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Overview

• Motivation

• Stochastic processes and models

 Continuous-time Markov chains

• Stochastic Petri nets

 SPN, GSPN, DSPN, TPN

 Timing semantics

• Summary
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Motivation

• The course so far:
Modeling functional, logical behavior
 Safety and liveness requirements

 Reachability of a given state or transition

• Extension: extra-functional, quantitative modeling
 Performance requirements

 Reliability (dependability) requirements

• Characteristics of extra-functional requirements
 Timing (e.g. deadlines, response and processing times)

 Probabilities (e.g. component failure, packet loss)

• Modeling IT systems
 Discrete state space

 Continuous time
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Simple example

• Ordinary Petri-net model – Doctor’s office:

• Model extended with timing information:

How many patients
are waiting at

average?

How many doctors
are needed for
timely service?

Patient waiting Examination

Doctor waiting

Patient waiting Examination

Doctor waiting
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Advantages and challenges

• Advantages of modeling: Analysis at design time 
(before costly implementation efforts!)

 Confirm of design decision

 Compare alternatives

 “Tune” parameters

• Challenges in modeling: Realism

 Parameters: Timing and probability informations

• Are they available?

• If they are approximations, how are they validated?

 Complexity of models

• How much abstraction can be used?
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Models and formalisms

Low-level mathematical
formalisms:

Stochastic process, CTMC

Higher-level
formalisms:

SPN, GSPN, DSPN

Engineering
Models

Mapping



7

Low-level formalisms:
Stochastic processes,

continuous time Markov chains (CTMC)
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Stochastic processes

• Random variable:
Probabilistic selection of a value in a random field

 A realization of random variable X is a value x

 P.d.f and c.d.f for real-valued random variables

• Stochastic process: 

 Informally: modeling with random variables
parameterized with time

 Discrete case: States (state probabilities) changing w.r.t. time

• Set of random variables indexed with parameter t (time): X(t)

• The domain of each random variables is the same

• Behavior of the process: 

 Random field of trajectories over the discrete states

 The set of all possible trajectories describes the process fully



9

Trajectory

• Holding times of states: t0, t1, …
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Markov processes

• Stochastic process with the Markov property:

For all t > tn > tn-1 > … > t0, the process X(t) satisfies:

P{X(t)=x | X(tn)=xn, X(tn-1)=xn-1, …, X(t0)=x0} = P{X(t)=x | X(tn)=xn}

• “Memoryless” property

 The future state (at time t) only depends on
the current state (at time tn), not on any earlier state

• Markov processes with discrete state space: Markov chains

 The trajectories are described by the holding times of states

 Holding time  is exponentially distributed: P{t}=1-e-t

• This is the only continuous probability distribution
with the Markov property

• At any moment of time the remaining holding time in the active state is 
independent from the time already spent in the state
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Continuous time Markov chains (CTMC)

• Continuous time, but discrete state space

• Some definitions:

 States: s0, s1, ..., sn

 Transition probability matrix: Qij(tn-1,tn)= P{S(tn)=sj | S(tn-1)=si}

 (Time-)homogenous process: Qij(t,t+t)= Qij(t)

• Transition probabilities do not change over time

 Transition rate (intensity):

 Rate of leaving state s:  

   
0

1
limij ij

t
R t Q t

t 
 



  , '

' , '

s s

s S s s

E s R
 

 



12

Example

• Graphical CTMC notation:

 States (with initial state / initial state probabilities)

 Transition rates between pairs of states
(zero rates are omitted for brevity)

s0

s1

s2





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Applying CTMCs

• Reliability modeling:

 Atomic component: Error-free state sU and error state sD

 Practical observations for electronic components: 

• Under typical load, the holding time of the error-free state is 
exponentially distributed

• Parameter: failure rate, 

• For simplicity, we also consider an exponential distribution for
the repair time: repair rate, 

 Hence, we obtain the CTMC:

• Performance modeling

 Queueing theory for servers

• M/M/1 queue:
Markovian (exponentially distributed) arrival and service times

• State space is a CTMC

sU sD




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Example: Reliability modeling

• System comprised of two servers (A and B):
 Any server may fail

 Repairs: single server of both servers at a time

• System states: Working servers

• State transitions (exponentially distributed delays):
 Failure of server A: A failure rate

 Failure of server B: B failure rate

 Repair a single server: 1 repair rate

 Repair both servers: 2 repair rate

A,B up

B up

0 up

A

1 2

A upB

B

1

A
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CTMC notations

• CTMC=(S, R)

S set of states

R: SSR0 transition rate (intensity matrix)

• P{transition from s to s’ in time ≤ t} = 1-e-R(s,s’)t

• P{exiting state s in time ≤ t} = 1-e-E(s)t

Q = R–diag(E) „infinitesimal generator matrix”

• Trajectories:

  = s0, t0, s1, t1, …  (at time ti the state si is exited)

 @t state at time t

 Path(s) set of paths from state s

 P{s, } probability of taking  ∈ Path(s) from s



16

Example: Reliability modeling (cont.)

