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Motivation
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= Timing semantics
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Motivation

The course so far:
Modeling functional, logical behavior

= Safety and liveness requirements

= Reachability of a given state or transition
Extension: extra-functional, quantitative modeling

= Performance requirements

= Reliability (dependability) requirements
Characteristics of extra-functional requirements

= Timing (e.g. deadlines, response and processing times)

= Probabilities (e.g. component failure, packet loss)
Modeling IT systems

= Discrete state space

= Continuous time



Simple example

e Ordinary Petri-net model — Doctor’s office:
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Advantages and challenges

e Advantages of modeling: Analysis at design time
(before costly implementation efforts!)
= Confirm of design decision
= Compare alternatives
= "Tune” parameters

e Challenges in modeling: Realism

= Parameters: Timing and probability informations
e Are they available?
o If they are approximations, how are they validated?

= Complexity of models
e How much abstraction can be used?



Models and formalisms

Mapping

Engineering
Models

Higher-level
formalisms:
SPN, GSPN, DSPN

L ow-level mathematical
formalisms:

Stochastic process, CTMC



Low-level formalisms:
Stochastic processes,
continuous time Markov chains (CTMC)



Stochastic processes

e Random variable:
Probabilistic selection of a value in a random field
= A realization of random variable X is a value x
= P.d.f and c.d.f for real-valued random variables

e Stochastic process:

= Informally: modeling with random variables
parameterized with time

= Discrete case: States (state probabilities) changing w.r.t. time
e Set of random variables indexed with parameter t (time): X(t)
e The domain of each random variables is the same
e Behavior of the process:
= Random field of trajectories over the discrete states
= The set of all possible trajectories describes the process fully



Trajectory
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e Holding times of states: t,, t;, ...



Markov processes

e Stochastic process with the Markov property:

Forallt >t >t ; > .. >t the process X(t) satisfies:

PIX()=X | X(T)=Xqs X(Tr.1)=Xn1s - X(Eg)=Xo} = PIX(€)=X | X(t;)=X,}
e "Memoryless” property

= The future state (at time t) only depends on

the current state (at time t.), not on any earlier state

e Markov processes with discrete state space: Markov chains

= The trajectories are described by the holding times of states

= Holding time 1 is exponentially distributed: P{t<t}=1-et

e This is the only continuous probability distribution
with the Markov property

e At any moment of time the remaining holding time in the active state is
independent from the time already spent in the state
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Continuous time Markov chains (CTMC)

e Continuous time, but discrete state space

e Some definitions:
= States: sy, Sy, -+, Sy,
= Transition probability matrix: Q;(t,.;,t,)= P{S(t,)=s; | S(t,.;)=s;}
= (Time-)homogenous process: Q;(t,t+At)= Q;(At)
e Transition probabilities do not change over time
= Transition rate (intensity):
.1
Ry () = i!TOA_tQij (At)
= Rate of leaving state s:

E(s)= > R,

s'eS,s#s'
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Example

e Graphical CTMC notation:

= States (with initial state / initial state probabilities)

* Transition rates between pairs of states
(zero rates are omitted for brevity)
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Applying CTMCs

o Reliability modeling:
= Atomic component: Error-free state s, and error state s

= Practical observations for electronic components:

e Under typical load, the holding time of the error-free state is
exponentially distributed

e Parameter: failure rate, A

e For simplicity, we also consider an exponential distribution for
the repair time: repair rate, p

= Hence, we obtain the CTMC:
N CY
e Performance modeling

= Queueing theory for servers
e M/M/1 queue:
Markovian (exponentially distributed) arrival and service times
o State spaceisa CTMC
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Example: Reliability modeling

e System comprised of two servers (A and B):
= Any server may fail
= Repairs: single server of both servers at a time

e System states: Working servers

e State transitions (exponentially distributed delays):

= Failure of server A: A, failure rate
= Failure of server B: Ag failure rate
= Repair a single server: W, repair rate
= Repair both servers: L, repair rate

(Bup)—2s

O up
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CTMC notations
e CTMC=(S, R)

S set of states

R: SxS—R,, transition rate (intensity matrix)
e P{transition from s to s’ in time < t} = 1-e’ RSt
e P{exiting state s in time < t} = 1-gE(S)t

Q = R—diag(E) , infinitesimal generator matrix”

e Trajectories:
» 6 =5y, Sy, Ly, ... (attime t the state s, is exited)
» c@t state at time t

= Path(s) set of paths from state s
= P{s, o} probability of taking ¢ € Path(s) from s
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Example: Reliability modeling (cont.)
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CTMC solution

e Transient probabilities:

= 7(s,5,t) = P{ocePath(s) | c@t=s"}
probability of getting to s’ at time t starting from s

