Dynamic properties of Petri nets

dr. Tamas Bartha
dr. Istvan Majzik
dr. Andras Pataricza
BME Department of Measurement and Information Systems

Petri net analysis methods:
An overview

Recall: Behavior of Petri nets

Format: (P1, P2, P3, P4, P5)

Simple Petri net with changing marking
(reachability graph of possible states)

Analysis methods

Depth of the analysis:

e Simulation e Traverse single trajectories
e Full exploration of state space &= Traverse all trajectories
— Analysis of reachability graph: from a given initial state
Dynamic (behavioral) properties (exhaustive traversal)
— Model checking
e Analysis of the net structure 4= Properties independent

from the initial state

— Stati lysis: .
atic analysis (hold for every initial state)

Structural properties
— Invariant analysis

N— B

S —
if none of the above works

4
o Partial decision (e.g. abstraction)

Dynamic and structural properties

e Dynamic properties based on the reachability graph
— Depend on the initial marking (not generalizable)

— Typical properties (see later): Reachability, coverability,
liveness, deadlock freedom, boundedness, fairness,
reversibility

— Property preserving reduction techniques can support the
analysis
e Structural properties based on the (unmarked) net

— Independent from the initial marking: hold for each (possible)
behavior

— Typical properties (see later): Structural liveness, structural
boundedness, controllability, conservativeness, repetitiveness,
consistency

— Invariants: T-invariants (for transitions),
P-invariants (for places)

Simulation of Petri net models

Simulation of discrete systems

e Goal: “realistic” modeling of the examined system

e Simulation for process models
— Event oriented: Beginning and end of activities
— Only the time moment of events is recorded

e Simulation of Petri nets

— Examining the possible trajectories
e State: token distribution (marking)
e Change of state (event): firing of a transition
e Trajectories in the state space: firing sequences
— Petri nets are non-deterministic
e (Pseudo) random choice is needed
e Interactive simulation (token game): User chooses

Animation (token game)

@ File Edit View Insert [Mode| Tools Add-in Window HE'PP ° Interactively examining the mOdeI

D E R [ﬂ v Design mode F2)k
[Design | Simitin T|°“”93m“im“'a“°” c — Enabled transitions are highlighted
Toolbox
— Fire transition by clicking
FP File Edit View Inset Mode Tools Add-in Window Help — NeW markln |S Shown
D e B R R <
 Desin | Simiain e Concurrent transitions
Toolbax [Token game simulation]

— Manual choice

dit |View | Elements Hierarchy Search Extras Wir
Zoom 100% Ctrl+F10

— Automatic random choice

B ZoomIn Ctrl+F11 = (e.g. PEtFIDOtNEt)

‘Ne Zoom Out Ctrl+F12 L. . . .
SpTT— e Original marking is restored in the end
g7 Toggle Graphelements Alt+0

3 ¢ Teggle Filebar Alt+1 (

?ﬂgi Toggle Hierarchy browser Alt+2

Y E Teggle Log window Alt+3 [|

gEtE Show Attributes...

Start Anim-Mode F5
e (
1l

| zavzl

¥ File Edit View Insert Mode Tools Add-in Window Help

Animation screen T "

Design | Simulation

Token game simulation tout x
Animate Simulate Choose random:
Start [Step one]
End
Choose from list:
= queve x sghta_x 0
towat[x] —
pl zend(x] pe zdatalx 0] p3 rack[d]
B! [Fire selected] '
';rack_1 rack
[Reset net] ‘
towaty] .
g M Me ™ Step by step |Fun_|
oy Ay L A |
rack[1] pd zdataly,1]ph zendly] pB Hierarchy
[=- AlterBit quele_y
. Receiver

W W{‘“\ N e N .

“ File Edit View Elements Hierarchy Search Extras Window Help

Graphelements b4
- T T— [-
E-E8 Petri Net | Animation £ Animation Properties o o=

5B Elements

Place @ @ @ @ @ Refresh (ms) 50

Transition
Coarse Place [MeenMerking l Duration (ms) 2000 .-

fn Coarse Transition W
i . Stepping
I:—jE Edges [] always keep marking when dosing.])) P,
= Edge \ y () Maximum @) Intermediate () Single
| |
B Metadata /
ack 0) || [] Enable Auto-concurrency.