• R =

0 𝜆𝐴 𝜆𝐵 0
𝜇1 0 0 𝜆𝐵
𝜇1 0 0 𝜆𝐴
𝜇2 0 0 0

• E = 𝜆𝐴 + 𝜆𝐵 𝜇1 + 𝜆𝐵 𝜇1 + 𝜆𝐴 𝜇2

• Q =

−(𝜆𝐴 + 𝜆𝐵) 𝜆𝐴 𝜆𝐵 0
𝜇1 −(𝜇1 + 𝜆𝐵) 0 𝜆𝐵
𝜇1 0 −(𝜇1 + 𝜆𝐴) 𝜆𝐴
𝜇2 0 0 −(𝜇2)

A,B up

B up

0 up

A

1 2

A upB

B

1

A

A,B B A 0
A,B

B
A

0

A,B B A 0

A,B B A 0

A,B

B
A

0
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CTMC solution

• Transient probabilities:

 (s,s’,t) = P{Path(s) | @t=s’}
probability of getting to s’ at time t starting from s

 (s,t) row vector of state probabilities at time t starting from s

 Transient CTMC solution:

• Steady-state probabilities:

 (s,s’) = limt (s,s’,t) steady state probability of s’ starting from s

 (s) row vector of steady-state probabilities

 Steady-state CTMC solution:

( , )
( , )

d s t
s t Q

dt


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CTMC in formal methods

• Characteristics of Makov chains

 Pro: Availability of mathematical methods for solution

 Con: Large state spaces are difficult to create and handle

• Too low level: individual states and transitions

• No support for concurrency and synchronization

• No hierarchical modeling

• Markov chains in practice

 Low-level formalism for higher level models

• Stochastic Petri nets

• Stochastic process algebras

 Reachability graph of a stochastic Petri net is a CTMC

• Stochastic Petri net analysis can be performed by Markov chain solution

 Analogy: the reachablity graph of a Petri net is a Kripke structure

• Model checking can be performed on the Kripke structure
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Stochastic Petri nets
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Definition

• Idea: 

 Time elapses as transitions fire (we model durations of activities, 
events, or state changes on the transitions)

• A Petri net is called stochastic when

 Each transition has an associated firing delay

 The firing delay is random
(described by a nonnegative real valued random variables)

 Firing delays of each transition are statistically independent

• Stochastic Petri net variants
 Stochastic Petri net (SPN)

 Generalized stochastic Petri net (GSPN)

 Deterministic and stochastic Petri net (DSPN)
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Stochastic Petri nets (SPN)

• Extension of ordinary Petri nets

 Each firing delay is exponentially distributed

• Changes to the firing semantics

 Enablement: same as in Petri nets

 Firing rule: A transition fires at time t+d if

• it became enabled at time t

• d is the random delay generated from the firing distribution

• it was always enabled during the time interval [t, t+d)
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Notation

• Transitions rates

 i is the rate parameter of the firing delay di

of transition Ti (always a positive number)

• Graphical notation:

 Transitions are empty rectangles

• Transition with rate :

 Firing delay di satisfies:

  1 i t

iP d t e


  

  i t

iP d t e


 
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Multiple enabled transitions

• The transition with the smallest firing delay is fired

 The enabled transitions are in a race

 Probabilistic choice based on the generated firing delays

• What happens to the other enabled transitions after firing?

 We are in a new marking

 Do we have to draw a new firing delay from the distribution?

• In an SPN it does not matter, because firing delays are exponentially 
distributed and have the Markov property

• The remaining firing delay has the same exponential distribution
regardless the time the transition spent being enabled

• The remaining firing delay and the time spent being enabled are
statistically independent
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Transitions in conflict

• Holding time of marking m0:

 Minimum of two exponentially distributed firing delays

• This is also exponentially distributed, and it has a rate 1+ 2

 Holding time is exponentially distributed with rate 1+ 2

 Expected holding time: 1/(1+ 2)
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Generalization

• If n transitions are enabled with rates 1, 2 , …, n

in the marking m, then

 The holding time of m is exponentially distributed
with rate:

 Expected holding time of m:

 Probability of the transition with rate 1 firing first:

1 2

1

... n    

1 2 . . . n    

1

1 2 ... n



    
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Concurrent transitions

• If T1 fires after some delay d10,
what will be the firing delay of T2 in the new marking?
 It is still exponentially distributed with rate 2

due to the Markov property

• What is the holding time of m0? 
 Exponentially distributed random variable with rate 1+ 2
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Summary: Properties of SPNs

• Time to a new marking is exponentially distributed

 Even if transitions are in conflict or are concurrent

• The timed reachability graph is a CTMC

 Its structure does not depend on the firing rates

 SPNs are analyzed with CTMC solution methods

• Analysis results
 Steady state distribution (exists for bounded reversible SPNs):

• Probabilities of markings (asymptotically)

• Expected numbers of tokens on places

• Actual rate of firing for each transitions

 Transient solution:

• Probabilities of markings as a function of time elapsed since start
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Example: M/M/1 queue

• Single server handling requests from a queue

• Exponentially distributed:

