for model checking

LTL model checking:

Semantic tableaux: decomposing formulas based on the

model

- Automata theoretic approach (supplementary material)
- CTL model checking:
 - Labeling: iterative labeling of states

Overview of the presented techniques

CTL model checking: symbolic technique

Semantics-based tehcnique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations over sets	Efficient operations over ROBDD

- Model checking invariants: Bounded model checking
 - Satisfiability checking for Boolean formulas with a SAT solver
 - Model checking up to a given bound:
 Searching for counterexamples within a bounded length
 - A counterexample is a valid counterexample
 - If no counterexample is found, it is only a partial result

Bounded Model Checking

SAT solvers

- SAT solver:
 - Searches for a model a variable assignment that makes the formula true Example: bitvector (1,1,0) for formula $f(x_1,x_2,x_3)=x_1 \wedge x_2 \wedge \neg x_3$
- NP-complete, but efficient algorithms exist
 - zChaff, MiniSAT, ...

Goal

- Reducing the problem to a suitable problem in SAT
 - Model and temporal logic property together
 - Typically invariant properties: condition on all reachable states
- Using a SAT solver for model checking
 - If the property holds the SAT solver finds no model for the formula
 - If the property fails the model found by the SAT solver induces a counterexample
 - The counterexample can be used for debugging
 - An efficient technique for invariant properties

The basics of bounded model checking

- We do not handle the state space all in one
- We perform checking by restricting the length of paths
 - Partial verification: checking only up to a given bound in path length
 - The bound can be iteratively increased
 - In certain cases, the state space has a diameter the length of the longest loop-free path
- The bound can be estimated:
 - Based on intuition about the problem
 - Based on worst-case execution time

Informal introduction

- How do we describe a path?
 - Starting from the initial states: characteristic function I(s)
 - "Unrolling": along potential transitions
 - Transition relation (where can we progress): characteristic function $C_R(s,s')$
 - Transition between s and s': C_R(s,s')
 - Transition between s' and s": C_R(s',s")
 - ...
 - Simpler notation: Upper index instead of primes: $C_R(s^0,s^1)$, $C_R(s^1,s^2)$...
- How do we describe the property?
 - Invariant: condition on all states a predicate p(s)
- The characterization of a counterexample (with conjunction):
 - Starting from the initial state: I(s)
 - "Stepping" along the transition relation: $C_R(s,s')$
 - To a counterexample (somewhere p(s) fails): $\neg p(s)$ disjunction on states of the path

A model of this formula corresponds to a counterexample!

Notations

- Kripke structure M=(S,R,L)
- Logical formulas:
 - I(s): the characteristic formula of initial states in n variables
 - Background: Encoding states with a bit vector of length n
 - $C_R(s,s')$: the characteristic formula of transitions in 2n variables
 - The individual transitions are combined with disjunction
 - path(): characteristic function of paths of length k in (k+1)n variables

$$\operatorname{path}(s^0, s^1, ..., s^k) = \bigwedge_{0 \le i < k} C_R(s^i, s^{i+1})$$
 Upper indices instead of primes

- p(s): characteristic function of the property
 - Based on the labeling L
 - In general: can be constructed based on the state variables

Examples: encoding a model

Initial states:

$$I(x,y) = (\neg x \land \neg y)$$

Transition relation:

$$C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \lor (\neg x \land y \land x' \land y') \lor \lor (x \land y \land \neg x' \land y') \lor \lor (x \land y \land \neg x' \land \neg y')$$

Unrolling for 3 steps from the initial states:

$$I(x^{0},y^{0}) \wedge path(s^{0},s^{1},s^{2},s^{3}) =$$

$$= I(x^{0},y^{0}) \wedge$$

$$C_{R}(x^{0},y^{0}, x^{1},y^{1}) \wedge$$

$$C_{R}(x^{1},y^{1}, x^{2},y^{2}) \wedge$$

$$C_{R}(x^{2},y^{2}, x^{3},y^{3})$$

Examples: encoding a model

Initial states:

$$I(x,y) = (\neg x \land \neg y)$$

Transition relation:

$$C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \lor (\neg x \land y \land x' \land y') \lor \lor (x \land y \land \neg x' \land y') \lor \lor (x \land y \land \neg x' \land \neg y')$$

