## Stochastic Petri Nets

#### Performance and reliability modeling

#### István Majzik, Kristóf Marussy BME Department of Measurement and Information Systems

## Overview

- Motivation
- Stochastic processes and models
  - Continuous-time Markov chains
- Stochastic Petri nets
  - SPN, GSPN, DSPN, TPN
  - Timing semantics
- Summary

# Motivation

- The course so far: Modeling functional, logical behavior
  - Safety and liveness requirements
  - Reachability of a given state or transition
- Extension: extra-functional, quantitative modeling
  - Performance requirements
  - Reliability (dependability) requirements
- Characteristics of extra-functional requirements
  - Timing (e.g. deadlines, response and processing times)
  - Probabilities (e.g. component failure, packet loss)
- Modeling IT systems
  - Discrete state space
  - Continuous time

#### Simple example

Ordinary Petri-net model – Doctor's office:



Model extended with timing information:



#### Advantages and challenges

- Advantages of modeling: Analysis at design time (before costly implementation efforts!)
  - Confirm of design decision
  - Compare alternatives
  - "Tune" parameters
- Challenges in modeling: Realism
  - Parameters: Timing and probability informations
    - Are they available?
    - If they are approximations, how are they validated?
  - Complexity of models
    - How much abstraction can be used?



Low-level formalisms: Stochastic processes, continuous time Markov chains (CTMC)

#### Stochastic processes

- Random variable: Probabilistic selection of a value in a random field
  - A realization of random variable X is a value x
  - P.d.f and c.d.f for real-valued random variables
- Stochastic process:
  - Informally: modeling with random variables parameterized with time
  - Discrete case: States (state probabilities) changing w.r.t. time
    - Set of random variables indexed with parameter t (time): X(t)
    - The domain of each random variables is the same
- Behavior of the process:
  - Random field of trajectories over the discrete states
  - The set of all possible trajectories describes the process fully

#### Trajectory



• Holding times of states: t<sub>0</sub>, t<sub>1</sub>, ...

#### Markov processes

- Stochastic process with the Markov property: For all t > t<sub>n</sub> > t<sub>n-1</sub> > ... > t<sub>0</sub>, the process X(t) satisfies: P{X(t)=x | X(t<sub>n</sub>)=x<sub>n</sub>, X(t<sub>n-1</sub>)=x<sub>n-1</sub>, ..., X(t<sub>0</sub>)=x<sub>0</sub>} = P{X(t)=x | X(t<sub>n</sub>)=x<sub>n</sub>}
- "Memoryless" property
  - The future state (at time t) only depends on the current state (at time t<sub>n</sub>), not on any earlier state

Markov processes with discrete state space: Markov chains

- The trajectories are described by the holding times of states
- Holding time  $\tau$  is exponentially distributed:  $P{\tau \leq t}=1-e^{-\lambda t}$ 
  - This is the only continuous probability distribution with the Markov property
  - At any moment of time the remaining holding time in the active state is independent from the time already spent in the state

#### Continuous time Markov chains (CTMC)

- Continuous time, but discrete state space
- Some definitions:
  - States: s<sub>0</sub>, s<sub>1</sub>, ..., s<sub>n</sub>
  - Transition probability matrix:  $Q_{ij}(t_{n-1},t_n) = P\{S(t_n)=s_j | S(t_{n-1})=s_i\}$
  - (Time-)homogenous process:  $Q_{ij}(t,t+\Delta t) = Q_{ij}(\Delta t)$ 
    - Transition probabilities do not change over time
  - Transition rate (intensity):

$$R_{ij}(t) = \lim_{\Delta t \to 0} \frac{1}{\Delta t} Q_{ij}(\Delta t)$$

Rate of leaving state s:

$$E\left(s\right) = \sum_{s' \in S, s \neq s'} R_{s,s'}$$

## Example

- Graphical CTMC notation:
  - States (with initial state / initial state probabilities)
  - Transition rates between pairs of states (zero rates are omitted for brevity)



