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Where are we now?

• Low level formalisms
(KS, LTS, KTS)

• Higher level formalisms

Temporal logics:
PLTL, CTL, CTL*

Model of the system Formal requirement

Model checker

OK Counterexample

t f



3

Recap: presented techniques for model checking

• LTL model checking:

 Semantic tableaux: decomposing formulas based on the 
model

 Automata theoretic approach (supplementary material)

• CTL model checking:

 Labeling: iterative labeling of states

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q)

s |- p, s1 |- p U q … s |- p, sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q)

s |- p U q

s |- q s |- p,   s |- X(p U q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)
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Overview of the presented techniques

• CTL model checking: symbolic technique

• Model checking invariants: Bounded model checking

 Satisfiability checking for Boolean formulas with a SAT solver

 Model checking up to a given bound:
Searching for counterexamples within a bounded length

• A counterexample is a valid counterexample

• If no counterexample is found, it is only a partial result

Semantics-based tehcnique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations over sets Efficient operations over ROBDD
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Bounded Model Checking
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SAT solvers

• SAT solver:

 Searches for a model –
a variable assignment that makes the formula true
Example: bitvector (1,1,0) for formula f(x1,x2,x3)=x1x2x3

• NP-complete, but efficient algorithms exist

 zChaff, MiniSAT, …
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Goal

• Reducing the problem to a suitable problem in SAT

 Model and temporal logic property together

• Typically invariant properties:
condition on all reachable states

• Using a SAT solver for model checking

 If the property holds the SAT solver 
finds no model for the formula

 If the property fails the model found by the SAT solver 
induces a counterexample

• The counterexample can be used for debugging

• An efficient technique for invariant properties
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The basics of bounded model checking

• We do not handle the state space all in one

• We perform checking by restricting the length of 
paths

 Partial verification: checking only up to a given bound in 
path length

 The bound can be iteratively increased

 In certain cases, the state space has a diameter – the 
length of the longest loop-free path

• The bound can be estimated:

 Based on intuition about the problem

 Based on worst-case execution time



9

Informal introduction

• How do we describe a path?

 Starting from the initial states: characteristic function I(s)

 „Unrolling”: along potential transitions

• Transition relation (where can we progress): characteristic function CR(s,s’)

• Transition between s and s’: CR(s,s’)

• Transition between s’ and s’’: CR(s’,s’’)

• …

• Simpler notation: Upper index instead of primes: CR(s
0,s1), CR(s

1,s2) …

• How do we describe the property?

 Invariant: condition on all states – a predicate p(s)

• The characterization of a counterexample (with conjunction):

 Starting from the initial state: I(s) 

 „Stepping”  along the transition relation: CR(s,s’) 

 To a counterexample (somewhere p(s) fails): p(s) disjunction on states of the path

A model of this formula corresponds to a counterexample!

CR CR CR
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Notations

• Kripke structure M=(S,R,L)

• Logical formulas:

 I(s): the characteristic formula of initial states in n variables

• Background: Encoding states with a bit vector of length n

 CR(s,s’): the characteristic formula of transitions in 2n variables

• The individual transitions are combined with disjunction

 path(): characteristic function of paths of length k in (k+1)n
variables

 p(s): characteristic function of the property

• Based on the labeling L

• In general: can be constructed based on the state variables

0 1 1

0

path ( , , ..., ) ( , )k i i

R
i k

s s s C s s 

 

 
Upper indices 

instead of primes
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Examples: encoding a model

Transition relation:
CR(x,y,x’,y’) = (xy   x’ y’) 

 (x y  x’ y’) 
 (   x y   x’ y’) 
 (   x y   x’y’)

Unrolling for 3 steps from the initial states:

I(x0,y0)  path(s0,s1,s2,s3) =

= I(x0,y0) 
CR(x

0,y0, x1,y1) 
CR(x

1,y1, x2,y2) 
CR(x

2,y2, x3,y3)

Initial states:
I(x,y) = (xy)s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:
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Examples: encoding a model

Transition relation:
CR(x,y,x’,y’) = (xy   x’ y’) 

 (x y  x’ y’) 
 (   x y   x’ y’) 
 (   x y   x’y’)

Unrolling for 3 steps from the initial states:

I(x0,y0)  path(s0,s1,s2,s3) =

= I(x0,y0) 
CR(x

0,y0, x1,y1) 
CR(x

1,y1, x2,y2) 
CR(x

2,y2, x3,y3)

Initial states:
I(x,y) = (xy)s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:
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Formalizing the problem

• Invariant p(s) to prove: Each path from the initial states ends in a 
state where p(s) holds

• If p(s) fails at some point then there exists an i such that the followng
formula is satisfiable:

The model can be found by the SAT solver!

 That is, values for the (i+1)∙n variables that define the path 
(s0,s1,...,si)

• First idea: for i=0,1,2,..., check whether for a path of length i the 

following formula can hold:

00 1 0 1: , , . . . , : ( ( ) p a th ( , , . . . , ) ( ) )i i ii s s s I s s s s p s   

0 0 1( ) p a th ( , , .. . , ) ( )i iI s s s s p s  

0 0 1( ) p a th ( , , .. . , ) ( )i iI s s s s p s  
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Elements of the algorithm

• Iteration:  i=0,1,2,... on the length of paths

• We are investigating loop free paths: lfpath

• Termination condition during the iteration:

 There is no loop free path with length i from the initial state, that 
is, the following is not satisfied

 There is no loop free path with length i (from anywhere) to a bad 
state (where p(s) fails), that is, the following is not satisfied

• If the iteration stops, then p(s) holds invariably

0 0 1( ) lfp a th ( , , ..., )iI s s s s

0 1lfp a th ( , , ..., ) ( )i is s s p s 

0 1 0 1

0

lfpath ( , , ..., ) path ( , , ..., )k k i j

i j k

s s s s s s s s
  

  

Expressed in terms 
of the state 
variables
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The algorithm

• If the result is True: the invariant holds.