Unrolling for 3 steps from the initial states:

$$I(x^{0},y^{0}) \wedge path(s^{0},s^{1},s^{2},s^{3}) =$$

$$= I(x^{0},y^{0}) \wedge$$

$$C_{R}(x^{0},y^{0}, x^{1},y^{1}) \wedge$$

$$C_{R}(x^{1},y^{1}, x^{2},y^{2}) \wedge$$

$$C_{R}(x^{2},y^{2}, x^{3},y^{3})$$

Formalizing the problem

 Invariant p(s) to prove: Each path from the initial states ends in a state where p(s) holds

$$\forall i: \forall s^0, s^1, ..., s^i: (I(s^0) \land path(s^0, s^1, ..., s^i) \Rightarrow p(s^i))$$

 If p(s) fails at some point then there exists an i such that the following formula is satisfiable:

$$I(s^{\scriptscriptstyle 0}) \wedge \mathsf{path}(s^{\scriptscriptstyle 0}, s^{\scriptscriptstyle 1}, ..., s^{\scriptscriptstyle i}) \wedge \neg p(s^{\scriptscriptstyle i})$$

The model can be found by the SAT solver!

- That is, values for the (i+1)·n variables that define the path (s⁰,s¹,...,sⁱ)
- First idea: for i=0,1,2,..., check whether for a path of length i the following formula can hold:

$$I(s^{\scriptscriptstyle 0}) \wedge \operatorname{path}(s^{\scriptscriptstyle 0}, s^{\scriptscriptstyle 1}, ..., s^{\scriptscriptstyle i}) \wedge \neg p(s^{\scriptscriptstyle i})$$

Elements of the algorithm

- Iteration: i=0,1,2,... on the length of paths
- We are investigating loop free paths: Ifpath

$$lfpath(s^{0}, s^{1}, ..., s^{k}) = path(s^{0}, s^{1}, ..., s^{k}) \land \bigwedge_{0 \le i < j \le k} s^{i} \ne s^{j}$$

- Termination condition during the iteration:
 - There is no loop free path with length i from the initial state, that is, the following is not satisfied

$$I(s^0) \wedge lfpath(s^0, s^1, ..., s^i)$$

 There is no loop free path with length i (from anywhere) to a bad state (where p(s) fails), that is, the following is not satisfied

If path
$$(s^0, s^1, ..., s^i) \land \neg p(s^i)$$

• If the iteration stops, then p(s) holds invariably

Expressed in terms

of the state variables

The algorithm

```
No more loop free
i = 0
                                                        paths from the initial
while True do
                                                                 states
   if not SAT(I(s^0) \land lfpath(s^0, s^1, ..., s^i))
              or not SAT((lfpath(s^0, s^1, ..., s^i) \land \neg p(s^i))
       then return True
                                                                  No more loop
   if SAT(I(s^0) \land path(s^0, s^1, ..., s^i) \land \neg p(s^i))
                                                                 free paths to a
      then return (s^0, s^1, ..., s^i)
                                                                    bad state
   i = i + 1
                                         There is a path
end
                                       from an initial state
                   iteration
                                         to an error state
```

- If the result is True: the invariant holds.
- If the result is a model inducing a path (s⁰,s¹,...,sⁱ): it is a counterexample for the property p(s)

Bounded model checking with iteration

Refining the algorithm

- We do not start iterating from 0
 - We start with a given k, and try to generate the counterexample first:
 - If such a counterexample exists, we find it quickly (without iteration)!
 - We then examine whether for k+1 the iteration terminates,
 and then increase the bound
- It is not guaranteed that the length of the counterexample is minimal
 - We need some heuristic for estimating k if we aim to find a short counterexample
- Further restrictions on the input of SAT:
 - No initial states after the first (not necessarily a loop there might be many initial states)
 - No bad states before the last state

The refined algorithm

i = k

Starting value

while True do

There is a path of length i from an inital state to a bad state

if $SAT(I(s^0) \land path(s^0, s^1, ..., s^i) \land \neg \bigwedge_{j=0}^i (p(s^j))$ then return $(s^0, s^1, ..., s^i)$