 Time between subsequent requests

 Time spent handling a request

• We can find (as a function of model parameters):

 Server utilization (probability of “idle” marking)

 Averange queue length (expected number of tokens)

Queue Serving

Server idle

The doctor’s office 
example from the 

beginning of lecture!
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Simplification of parallel transitions

• Marking-dependent transition rates
 Does not increase descriptive power (we can model the same things)

 The transition rate may depend on the number of tokens on a place
connected by an input or inhibitor arc

 T, m(p1)
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Example: Reliability model of a redundant system

• Two identical servers

• Error rate of a server: 

  is the parameter of the exponential distribution
of the time to failure

 Servers fail independently from each other

• Error detection time:
exponentially distributed with rate 

 We may detect multiple failures concurrently

• Repair time:
exponentially distributed with rate 

 Multiple concurrent repairs are allowed
(more than one technician is available)
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Example: Reliability model of a redundant system

• SPN model:

Tf, m(healthy)

Td, m(faulty)Td, m(repair)

repair 

healthy  faulty  
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Example: Reliability model of a redundant system

• Reachability graph: (healthy, faulty, repair)
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Example: Reliability model of a redundant system

• Associated CTMC: (healthy, faulty, repair)
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Further classes of
stochastic Petri nets
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Generalized stochastic Petri Nets (GSPN)

• Extension of SPN:

 Immediate transitions

• Modeling logical behavior (as opposed to timed behavior)

• Notation: filled black rectangles

 Transition priorities

• Conflict resolution: higher priority can fire

 Inhibitor arcs

 Guard expressions

• Simplification by replacing some arcs with predicates

• Reachability graph is still represented by a CTMC

 Vanishing markings: left by immediate transition firing,
eliminated from CTMC

 Tangible markings: CTMC states
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Formal definition

GSPN=(P, T, I, O, m0, H, , L, G)
• HPT inhibitor arcs

• : TZ priority
 Timed transitions: priority = 0

 Immediate transitions: priority >0, use for conflict resolution

• L: TR+ transition parameters
 Timed transitions: rate of exponential firing delay distribution

 Immediate transitions: weight for random choice between 
immediate transition of the same priority

• G: TBoolean-formulas transition guards
 Must be satisfied for transition enablement

 Predicate on markings,
e.g. [m(P)>2], where m(P) is the marking of P
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GSPN example

• Multiple processzor (proc)

 Submit request for communication (access)

• Shared bust (bus) with communication ports (cm1, cm2)

 Random choice between cm1 and cm2 according to weights

• Analysis questions:

 Expected number
of processors
waiting for a
communication port

 Bus utilization

 Port utilization

 ...
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Deterministic and stochastic Petri nets

• Further extensions:
 Transitions with deterministic firing delay

• Constant time to fire a transition after it is enabled

• Modeling activities with deterministic (fixed) duration
(e.g. repair time in a reliability model)

• Notation: filled gray rectangle

• Efficient analysis is only possible if: 
 No more than one enabled deterministic transition

in a marking

 Required for Markovian analysis of the reachability graph
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Timed Petri nets (TPN)

• General distributions for firing delays

• Reachability graph is generally not a CTMC

 Structure may depend on distribution parameters

 Markovian analysis is not possible

• Analytic solution only for special cases

 Usual solution: simulation

• Difficult if there are many orders of magnitude differences
between firing delays
(e.g. time to failure is much larger than repair time)

• Resampling semantics in new markings

 Firing distribution is not memoryless

 It matters when is the resampling performed
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Resampling semantics for timed transitions

• Conflict resolution methods:

 Preselection: Does not depend on firing delay

 Race: Transition with smallest firing delay wins (more frequently used)

• Variations of resampling races:

Resampling 
semantic:

If a transition
remains enabled
in the new marking

If a transition that 
previously lost enablement
becomes enabled again
in the new marking

“Race with
resampling”

Sample according to the 
initial distirbution: “restart”

Sample according to the 
initial distirbution: “restart”

“Race with
enabling memory”

Sample according to the 
remaining time: “continue”

Sample according to the 
initial distirbution: “restart”

“Race with
age memory”

Sample according to the 
remaining time: “continue”

Sample according to the 
remaining time: “continue”
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Stochatic reward nets

• Reward (or cost, i.e. negative reward) function

• Rate reward:

 Reward/time unit as a function of the current marking

 Reward accrued over an interval of time is
determined by integration

 Example: $30 profit, if the server is healthy, otherwise $20 penalty:

if (m(healthy)>0) then ra=30 else ra=-20

• Impulse reward:

 Reward gained when firing a transition

 Reward accrued over an interval of time is
determined by summing the reward of individual firings

 Example: Cost of repair is $500:
if (fire(Repair)) then ri=-500
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Stochastic activity networks: Möbius tool
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Stochastic activity networks: Möbius tool
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Summary

• Motivation

• Stochastic processes and models

 Continuous time Markov chains

• Stochastic Petri nets

 SPN, GSPN, DSPN, TPN, SRN

 Timing semantics