= 7(s,t) row vector of state probabilities at time t starting from s
= Transient CTMC solution:

dz(st)
” =z(s,1)Q

o Steady-state probabilities:
= 7(s,s’) = lim_, n(s,s’,t) steady state probability of s’ starting from s
= 1(s) row vector of steady-state probabilities
= Steady-state CTMC solution:

71(8)2: 0 where ) 7(s,8")=1

SI

17



CTMC in formal methods

e Characteristics of Makov chains
= Pro: Availability of mathematical methods for solution

= Con: Large state spaces are difficult to create and handle
e Too low level: individual states and transitions
e No support for concurrency and synchronization
* No hierarchical modeling

e Markov chains in practice

= Low-level formalism for higher level models

e Stochastic Petri nets

e Stochastic process algebras
= Reachability graph of a stochastic Petri net is a CTMC

e Stochastic Petri net analysis can be performed by Markov chain solution
= Analogy: the reachablity graph of a Petri net is a Kripke structure

e Model checking can be performed on the Kripke structure

18



Stochastic Petri nets
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Definition

e Idea:
= Time elapses as transitions fire (we model durations of activities,
events, or state changes on the transitions)
e A Petri net is called stochastic when
= Each transition has an associated firing delay

= The firing delay is random
(described by a nonnegative real valued random variables)

= Firing delays of each transition are statistically independent

e Stochastic Petri net variants
= Stochastic Petri net (SPN)
= Generalized stochastic Petri net (GSPN)
= Deterministic and stochastic Petri net (DSPN)
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Stochastic Petri nets (SPN)

e Extension of ordinary Petri nets
= Each firing delay is exponentially distributed

e Changes to the firing semantics
= Enablement: same as in Petri nets

= Firing rule: A transition fires at time t+d if
e it became enabled at time t
e d is the random delay generated from the firing distribution
e it was always enabled during the time interval [t, t+d)
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Notation

e [ransitions rates

= ). is the rate parameter of the firing delay d.
of transition T; (always a positive number)

e Graphical notation:
» Transitions are empty rectangles

e Transition with rate A: @m
= Firing delay d. satisfies:
it ﬁTlsf\l
P{d, <tl=1-¢™"

P{d >t} =e™" O

22



Multiple enabled transitions

e The transition with the smallest firing delay is fired
= The enabled transitions are in a race
= Probabilistic choice based on the generated firing delays

o What happens to the other enabled transitions after firing?
= We are in a new marking

= Do we have to draw a new firing delay from the distribution?

e In an SPN it does not matter, because firing delays are exponentially
distributed and have the Markov property

e The remaining firing delay has the same exponential distribution
regardless the time the transition spent being enabled

e The remaining firing delay and the time spent being enabled are
statistically independent
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Transitions in conflict

e Holding time of marking m,:
= Minimum of two exponentially distributed firing delays
e This is also exponentially distributed, and it has a rate A;+ A,
= Holding time is exponentially distributed with rate A,+ A,
= Expected holding time: 1/(A;+ A,)
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Generalization

e If n transitions are enabled with rates A, A,, ..., A,
in the marking m, then

= The holding time of m is exponentially distributed

with rate:
Mt A+ + 4,
= Expected holding time of m:
1
A+ A+ + A
= Probability of the transition with rate A, firing first:
ﬂ“l

A+ A+t A

25



Concurrent transitions

:':lTl,f\l | T2, A2
Y Y
o e

e If T, fires after some delay d,>0,
what will be the firing delay of T, in the new marking?

= Tt is still exponentially distributed with rate A,
due to the Markov property

e What is the holding time of m,?
= Exponentially distributed random variable with rate A+ A,
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Summary: Properties of SPNs

e Time to a new marking is exponentially distributed
= Even if transitions are in conflict or are concurrent

e The timed reachability graph is a CTMC

= [ts structure does not depend on the firing rates
= SPNs are analyzed with CTMC solution methods

e Analysis results

= Steady state distribution (exists for bounded reversible SPNs):
e Probabilities of markings (asymptotically)
e Expected numbers of tokens on places
o Actual rate of firing for each transitions
= Transient solution:
e Probabilities of markings as a function of time elapsed since start

27



Example: M/M/1 queue

e Single server handling requests from a queue

e Exponentially distributed:
= Time between subsequent requests
= Time spent handling a request

example from the

The doctor’s office
beginning of lecture!