There is no cylce free path of length i+1 where only the first state is initial

if not SAT
$$(I(s^0) \land \bigwedge_{j=1}^{i+1} (\neg I(s^j)) \land lfpath(s^0, s^1, ..., s^{i+1}))$$

or not SAT((lfpath(
$$s^0, s^1, ..., s^{i+1}$$
) $\land \bigwedge_{j=0}^{i} p(s^j) \land \neg p(s^{i+1})$)

then return True

$$i = i + 1$$

end

There is no path of length i+1 where only the last state is bad

Summary: BMC

- Efficient for checking invariant poperties
- Sound method using loop free paths
 - If there is a counterexample up to a certain bound, it will be found
 - A counterexample found is a valid counterexample
- Handling the state space
 - SAT solver: symbolic technique using formulas
 - For up to a given unrolling a partial result is obtained
- Finding the shortest counterexampe
 - Can be used for test generation
- Automatic method
 - The bound can be determined heuristically (the diameter of the state space)
- Tools:
 - E.g. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg

The results of Intel (hardware models)

Model	k	Forecast (BDD)	Thunder (SAT)
Circuit 1	5	114	2.4
Circuit 2	7	2	0.8
Circuit 3	7	106	2
Circuit 4	11	6189	1.9
Circuit 5	11	4196	10
Circuit 6	10	2354	5.5
Circuit 7	20	2795	236
Circuit 8	28		45.6
Circuit 9	28		39.9
Circuit 10	8	2487	5
Circuit 11	8	2940	5
Circuit 12	10	5524	378
Circuit 13	37		195.1
Circuit 14	41		
Circuit 15	12		1070

Use for software: the problem of loops

Traversing cycles might lead to new states

Control flow graph (CFG)

Complete unrolling

Loop unrolling

- Possibilities for unrolling the model:
 - Path enumeration:
 - Systematicall along all possible paths
 - Loop unrolling:
 - Unrolling loops for a given bound

Software model checking

- F-SOFT (NEC):
 - Path enumeration
 - Used for unix system tuilities (e.g. pppd)
- CBMC (CMU, Oxford University):
 - Supports C, SystemC
 - Loop unrolling
 - Support for certain system libraries in Linux, Windows, MacOS
 - Handling integer arithmetic:
 - Bit level ("bit-flattening", "bit-blasting")
 - CBMC with SMT solving:
 - Satisfiability Modulo Theories: extension to first order theories (e.g. integer arithmetic)
- SATURN:
 - Loop unrolling: at most 2 runs
 - Full Linux kernel verifiable: for Null pointer dereferences

Summary: efficient techniques for model checking

- Symbolic model checking
 - Charactereistic fomrulas represented as ROBDD
 - Efficient for "well structured" problems
 - E.g. identical processes in a protocol
 - Size depends on variable ordering
- Bounded model checking for invariant properties
 - Based on satisfiability solving (SAT solver)
 - Searching for counterexamples of bounded length
 - A counterexample found is a valid counterexample
 - If no counterexample found, it is only a partial result (longer counterexamples might exist)
 - Good for test generation

Properties of model checking

Model checking during the design phase

Strengths of model checking

- Possible to handle large state spaces
 - State spaces of size 10²⁰, but examples even for size 10¹⁰⁰
 - This is the state space of the system (e.g. network of automata)
 - Efficient techniques: symbolic, SAT based (bounded)
- General method
 - Software, hardware, protocols, ...
- Fully automatic tool, no intuition or strong mathematical background is needed
 - Theorem proving is much harder!
- Generates a counterexample that can be used for debugging

Turing Award in 2007 for establishing model checking: E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

Weaknesses of model checking

- Scalability
 - Uses explicit state space traversal
 - Efficient techniques exist, but good scalability can not be guaranteed
- Mainly for control driven applications
 - Complex data structures induce a large state space
- Hard to generalize result
 - If the protocol is correct for 2 processes, is it correct for N processes?
- Formalizing requirements is hard
 - "Dialects" in temporal logic for different domains
 - E.g.: PSL (Property Specification Language, IEEE standard)