
1

Efficient Techniques for Model Checking:
Bounded Model Checking

dr. István Majzik

BME Department of Measurement and Information Systems

2

Where are we now?

• Low level formalisms
(KS, LTS, KTS)

• Higher level formalisms

Temporal logics:
PLTL, CTL, CTL*

Model of the system Formal requirement

Model checker

OK Counterexample

t f

3

Recap: presented techniques for model checking

• LTL model checking:

 Semantic tableaux: decomposing formulas based on the
model

 Automata theoretic approach (supplementary material)

• CTL model checking:

 Labeling: iterative labeling of states

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p, s |- X(p U q)

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p, s |- X(p U q)

s |- p U q

s |- q s |- p, s |- X(p U q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

4

Overview of the presented techniques

• CTL model checking: symbolic technique

• Model checking invariants: Bounded model checking

 Satisfiability checking for Boolean formulas with a SAT solver

 Model checking up to a given bound:
Searching for counterexamples within a bounded length

• A counterexample is a valid counterexample

• If no counterexample is found, it is only a partial result

Semantics-based tehcnique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations over sets Efficient operations over ROBDD

5

Bounded Model Checking

6

SAT solvers

• SAT solver:

 Searches for a model –
a variable assignment that makes the formula true
Example: bitvector (1,1,0) for formula f(x1,x2,x3)=x1x2x3

• NP-complete, but efficient algorithms exist

 zChaff, MiniSAT, …

1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010
Year

N
u

m
b

e
r

o
f

v
a

ri
a

b
le

s

7

Goal

• Reducing the problem to a suitable problem in SAT

 Model and temporal logic property together

• Typically invariant properties:
condition on all reachable states

• Using a SAT solver for model checking

 If the property holds the SAT solver
finds no model for the formula

 If the property fails the model found by the SAT solver
induces a counterexample

• The counterexample can be used for debugging

• An efficient technique for invariant properties

8

The basics of bounded model checking

• We do not handle the state space all in one

• We perform checking by restricting the length of
paths

 Partial verification: checking only up to a given bound in
path length

 The bound can be iteratively increased

 In certain cases, the state space has a diameter – the
length of the longest loop-free path

• The bound can be estimated:

 Based on intuition about the problem

 Based on worst-case execution time

9

Informal introduction

• How do we describe a path?

 Starting from the initial states: characteristic function I(s)

 „Unrolling”: along potential transitions

• Transition relation (where can we progress): characteristic function CR(s,s’)

• Transition between s and s’: CR(s,s’)

• Transition between s’ and s’’: CR(s’,s’’)

• …

• Simpler notation: Upper index instead of primes: CR(s
0,s1), CR(s

1,s2) …

• How do we describe the property?

 Invariant: condition on all states – a predicate p(s)

• The characterization of a counterexample (with conjunction):

 Starting from the initial state: I(s)

 „Stepping” along the transition relation: CR(s,s’)

 To a counterexample (somewhere p(s) fails): p(s) disjunction on states of the path

A model of this formula corresponds to a counterexample!

CR CR CR

10

Notations

• Kripke structure M=(S,R,L)

• Logical formulas:

 I(s): the characteristic formula of initial states in n variables

• Background: Encoding states with a bit vector of length n

 CR(s,s’): the characteristic formula of transitions in 2n variables

• The individual transitions are combined with disjunction

 path(): characteristic function of paths of length k in (k+1)n
variables

 p(s): characteristic function of the property

• Based on the labeling L

• In general: can be constructed based on the state variables

0 1 1

0

path (, , ...,) (,)k i i

R
i k

s s s C s s 

 

 
Upper indices

instead of primes

11

Examples: encoding a model

Transition relation:
CR(x,y,x’,y’) = (xy   x’ y’) 

 (x y  x’ y’) 
 (x y   x’ y’) 
 (x y   x’y’)

Unrolling for 3 steps from the initial states:

I(x0,y0)  path(s0,s1,s2,s3) =

= I(x0,y0) 
CR(x

0,y0, x1,y1) 
CR(x

1,y1, x2,y2) 
CR(x

2,y2, x3,y3)

Initial states:
I(x,y) = (xy)s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:

12

Examples: encoding a model

Transition relation:
CR(x,y,x’,y’) = (xy   x’ y’) 

 (x y  x’ y’) 
 (x y   x’ y’) 
 (x y   x’y’)

Unrolling for 3 steps from the initial states:

I(x0,y0)  path(s0,s1,s2,s3) =

= I(x0,y0) 
CR(x

0,y0, x1,y1) 
CR(x

1,y1, x2,y2) 
CR(x

2,y2, x3,y3)

Initial states:
I(x,y) = (xy)s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:

13

Formalizing the problem

• Invariant p(s) to prove: Each path from the initial states ends in a
state where p(s) holds

• If p(s) fails at some point then there exists an i such that the followng
formula is satisfiable:

The model can be found by the SAT solver!

 That is, values for the (i+1)∙n variables that define the path
(s0,s1,...,si)

• First idea: for i=0,1,2,..., check whether for a path of length i the

following formula can hold:

00 1 0 1: , , . . . , : (() p a th (, , . . . ,) ())i i ii s s s I s s s s p s   

0 0 1() p a th (, , .. . ,) ()i iI s s s s p s  

0 0 1() p a th (, , .. . ,) ()i iI s s s s p s  

14

Elements of the algorithm

• Iteration: i=0,1,2,... on the length of paths

• We are investigating loop free paths: lfpath

• Termination condition during the iteration:

 There is no loop free path with length i from the initial state, that
is, the following is not satisfied

 There is no loop free path with length i (from anywhere) to a bad
state (where p(s) fails), that is, the following is not satisfied

• If the iteration stops, then p(s) holds invariably

0 0 1() lfp a th (, , ...,)iI s s s s

0 1lfp a th (, , ...,) ()i is s s p s 

0 1 0 1

0

lfpath (, , ...,) path (, , ...,)k k i j

i j k

s s s s s s s s
  

  

Expressed in terms
of the state
variables

15

The algorithm

• If the result is True: the invariant holds.