# Applying CTMCs

- Reliability modeling:
  - Atomic component: Error-free state s<sub>U</sub> and error state s<sub>D</sub>
  - Practical observations for electronic components:
    - Under typical load, the holding time of the error-free state is exponentially distributed
    - Parameter: failure rate,  $\lambda$
    - For simplicity, we also consider an exponential distribution for the repair time: repair rate,  $\mu$
  - Hence, we obtain the CTMC:



- Performance modeling
  - Queueing theory for servers
    - M/M/1 queue: Markovian (exponentially distributed) arrival and service times
    - State space is a CTMC

## Example: Reliability modeling

- System comprised of two servers (A and B):
  - Any server may fail
  - Repairs: single server of both servers at a time
- System states: Working servers
- State transitions (exponentially distributed delays):
  - Failure of server A:
  - Failure of server B:
  - Repair a single server:
  - Repair both servers:

- $\lambda_{A}$  failure rate
- $\lambda_{\rm B}$  failure rate
- $\mu_1$  repair rate
- $\mu_2$  repair rate



## **CTMC** notations

- CTMC=(S, <u>**R**</u>)
  - S set of states
  - **<u>R</u>**:  $S \times S \rightarrow R_{\geq 0}$  transition rate (intensity matrix)
    - P{transition from s to s' in time  $\leq t$ } = 1-e<sup>-R(s,s')t</sup>
    - P{exiting state s in time  $\leq t$ } = 1-e<sup>-E(s)t</sup>
  - $\mathbf{Q} = \mathbf{R} \text{diag}(\mathbf{E})$  "infinitesimal generator matrix"
- Trajectories:
  - $\sigma = s_0, t_0, s_1, t_1, \dots$  (at time  $t_i$  the state  $s_i$  is exited)
  - σ@t state at time t
  - Path(s) set of paths from state s
  - P{s,  $\sigma$ } probability of taking  $\sigma \in Path(s)$  from s

#### Example: Reliability modeling (cont.)



## **CTMC** solution

- Transient probabilities:
  - π(s,s',t) = P{σ∈Path(s) | σ@t=s'} probability of getting to s' at time t starting from s
  - $\pi(s,t)$  row vector of state probabilities at time t starting from s
  - Transient CTMC solution:

$$\frac{d\,\underline{\pi}(s,t)}{dt} = \underline{\pi}(s,t)\underline{Q}$$

- Steady-state probabilities:
  - $\pi(s,s') = \lim_{t\to\infty} \pi(s,s',t)$  steady state probability of s' starting from s
  - $\underline{\pi}(s)$  row vector of steady-state probabilities
  - Steady-state CTMC solution:

$$\underline{\pi}(s)\underline{\underline{Q}} = 0$$
 where  $\sum_{s'} \pi(s, s') = 1$ 

## CTMC in formal methods

- Characteristics of Makov chains
  - Pro: Availability of mathematical methods for solution
  - Con: Large state spaces are difficult to create and handle
    - Too low level: individual states and transitions
    - No support for concurrency and synchronization
    - No hierarchical modeling
- Markov chains in practice
  - Low-level formalism for higher level models
    - Stochastic Petri nets
    - Stochastic process algebras
  - Reachability graph of a stochastic Petri net is a CTMC
    - Stochastic Petri net analysis can be performed by Markov chain solution
  - Analogy: the reachablity graph of a Petri net is a Kripke structure
    - Model checking can be performed on the Kripke structure

#### Stochastic Petri nets

# Definition

- Idea:
  - Time elapses as transitions fire (we model durations of activities, events, or state changes on the transitions)
- A Petri net is called stochastic when
  - Each transition has an associated firing delay
  - The firing delay is random (described by a nonnegative real valued random variables)
  - Firing delays of each transition are statistically independent

#### • Stochastic Petri net variants

- Stochastic Petri net (SPN)
- Generalized stochastic Petri net (GSPN)
- Deterministic and stochastic Petri net (DSPN)

### Stochastic Petri nets (SPN)

- Extension of ordinary Petri nets
  - Each firing delay is exponentially distributed
- Changes to the firing semantics
  - Enablement: same as in Petri nets
  - Firing rule: A transition fires at time t+d if
    - it became enabled at time t
    - d is the random delay generated from the firing distribution
    - it was always enabled during the time interval [t, t+d)