Hierarchy b4

Simulation

o Setting the number of steps (transitions)
e Collecting statistics

Large scale statistics o - - ¢ F . ﬂ
Settings : i
) @ Run from current state [7] Keep ending state
Number of finings: |10 000 =]
i) Run from initial state [] Show hierarchical names

Transitions Places

Transition Firings Percentage - Flace Awvg token Auwg toleen in time -
out_x 137 137% E 0,337026793348499 | — =
oot 5 own | etk |0 3856175 e
lose_0 413 413 % ack_1 0.2366434
put_y 137 137 % data_x 0.4503351 ~Run Length:

rack_0 137 137 % < | |empty_data | 0,.5066312

Mumber of Firings |El]l]l]

Progress: o

—Results:

¥ Tokens per Place ¥ Transition Throughput

[Produce Trace

oK | Cancel |

Simple simulation algorithm

while (true) do
Collect fireable transitions
if (There are fireable transitions)
then Choose a fireable transition (non-deterministic)
else End simulation
Fire chosen transition

end while

11

Collecting fireable transitions

function collect fireable transitions(M)

/] Set of fireable transitions

I—fireable < @

for allteTl do
if enabled(t, M) then Lyeape < Liireanie W 1tk

return I—fireable

end function

12

Change of state

If t fires under marking M
e New marking: M'=M + WT.e,
— where €, is a unit vector corresponding to transition t
e Here W is the weighted incidence matrix
- W = [w({ p)] < change in marking of p if t fires
— Dimensions: t xt = | T| x | P] < rows x columns
— When t fires, the number of tokens in p changes:

W(Z p) = -

(WG p)-wi(p t)if (L p)e Eor(p t) e E

-

0

if (¢ p)e Eand(p, t) ¢ £

13

Simulation algorithm

// Initialization
M < M,

Lsieanie < COllect_fireable transitions(M)
while L .. # D do

// Firing

t < rd(Lircapte)

M <« M+ WT.g,

[Lsieane < COllect_fireable_transitions(A”)]

M« M’

end while

14

Idea for improving efficiency

e Why check all transitions (|T | steps), if only the
surroundings of the previously fired transition
(et U te) changes?

— Some transitions will be disabled
— Some transitions will be enabled

15

Possibly disabled transitions

o After firing t, a transition ¢’ can become disabled
— By having an input in et, i.e., t “consumes its tokens”

— By being in conflict with t: ez " et =

e Calculating numerically
— Number of consumed tokens: M~ =WT.g,
— Input places of t: et, i.e., {p € P: M (p) > 0}
— Possibly disabled by t: T° = {(et)e}

16

Possibly enabled transitions

o After firing t, a transition ¢’ can become enabled
— By having an input in te, i.e., t “produces tokens”
— tenables ¢’: o’ te = I
e Calculating numerically
— Tokens produced: M+ =W+T.g,
— Output places of t: te, i.e., {p € P: M*(p) > 0}
— Possibly enabled by t: 77 = {(te)e}

o It is sufficient to check these transitions only (that
can become disabled or enabled)!

17

Efficient algorithm: Initialization

e [nitialization is the same

// Initialization

M < M,

I—fireable «—

// Set of initially fireable transitions

for allteTl do
if enabled(t, My) then L oonie < Leireane W {1}

18

Efficient algorithm: Firing loop

while L # D do
// Firing
[« rnd(I—fireable)
M <~ M+ WT.e,
// Remove newly disabled transitions
for all ¢ € {(et)e} do
if not(enabled(¢’, M’) then L .oie < Liireane \ 17}
// Add newly enabled transitions
for all ¢’ € {(te)e} do
if enabled(s”, M’) then Lg .o < Laone U {27}
M« M’

end while

19

Priority

e Extended firing rule: a transition t can fire iff

— It is enabled and
— No transition is enabled with higher priority than r(t)

e Conseguence:

— Lgieanie IS NOt @ set, but a vector L., [t] Of sets ordered
by priority levels © e I1

— A transition is chosen non-deterministically from the
highest priority non-empty set of L, ... [7]

20

Algorithm with priorities: Initialization

// Initialization
M < M,
for all mt ell do
Lfircaptel @] < &
// Set of initially fireable transitions
for allteTl do
if enabled(t, M,) then L[7(t)] < L epe[m(t)] U {t}

21

Algorithm with priorities: Firing loop

while U L reane[7] 2D do
mell
for n=m,, ton,,,step -1 do // Firing (with priority)
if Lfireanieln] # & then

t < rr]d(l—fireable[n])
M «— M+ WT.e,
exit for

end if

for all n € [1 do // Enabled/disabled transitions
for all:t e {(et)e} do
i£ not(enabled(:’, M) then Lyeqneln(t)] < Lyrearieln(e)] \ {7}
for allt” € {(te)e} do
if enabled(t”’ M’) then Lfireable[n(t”)] <~ Lfireable[n(t”)] U {t”}

end for

M« M’
end while

22

Reachability analysis

Reachability

e Reachability analysis

— Dynamic behavior depending on the initial marking
e Marking = state
Token distribution = value of state variable
e Firing = transition
e Sequence of states M,, M,, ..., M, for a firing sequence
— State sequence: trajectory in the state space