• If the result is a model inducing a path (s0,s1,...,si): 
it is a counterexample for the property p(s)

0 0 1

0 1

0 0 1

0

while True do

    if  not SAT( ( ) lfpath( , ,..., ))

                   or not SAT((lfpath( , , ..., ) ( ))

         then return True

    if   SAT( ( ) path( , ,..., ) ( ))

         then

i

i i

i i

i

I s s s s

s s s p s

I s s s s p s







 

0 1 return ( , ,..., )

    1

end

is s s

i i 

No more loop free 

paths from the initial 

states

No more loop 

free paths to a 

bad state

There is a path 

from an initial state 

to an error stateiteration
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Bounded model checking with iteration

Unwinding the 
model up to 

length i

Searching for a 
counterexample 

(SAT)

Comparing i and 
the bound

Incrementing i

[a counterexample
exists]

[bound reached]

Property fails

Property holds

i=0
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Refining the algorithm

• We do not start iterating from 0

 We start with a given k, 
and try to generate the counterexample first:

• If such a counterexample exists, we find it quickly (without iteration)!

 We then examine whether for k+1 the iteration terminates, 
and then increase the bound

• It is not guaranteed that the length of the counterexample 
is minimal

 We need some heuristic for estimating k if we aim to find a short 
counterexample

• Further restrictions on the input of SAT:

 No initial states after the first (not necessarily a loop – there might 
be many initial states)

 No bad states before the last state
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The refined algorithm

0 0 1

0

0 1

1
0 0 1 1

1

while True do

    if   SAT( ( ) path( , ,..., ) ( ( ))

         then return ( , ,..., )

    if  not SAT( ( ) ( ( )) lfpath( , ,..., ))

                   or not SAT((lfpath(

i
i j

j

i

i
j i

j

i k

I s s s s p s

s s s

I s I s s s s










  

  





0 1 1 1

0

, ,..., ) ( ) ( ))

         then return True

    1

end

i
i j i

j

s s s p s p s

i i

 



  

 



There is a path of length i 

from an inital state to a bad 

state

There is no cylce free 

path of length i+1 

where only the first 

state is initial

There is no path of length i+1 

where only the last state is bad

Starting value
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Summary: BMC

• Efficient for checking invariant poperties

• Sound method using loop free paths
 If there is a counterexample up to a certain bound, it will be found

 A counterexample found is a valid counterexample

• Handling the state space
 SAT solver: symbolic technique using formulas

 For up to a given unrolling a partial result is obtained

• Finding the shortest counterexampe
 Can be used for test generation

• Automatic method
 The bound can be determined heuristically (the diameter of the 

state space)

• Tools:
 E.g. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg
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The results of Intel (hardware models)
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Use for software: the problem of loops

Control flow graph (CFG) Complete unrolling

Traversing cycles might lead to new states

Loop in the program: 

state variables are 

modified
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Loop unrolling

• Possibilities for unrolling the model:

 Path enumeration:

• Systematicall along all possible paths

 Loop unrolling:

• Unrolling loops for a given bound

Max. 2

runs
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Software model checking

• F-SOFT (NEC):
 Path enumeration

 Used for unix system tuilities (e.g. pppd)

• CBMC (CMU, Oxford University):
 Supports C, SystemC

 Loop unrolling

 Support for certain system libraries in Linux, Windows, MacOS

 Handling integer arithmetic: 
• Bit level („bit-flattening”, „bit-blasting”)

 CBMC with SMT solving:

• Satisfiability Modulo Theories: extension to first order theories (e.g. 
integer arithmetic)

• SATURN:
 Loop unrolling: at most 2 runs

 Full Linux kernel verifiable: for Null pointer dereferences
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Summary: efficient techniques for model checking

• Symbolic model checking

 Charactereistic fomrulas represented as ROBDD

 Efficient for „well structured” problems

• E.g. identical processses in a protocol

 Size depends on variable ordering

• Bounded model checking for invariant properties

 Based on satisfiability solving (SAT solver)

 Searching for counterexamples of bounded length

• A counterexample found is a valid counterexample

• If no counterexample found, it is only a partial result
(longer counterexamples might exist)

 Good for test generation
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Properties of model checking
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Model checking during the design phase

Requirement 

analysis

System 

specification

Architectural 

design

Modul

design

Modul 

implementation

System 

integration

System

testing

Maintenance

Requirements

ModellekModels

New applications:

Model checking code
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Strengths of model checking

• Possible to handle large state spaces

 State spaces of size 1020, but examples even for size 10100

 This is the state space of the system (e.g. network of automata)

 Efficient techniques: symbolic, SAT based (bounded)

• General method

 Software, hardware, protocols, …

• Fully automatic tool, no intuition or strong mathematical 
background is needed

 Theorem proving is much harder!

• Generates a counterexample that can be used for 
debugging

Turing Award in 2007 for establishing model checking: 
E. M. Clarke, E. A. Emerson, J. Sifakis (1981)
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Weaknesses of model checking

• Scalability
 Uses explicit state space traversal

 Efficient techniques exist, but good scalability can not be 
guaranteed

• Mainly for control driven applications
 Complex data structures induce a large state space

• Hard to generalize result
 If the protocol is correct for 2 processes, 

is it correct for N processes?

• Formalizing requirements is hard
 „Dialects” in temporal logic for different domains

 E.g.: PSL (Property Specification Language, IEEE standard)