# Notation

- Transitions rates
  - λ<sub>i</sub> is the rate parameter of the firing delay d<sub>i</sub> of transition T<sub>i</sub> (always a positive number)
- Graphical notation:
  - Transitions are empty rectangles
- Transition with rate  $\lambda$ :
  - Firing delay d<sub>i</sub> satisfies:

$$P\left\{d_{i} \leq t\right\} = 1 - e^{-\lambda_{i}}$$
$$P\left\{d_{i} > t\right\} = e^{-\lambda_{i}t}$$



#### Multiple enabled transitions

- The transition with the smallest firing delay is fired
  - The enabled transitions are in a race
  - Probabilistic choice based on the generated firing delays
- What happens to the other enabled transitions after firing?
  - We are in a new marking
  - Do we have to draw a new firing delay from the distribution?
    - In an SPN it does not matter, because firing delays are exponentially distributed and have the Markov property
    - The remaining firing delay has the same exponential distribution regardless the time the transition spent being enabled
    - The remaining firing delay and the time spent being enabled are statistically independent

#### Transitions in conflict



#### • Holding time of marking m<sub>0</sub>:

- Minimum of two exponentially distributed firing delays
  - This is also exponentially distributed, and it has a rate  $\lambda_1 + \lambda_2$
- Holding time is exponentially distributed with rate  $\lambda_1 + \lambda_2$
- Expected holding time:  $1/(\lambda_1 + \lambda_2)$

#### Generalization

- If n transitions are enabled with rates  $\lambda_1$ ,  $\lambda_2$ , ...,  $\lambda_n$  in the marking m, then
  - The holding time of m is exponentially distributed with rate:

$$\lambda_1 + \lambda_2 + \ldots + \lambda_n$$

Expected holding time of m:

$$\frac{1}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$$

• Probability of the transition with rate  $\lambda_1$  firing first:

$$\frac{\lambda_1}{\lambda_1 + \lambda_2 + \ldots + \lambda_n}$$

#### **Concurrent transitions**



- If T<sub>1</sub> fires after some delay d<sub>1</sub>≥0, what will be the firing delay of T<sub>2</sub> in the new marking?
  - It is still exponentially distributed with rate  $\lambda_2$  due to the Markov property
- What is the holding time of m<sub>0</sub>?
  - Exponentially distributed random variable with rate  $\lambda_1 + \lambda_2$

### Summary: Properties of SPNs

- Time to a new marking is exponentially distributed
  - Even if transitions are in conflict or are concurrent
- The timed reachability graph is a CTMC
  - Its structure does not depend on the firing rates
  - SPNs are analyzed with CTMC solution methods
- Analysis results
  - Steady state distribution (exists for bounded reversible SPNs):
    - Probabilities of markings (asymptotically)
    - Expected numbers of tokens on places
    - Actual rate of firing for each transitions
  - Transient solution:
    - Probabilities of markings as a function of time elapsed since start

# Example: M/M/1 queue

- Single server handling requests from a queue
- Exponentially distributed:
  - Time between subsequent requests
  - Time spent handling a request



- We can find (as a function of model parameters):
  - Server utilization (probability of "idle" marking)
  - Averange queue length (expected number of tokens)

The doctor's office

example from the

## Simplification of parallel transitions



- Marking-dependent transition rates
  - Does not increase descriptive power (we can model the same things)
  - The transition rate may depend on the number of tokens on a place connected by an input or inhibitor arc

- Two identical servers
- Error rate of a server:  $\lambda$ 
  - $\lambda$  is the parameter of the exponential distribution of the time to failure
  - Servers fail independently from each other
- Error detection time: exponentially distributed with rate  $\delta$ 
  - We may detect multiple failures concurrently
- Repair time: exponentially distributed with rate μ
  - Multiple concurrent repairs are allowed (more than one technician is available)

• SPN model:



• Reachability graph: (healthy, faulty, repair)



• Associated CTMC: (healthy, faulty, repair)