— A state M, is reachable from initial state M, if
30 : Mylo > M,

— Reachability graph: graphical representation
of the state space

24

Example: Reachability graph

T2 T3

Format: (P1, P2, P3, P4, P5)

A simple Petri net with its reachability graph
(exported from PetriDotNet tool)

25

Reachability analysis

e From the initial state M, of a Petri net
— Reachable states are:

R(N,My) ={M |36 :M,[6>M)}

Can answer state-based queries

— Executable firing sequences are:
L(N,My) ={c|3aM : My [c > M}

Can answer transition-based (event-based) queries

26

Reachability problem

e Reachability problem of Petri nets:
— Is the marking M, reachable from an initial marking M,

?
M,, € R(N, M)

e Submarking reachability problem:

— Restricting the question to a subset P’ — P of the places,
I.e., whether M, with a token distribution for the given
subset of places is reachable:

?
IM € R(N,M,) : Vp € P":M(p) = M, (p)

27

Decidability of the reachability problem

e The reachability problem is decidable
— But has exponential (space) complexity in general

e In contrast the equality problem is not decidable in
general

— Task: checking the equivalence of the possible firing
sequences of two Petri nets (N, N)

L(N,I\/IO);L(N’,I\/I(;)

— Exponential algorithm for 1-bounded (safe) Petri nets
e Bisimulation: can simulate each other

28

Model checking Petri nets

e Dining philosophers —

e For a single philosopher:
— Can eat at least once? T

— Will eat at least once in
any case? '

— Will always eat sooner or
later?

e For the whole model:
— Deadlock freedom? — 4~<

29

Dynamic (behavioral) properties
of Petri nets

Dynamic properties

e Reachability-based properties

— Depend on the initial marking (state)
(Cf.: structural properties are independent from the initial marking!)

— Can be determined not only with reachability analysis

e Dynamic properties (overview):

1. Boundedness 5. Coverability
2. Liveness 6. Persistency
= Deadlock freedom 7. Fairness
3. Reversibility = Bounded fairness

4. Home state = Global fairness

1. Boundedness

e k—boundedness (boundedness)

— In each state each place contains maximum k tokens
(depends from the initial marking M,!)

— Safe Petri net: special case of boundedness (k= 1)
— Modeling “finiteness”

e Boundedness < finite state space

e Practical queries that can be answered
— Do tasks accumulate in a system?
— Are messages processed periodically?

2. Liveness for transitions

e Deadlock freedom of a net
— There is at least one enabled transition in each state

e Liveness property: More general
— Can a transition fire once/many times/infinite times?
— Weak liveness properties for a transition £

e LO-live (dead): ¢ can never fire in a \
e L1-live: ¢ can fire at least once in some
o . trajectory
e L2-live: for each finite integer < >1, ¢ > G € L(N, My)

can fire at least £ times in some

e L3-live: ¢ can fire infinitely many times in some.

— L4-live: ¢ is L1-live in each M € R(N, M,) marking

Liveness: Example

-

Transition {: LO-

Transition &:
Transition &:
Transition &:

-

_2-li

| 3-i

ive (dead)
ve
ive

IVE

34

Liveness for Petri nets

e A Petri net (PN, M,) is Lx-live
— If every transition ¢ e 7 is Lx-live
— Liveness properties contain each other from L4 to L1

e A Petri net (PN, M,) is live

— If it is L4-live, i.e., every transition £ 7 is L4-live

e L4-live: L1-live (can fire at least once in some trajectory) in every
reachable state

— Deadlock freedom guaranteed independently from trajectory

e Each transition can be fired again, independently from the
intermediate states

e Deadlock freedom « liveness
— Can be proven expensively
e In lucky cases it is not expensive (see invariants later!)

3. Reversibility

o Reversibility
— Initial state can be reached from every reachable state

VM e R(N,M,): M, e R(N, M)

e Practical examples:
— Cyclical behavior of network through initial state
— The system can be “resetted” to initial state
— The safe initial state can be reached from anywhere

4. Home state

e Home state

— A reachable state that can be reached from every state
reachable from it

IM_ e R(N,M,):VM eR(N,M_):M_eR(N,M)

e Practical examples:
— Cyclical behavior after initialization period
— A safe state can be reached anytime after initialization

5. Coverability
e Coverability

— Can a state covering previous behavior occur?

