
Modeling with Petri nets

dr. Tamás Bartha

dr. András Pataricza

dr. István Majzik

BME Department of Measurement and Information Systems

Modeling tools:
DNAnet, Snoopy, PetriDotNet

The PetriDotNet modeling tool

• Features

– Graphical editor + token game + simulation

– Easy to use, many convenience functions

– Extensions: inhibitor arcs, timings, colored nets

– Supports hierarchical Petri nets

– Supports plug-ins, e.g. analysis modules

– Dynamic properties, CTL model checker

– Coloring, rotating elements, displaying arc weights

– Standard PNML format, with INA export

• Developed by us: petridotnet.inf.mit.bme.hu

10

PetriDotNet screenshot

11

PetriDotNet analysis features

PetriDotNet invariant analysis

13

Basic principles of modeling

Purpose of system modeling

• IT systems are usually well decomposed

– Building systems by integrating components

• Steps, processes, threads, …

– Relationships between basic components:

• Explicit logical relationship: order, causality

• Implicit dependency: e.g. using shared resource

• Model-based analysis: qualitative and/or

quantitative

– Qualitative: proving logical correctness

– Quantitative: performance analysis, reliability,

availability, safety analysis
15

Building a model

• Three main model element categories:

– Processes, containing activities

– Resources (including: data, messages, channels)

– Interactions between processes and resources

• Modeling: hierarchical and functional

– Bottom up:

Basic activities -> (Composite activities ->)

Subprocesses -> Composite processes

• Steps:

– Building individual model elements

– Integration

16

Typical steps of system modeling

1. The process model (without detailed resource

usage and communication)

2. The resource model

– A finite automaton part with busy/idle/… states

– Message queue (if needed)

3. Integration: Fusion of corresponding transitions in

the process and resource models

– E.g.: Occupying fused with transition Idle  Busy

– E.g.: sending message puts message into queue

17

Modeling activities in Petri nets

• Basic activity: firing a transition

• Resources used: input / output places

• Execution time

– deterministic

– stochastic

Questions regarding enabledness:

• Untimed transitions fire first (higher “priority”)

• What happens with time after becoming disabled?

– Restarts (new random): “restarts” activity

– Remains (previous time): “continues” activity

deterministically timed transition

exponentially timed transition

18

Example: Modeling resource allocation

• Allocation of required resource

• Mutual exclusion

• Using limited resource

Modeling mutual
exclusion

Reading state
variable

Modeling
limited

resource
capacity

Process Resource

19

Example: Relationships between processes

• Parallelism

– Fork and join

• Synchronous communication

– Wait for the other

• Asynchronous communication

– Like a mailbox

Synchronous
communication

Asynchronous

communication

20

Fork

Join

Example: Modeling a production cell

Processors

• Sequential processors:

• Parallel processor:

• Alternative processor:

22

start Activity1 Activity2 End

Start End

Start End

Interactions

• Synchronization:

• Shared resource:

23

Process with
Resource

Waiting for
Resource

Other
Activities

r

p1

p2

Containers for processors

• Bounded capacity container:

• FIFO container:

24

Par t a r r iva l

Par t request

pv

pb

Using machines

• Process with dedicated machine:

• Process with shared machine:

25

Assembly

• Assembling parts:

• Failure during process:

26

n
1

n
2

Input buffer

pw

pr

pb

failure repair

Robot cell

• Activities

• Containers (bounded capacity)

• Resources

• Cyclic behavior

27

M 1

M 2

S

Robot

t 1 M 1

t 2
Unload

R Stock n Q

load
t 3

t 4

P 2

M 2

T

P 1

Z
1

Z
2

I

O

Example Petri net:
Alternating bit protocol

The modeling task

Alternating Bit Protocol

• Transmission protocol for faulty channels

– Messages can get lost (a finite number of times)