Further classes of stochastic Petri nets

Generalized stochastic Petri Nets (GSPN)

- Extension of SPN:
  - Immediate transitions
    - Modeling logical behavior (as opposed to timed behavior)
    - Notation: filled black rectangles
  - Transition priorities
    - Conflict resolution: higher priority can fire
  - Inhibitor arcs
  - Guard expressions
    - Simplification by replacing some arcs with predicates
- Reachability graph is still represented by a CTMC
  - Vanishing markings: left by immediate transition firing, eliminated from CTMC
  - Tangible markings: CTMC states

## Formal definition

#### GSPN=(P, T, I, O, m<sub>0</sub>, H, П, L, G)

- H<sub>C</sub>P×T inhibitor arcs
- $\Pi: T \rightarrow Z$  priority
  - Timed transitions: priority = 0
  - Immediate transitions: priority >0, use for conflict resolution
- L:  $T \rightarrow R^+$  transition parameters
  - Timed transitions: rate of exponential firing delay distribution
  - Immediate transitions: weight for random choice between immediate transition of the same priority

#### • G: T→*Boolean-formulas* transition guards

- Must be satisfied for transition enablement
- Predicate on markings, e.g. [m(P)>2], where m(P) is the marking of P

## **GSPN** example

- Multiple processzor (proc)
  - Submit request for communication (access)
- Shared bust (bus) with communication ports (cm1, cm2)
  - Random choice between cm1 and cm2 according to weights
- Analysis questions:
  - Expected number of processors waiting for a communication port
  - Bus utilization
  - Port utilization
  - •



Deterministic and stochastic Petri nets

- Further extensions:
  - Transitions with deterministic firing delay
    - Constant time to fire a transition after it is enabled
    - Modeling activities with deterministic (fixed) duration (e.g. repair time in a reliability model)
    - Notation: filled gray rectangle
- Efficient analysis is only possible if:
  - No more than one enabled deterministic transition in a marking
  - Required for Markovian analysis of the reachability graph

## Timed Petri nets (TPN)

- General distributions for firing delays
- Reachability graph is generally not a CTMC
  - Structure may depend on distribution parameters
  - Markovian analysis is not possible
    - Analytic solution only for special cases
  - Usual solution: simulation
    - Difficult if there are many orders of magnitude differences between firing delays (e.g. time to failure is much larger than repair time)
- Resampling semantics in new markings
  - Firing distribution is not memoryless
  - It matters when is the resampling performed

## Resampling semantics for timed transitions

- Conflict resolution methods:
  - Preselection: Does not depend on firing delay
  - Race: Transition with smallest firing delay wins (more frequently used)
- Variations of resampling races:

| Resampling<br>semantic:        | If a transition<br>remains enabled<br>in the new marking | If a transition that<br>previously lost enablement<br>becomes enabled again<br>in the new marking |
|--------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| "Race with resampling"         | Sample according to the initial distirbution: "restart"  | Sample according to the initial distirbution: "restart"                                           |
| "Race with<br>enabling memory" | Sample according to the remaining time: "continue"       | Sample according to the initial distirbution: "restart"                                           |
| "Race with age memory"         | Sample according to the remaining time: "continue"       | Sample according to the remaining time: "continue"                                                |

## Stochatic reward nets

- Reward (or cost, i.e. negative reward) function
- Rate reward:
  - Reward/time unit as a function of the current marking
  - Reward accrued over an interval of time is determined by integration
  - Example: \$30 profit, if the server is healthy, otherwise \$20 penalty:

if (m(healthy)>0) then ra=30 else ra=-20

- Impulse reward:
  - Reward gained when firing a transition
  - Reward accrued over an interval of time is determined by summing the reward of individual firings
  - Example: Cost of repair is \$500:

if (fire(Repair)) then ri=-500

#### Stochastic activity networks: Möbius tool





#### Stochastic activity networks: Möbius tool



# Summary

- Motivation
- Stochastic processes and models
  - Continuous time Markov chains
- Stochastic Petri nets
  - SPN, GSPN, DSPN, TPN, SRN
  - Timing semantics