— State M’ covers state Mif: M'e R(N,M,) AM'>M
e Reverse: State M can be covered with state M”
e Meaning of M’ > M:Vp e P:m(p)=m(p)

— Weak coverability: cover identical states
— Strong coverability: 3p € P :m"(p) > m(p)

e Relationship with liveness

— If u is the minimal marking enabling transition ¢
e t is not L1-live if and only if, x cannot be covered

e reverse: coverability of 1 guarantees ¢ to be L1-live (can fire)

6. Persistence

e Persistence for transitions

— A transition is persistent if after becoming enabled it remains
enabled until it fires

— I.e., no other transition can disable the transition by firing

e Persistence for Petri nets

— A Petri net (PN, M,) is persistent, if any two transitions ¢, £, 7 are
persistent in every possible firing sequence

e Practical examples:

— Is the functional decomposition of a system working properly?

— Do parallel behaviors interfere?

/. Fairness: Bounded fairness

o Two definitions for fairness
— Bounded fairness (B-fairness)
— Global fairness (unbounded fairness)

e Bounded fairness

— A firing sequence is a bounded fair (B-fair) sequence

e if any transition can fire only a bounded number of times
without a different enabled transition being fired

— A Petri net is a bounded fair (B-fair) net
o if every possible firing sequence is bounded fair

Fairness: Global fairness

e Global fairness

— A firing sequence is globally (unbounded) fair, if
e it is finite, or
e Contains every transition infinitely many times

— A Petri net is a globally (unbounded) fair net
o If all possible firing sequences of the net are globally fair

e Practical examples:
— Do parallel processes block each other?
— Do all processes (eventually) proceed?
— Will a request eventually be served?

Dynamic properties (summary)

e Boundedness

e Deadlock freedom

e |iveness

— LO
— L1
— L2
- L3
- L4

ive (dead)

ive (can fire once)

ive (can fire k times)
ive (can fire oo times)
ive (L1 in every state)

e Reversibility
e Home state

o Coverability
— Weak coverability
— Strong coverability

e Persistence

e Fairness
— Bounded fairness
— Global fairness

42

State space representations:
Reachability and coverability graphs

State space representations: Reachability graph

e Reachability graph

— State graph starting from initial marking M,
e Nodes: markings; labels: token distributions
e Transitions: directed arcs; labels: firings

e A node has as many successors (outgoing arcs) as the number
of enabled transitions

— Or less, if the net has priorities
e Node with no outgoing arcs: deadlock

— Unbounded Petri net — infinitely many states
e Boundedness < finite state space

— Analysis: Breadth-first search from a state through
transitions
e Depth-first search is a bad idea in an infinite state space...

State space representations: Coverability graph

e Infinite state graph: token “overgrowth”
— Where and “how” it becomes infinite?
— What are the analysis possibilities?

e Coverability graph: works for infinite state space

— Similar structure: initial marking M,, arcs: firings

— Trajectory: My... M. M’
when M7< M’, i.e., M” is covered, i.e.,

peP:m'(p)>m"(p) are covered places (strong cov.)

— Special symbol for covered places:
®, expressing infinity

Coverability tree generating algorithm

Building with graph nodes:

I-to_be_examined < { MO }
MAIN: if Ly pe examined * 9
Remove the next node M e Ly, pe examined

if M already occurred on the path from the root node
then mark M as “old node”
goto MAIN // loop

if no transition is enabled under M
then mark M as “final node”
goto MAIN /[loop

(continued on next page)

Coverability tree generating algorithm (cont.)

else // (there are enabled transitions under M)
for all enabled transition &

Determine successor node M": M [e, > M’
if an M” exists on path from M, to M, which is covered by M’

M’ M"AVp e P:m(p) 2 m’(p) A3p € P:m(p) >m’(p)

then M” is a covered node:

markings of strongly covered places are replaced with
in the token distribution of node M’

VpeP:m'(p)>m"(p) >m'(p)=w

Add M ; to be examined: I—to_be_examined <« I—to_be_examined v M
Draw an arc from M to M” marked with ¢
goto MAIN // loop

Coverability graph: join nodes denoting the same marking

An example with coverability tree

M,=(100)

7

M,=(001) M;=(1w0)

Jfinal state”
k;b/// \\\Qi&

M,=(0w1) M;=(lw0)

,old state”

M5 =(0w1l)
,old state”

48

An example with coverability graph

49

Analysis of the coverability graph

Observable properties:

— Bounded Petri net << Reachability graph R(N, M,) is finite
< o does not appear as a label in the coverability graph

— Safe Petri net < Only 0 and 1 appears as a label in the
coverability graph

— A transition is dead < firing of the transition does not
appear as an arc label in the coverability tree

50