– Contents of messages cannot change

• Goal: the protocol should ensure (with a bounded

number of steps) that the message is transmitted

to the receiver

29

Sender process

• Attaches a checking bit to the message

• Received messages are confirmed by the receiver,

with the same checking bit

• If the bit attached to the message is b0, then

– if the message is lost, the sender detects the lack of

confirmation with a timeout  sends again

– if the sender receives a confirmation with a bit b0 (which

is expected), then a negated bit is attached b1 = ¬ b0 to

the next message

– if the sender receives a confirmation with a bit b1 = ¬ b0

(despite expecting b0), then the confirmation is discarded

(and a timeout will occur due to the lack of confirmation)
30

Receiving process

• Confirms receiving the message by sending back

the same checking bit

• If a message with checking bit b0 is received, then

it is confirmed by sending b0 back, then

– If the bit of the next message is b1 (correct), then sends

b1 back to acknowledge

– If the bit of the next message is b0 (incorrect), then the

message is discarded, but sends a confirmation

(assuming that it was a repeated message due to the

lack of confirmation)

31

Steps of building the model

1. Decompose the task to actors and resources

2. Determine the states of actors

3. Determine states of resources and message buffers

4. Create Petri net models from state-based models

5. Integrate actor and resource models

6. Check integrated model

7. Use the model to solve the task

32

Components and states

• Components (subsystems)

– Actors: sender process, receiver process

– Resources: data channel, confirmation channel

• Each components have its own state

– State graph: states are circles, events are arcs

• Same events happen at the same time:

synchronization

33

State graph of sender process

34

Wants to send
m1 message

Puts m1 with bit 0
into the channel

timeout for

confirmation

Discard
erroneous
confirmation

s0

put(m1) sdata(m1,0)

tout(m1)

s5 s4 s3

s2s1

put(m2)

rack(a,0)

sdata(m2,1)

tout(m2)

rack(a,1)

drop(a,1)

drop(a,0)

Correct

confir-
mation

State graph of receiver process

r0

sack(a,1)

proc(m1)rdata(m1,0)

r5 r4 r3

r2r1

proc(m2)

sack(a,0)drop(m2,1) drop(m1,0)

rdata(m2,1)

35

Received m1
message with bit 0

Process
message m1 Send

confirma-
tion with
bit 0

Discard with
bit 0
(then send
confirmation)

State graph of data channel

d0rdata(m1,0)

d1 d2

rdata(m2,1)sdata(m1,0)

sdata(m2,1)

ldata(m1) ldata(m2)

36

Lost
message m1

State graph of confirmation channel

sack(1)

sack(0)

a0

a1 a2

lack(0) lack(1)

rack(0)

rack(1)

37

Lost
confirmation

Petri net model of sender process (main loop)

38

s0

put(m1) sdata(m1,0)

tout(m1)

s5 s4 s3

s2s1

put(m2)

rack(a,0)

sdata(m2,1)

tout(m2)

rack(a,1)

Petri net model of receiver process (main loop)

39

r0

sack(a,1)

proc(m1)rdata(m1,0)

r5 r4 r3

r2r1

proc(m2)

sack(a,0)

rdata(m2,1)

Data channel and data transmission (main loop)

40

Confirmation channel and confirmation (main loop)

41

Discard incorrect
confirmation

Discard incorrect
message

Discard incorrect
message

Discard incorrect
confirmation

42

E
x
te

n
si

o
n
s

Example Petri net:
Alternating bit protocol

PetriDotNet: Dynamic properties of the model

45

PetriDotNet: Reachability graph (GraphViz)

46

PetriDotNet: CTL model checking

AF(AlterBit.wfa_0>0 & EX(AlterBit.buffer_x>0))  True

AG(AF(AlterBit.buffer_y>0))  False

AF(EG(AlterBit.buffer_x=0))  True

EF(AlterBit.wfa_0>0 & AlterBit.data_x=0)  True

AF(AlterBit.queue_x>0 & AX(AlterBit.wfa_0>0 & AlterBit.data_x>0))  True

47

PetriDotNet: Invariant analysis

48

PetriDotNet: P-invariants (examples)

State machines

of components

49

PetriDotNet: T-invariants (examples)

Cyclic behavior (here:
correct, data loss)

50