• If the result is a model inducing a path (s0,s1,...,si):
it is a counterexample for the property p(s)

0 0 1

0 1

0 0 1

0

while True do

 if not SAT(() lfpath(, ,...,))

 or not SAT((lfpath(, , ...,) ())

 then return True

 if SAT(() path(, ,...,) ())

 then

i

i i

i i

i

I s s s s

s s s p s

I s s s s p s







 

0 1 return (, ,...,)

 1

end

is s s

i i 

No more loop free

paths from the initial

states

No more loop

free paths to a

bad state

There is a path

from an initial state

to an error stateiteration

16

Bounded model checking with iteration

Unwinding the
model up to

length i

Searching for a
counterexample

(SAT)

Comparing i and
the bound

Incrementing i

[a counterexample
exists]

[bound reached]

Property fails

Property holds

i=0

17

Refining the algorithm

• We do not start iterating from 0

 We start with a given k,
and try to generate the counterexample first:

• If such a counterexample exists, we find it quickly (without iteration)!

 We then examine whether for k+1 the iteration terminates,
and then increase the bound

• It is not guaranteed that the length of the counterexample
is minimal

 We need some heuristic for estimating k if we aim to find a short
counterexample

• Further restrictions on the input of SAT:

 No initial states after the first (not necessarily a loop – there might
be many initial states)

 No bad states before the last state

18

The refined algorithm

0 0 1

0

0 1

1
0 0 1 1

1

while True do

 if SAT(() path(, ,...,) (())

 then return (, ,...,)

 if not SAT(() (()) lfpath(, ,...,))

 or not SAT((lfpath(

i
i j

j

i

i
j i

j

i k

I s s s s p s

s s s

I s I s s s s










  

  





0 1 1 1

0

, ,...,) () ())

 then return True

 1

end

i
i j i

j

s s s p s p s

i i

 



  

 



There is a path of length i

from an inital state to a bad

state

There is no cylce free

path of length i+1

where only the first

state is initial

There is no path of length i+1

where only the last state is bad

Starting value

19

Summary: BMC

• Efficient for checking invariant poperties

• Sound method using loop free paths
 If there is a counterexample up to a certain bound, it will be found

 A counterexample found is a valid counterexample

• Handling the state space
 SAT solver: symbolic technique using formulas

 For up to a given unrolling a partial result is obtained

• Finding the shortest counterexampe
 Can be used for test generation

• Automatic method
 The bound can be determined heuristically (the diameter of the

state space)

• Tools:
 E.g. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg

20

The results of Intel (hardware models)

21

Use for software: the problem of loops

Control flow graph (CFG) Complete unrolling

Traversing cycles might lead to new states

Loop in the program:

state variables are

modified

22

Loop unrolling

• Possibilities for unrolling the model:

 Path enumeration:

• Systematicall along all possible paths

 Loop unrolling:

• Unrolling loops for a given bound

Max. 2

runs

23

Software model checking

• F-SOFT (NEC):
 Path enumeration

 Used for unix system tuilities (e.g. pppd)

• CBMC (CMU, Oxford University):
 Supports C, SystemC

 Loop unrolling

 Support for certain system libraries in Linux, Windows, MacOS

 Handling integer arithmetic:
• Bit level („bit-flattening”, „bit-blasting”)

 CBMC with SMT solving:

• Satisfiability Modulo Theories: extension to first order theories (e.g.
integer arithmetic)

• SATURN:
 Loop unrolling: at most 2 runs

 Full Linux kernel verifiable: for Null pointer dereferences

24

Summary: efficient techniques for model checking

• Symbolic model checking

 Charactereistic fomrulas represented as ROBDD

 Efficient for „well structured” problems

• E.g. identical processses in a protocol

 Size depends on variable ordering

• Bounded model checking for invariant properties

 Based on satisfiability solving (SAT solver)

 Searching for counterexamples of bounded length

• A counterexample found is a valid counterexample

• If no counterexample found, it is only a partial result
(longer counterexamples might exist)

 Good for test generation

25

Properties of model checking

26

Model checking during the design phase

Requirement

analysis

System

specification

Architectural

design

Modul

design

Modul

implementation

System

integration

System

testing

Maintenance

Requirements

ModellekModels

New applications:

Model checking code

27

Strengths of model checking

• Possible to handle large state spaces

 State spaces of size 1020, but examples even for size 10100

 This is the state space of the system (e.g. network of automata)

 Efficient techniques: symbolic, SAT based (bounded)

• General method

 Software, hardware, protocols, …

• Fully automatic tool, no intuition or strong mathematical
background is needed

 Theorem proving is much harder!

• Generates a counterexample that can be used for
debugging

Turing Award in 2007 for establishing model checking:
E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

28

Weaknesses of model checking

• Scalability
 Uses explicit state space traversal

 Efficient techniques exist, but good scalability can not be
guaranteed

• Mainly for control driven applications
 Complex data structures induce a large state space

• Hard to generalize result
 If the protocol is correct for 2 processes,

is it correct for N processes?

• Formalizing requirements is hard
 „Dialects” in temporal logic for different domains

 E.g.: PSL (Property Specification Language, IEEE standard)