Queue Serving
—| N
Server idle
O,

e We can find (as a function of model parameters):
= Server utilization (probability of “idle” marking)
= Averange queue length (expected number of tokens)
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Simplification of parallel transitions
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e Marking-dependent transition rates
= Does not increase descriptive power (we can model the same things)

= The transition rate may depend on the number of tokens on a place

connected by an input or inhibitor arc
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Example: Reliability model of a redundant system

Two identical servers

Error rate of a server: A

= )\ is the parameter of the exponential distribution
of the time to failure

= Servers fail independently from each other
Error detection time:
exponentially distributed with rate 6

= \We may detect multiple failures concurrently
Repair time:

exponentially distributed with rate u

= Multiple concurrent repairs are allowed
(more than one technician is available)
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Example: Reliability model of a redundant system

e SPN model:

healthy

B

T, A-m(healthy) faulty

0

Tq, p-m(repair) T, &-m(faulty)

repair
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Example: Reliability model of a redundant system

o Reachability graph: (healthy, faulty, repair)

ITlQ 11l sz
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Example: Reliability model of a redundant system

e Associated CTMC: (nealthy, faulty, repair)

2 A
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Further classes of
stochastic Petri nets
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Generalized stochastic Petri Nets (GSPN)

e Extension of SPN:

= Immediate transitions
e Modeling logical behavior (as opposed to timed behavior)
o Notation: filled black rectangles

* Transition priorities
e Conflict resolution: higher priority can fire
= Inhibitor arcs
= Guard expressions
e Simplification by replacing some arcs with predicates

e Reachability graph is still represented by a CTMC

= Vanishing markings: left by immediate transition firing,
eliminated from CTMC

= Tangible markings: CTMC states
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Formal definition

GSPN=(P, T, I, O, m,, H, 11, L, G)
HcPxT inhibitor arcs
[T: T—Z priority

Timed transitions: priority = 0
Immediate transitions: priority >0, use for conflict resolution

L: T>R* transition parameters

G:

Timed transitions: rate of exponential firing delay distribution

Immediate transitions: weight for random choice between
immediate transition of the same priority

T— Boolean-formulas transition guards

Must be satisfied for transition enablement

Predicate on markings,
e.g. [m(P)>2], where m(P) is the marking of P
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GSPN example

e Multiple processzor (proc)
= Submit request for communication (access)

e Shared bust (bus) with communication ports (cm1, cm2)
= Random choice between cm1 and cm2 according to weights

e Analysis questions: (00)

= Expected number e
of processors
waiting for a ameess
communication port ~
= Bus utilization H 2
= Port utilization . <)
- cm pa pd cme
get qets
py pi
e T
com] : Come
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Deterministic and stochastic Petri nets

e Further extensions:

= Transitions with deterministic firing delay
e Constant time to fire a transition after it is enabled

e Modeling activities with deterministic (fixed) duration
(e.g. repair time in a reliability model)

o Notation: filled gray rectangle

e Efficient analysis is only possible if:

= No more than one enabled deterministic transition
in @ marking

= Required for Markovian analysis of the reachability graph
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Timed Petri nets (TPN)

e General distributions for firing delays

e Reachability graph is generally not a CTMC
= Structure may depend on distribution parameters

= Markovian analysis is not possible
o Analytic solution only for special cases

= Usual solution: simulation

e Difficult if there are many orders of magnitude differences
between firing delays
(e.g. time to failure is much larger than repair time)

e Resampling semantics in new markings
= Firing distribution is not memoryless
= [t matters when is the resampling performed
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Resampling semantics for timed transitions

e Conflict resolution methods:
= Preselection: Does not depend on firing delay
= Race: Transition with smallest firing delay wins (more frequently used)

e Variations of resampling races:

resampling”

initial distirbution: “restart”

Resampling If a transition If a transition that
semantic: remains enabled previously lost enablement
in the new marking becomes enabled again
in the new marking
“Race with Sample according to the Sample according to the

initial distirbution: “restart”

“Race with
enabling memory”

Sample according to the
remaining time: “continue”

Sample according to the
initial distirbution: “restart”

“Race with
age memory”

Sample according to the
remaining time: “continue”

Sample according to the
remaining time: “continue”
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Stochatic reward nets

e Reward (or cost, i.e. negative reward) function

e Rate reward:
= Reward/time unit as a function of the current marking

= Reward accrued over an interval of time is
determined by integration

= Example: $30 profit, if the server is healthy, otherwise $20 penalty:
if (m(healthy)>0) then ra=30 else ra=-20

e Impulse reward:
= Reward gained when firing a transition

= Reward accrued over an interval of time is
determined by summing the reward of individual firings

= Example: Cost of repair is $500:
if (fire(Repair)) then ri=-500
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Stochastic activity networks: Mobius tool
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Stochastic activity networks: Mobius tool
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Summary

e Motivation

e Stochastic processes and models
= Continuous time Markov chains

e Stochastic Petri nets
= SPN, GSPN, DSPN, TPN, SRN
= Timing semantics
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