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Basic fomalisms (overview)

Kripke Structures (KS)

— States, transitions, labels
— Local properties of states as labels

Labeled Transition Systems (LTS)

— States, transitions, actions
— Local properties of transitions as actions

Kripke Transition Systems (KTS)
— States, transitions, labels, actions

— Local properties of states and transitions as labels and
actions

Finite State Automata with Time
— Extensions: variables, clocks, synchronization



Kripke Structure

e Expresses properties of states:

labeling by atomic propositions

e Possibly more than one labels per state
o Application: description of behavior or algorithm

A Kripke structure KS over a set of atomic propositions
AP ={P,Q,R, ...} is a tuple (S,I,R,L) where

S ={sq,s,,..,5,} IS a finite set of states,

I € S is the set of initial states,

R € S x S is the set of transitions and

L : S — 24P is the labeling of states by atomic propositions



Example for KS

Traffic light
e AP = {Green,Yellow, Red, Blinking}
o S ={51,52,53,54,55 }

{Green} {Red} {Redq, }

& »@

{Blinking}




Labeled Transition System

e EXxpresses properties of transitions:
labeling by actions

e Exactly one action per transition
e Application: modeling of communication and protocols

A labeled transition system LTS over a set of actions
Act ={a,b,c,...} is a triple (S,1,—) where

e S =1{s4,55..,5,} IS a finite set of states,
e | €S isthe set of initial states,
e - C S X Act XS is the set of transitions

We denote by s s iff (s,a,s') € -.



Example for LTS

Vending machine
e Act = {coin,coffe,tea}
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Kripke Transition System

e Expresses properties of both states and transitions:
labeling by atomic propositions and actions

e Possibly more than one labels per state,
exactly one action per transition

A Kripke transition system KTS over a set of atomic
propositions AP and set of actions Act is a tuple (S,1,-, L)
where

e (§,1,»)isan LTS
e L:S— 24F s the labeling of states by atomic propositions



Example for KTS

Vending machine with state labeling
e Act = {coin, coffee, tea}
e AP = {Start, Choose, Stop}

{Sta rt}

coin

coffee tea

{Stop} {Stop}
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Timed Automata
and the UPPAAL Model Checker



Automata and variables

Goal: modeling state based behavior

Basic formalism: finite state automaton (FSA)
— Locations (named)

— Edges

Language extension: integer variables

— Variables with restricted domain (e.g. int[0, 1] id)
— Constants

— Integer arithmetic

Use: on transitions

— Guard: predicate over variables
e The transition can fire only if predicate holds

— Action: variable assignment
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Extension with clock variables

Goal: modeling real-time behavior

Time passes in locations

Relative measurment of time (e.g. time-out):
resetting and reading clock variable

Time dependent behavior
Property to check: set of reachable locations within time bound

Language extension: clock variables

Measure time elapse by a constant rate

Use: on transitions

Guard: predicate over clock variables

— Action: resetting clocks to zero
Use: on locations

Location invariant: predicate over clock variables, restricts time
elapse for current location
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Timed automata in UPPAAL
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Role of guards and invariants

clock x;
activated = frue
O
wait
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idle
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Extensions for concurrency

e Goal: modeling networks of automata
— Synchronization between automata

— Synchronized transitions (handshake):
¢ Sending and receiving a message occurs at the same time
e Enables modeling of asynchronous behavior as well

e Language extension: synchronized actions Q
— Channels
al

— Sending a message: ! operator
Receiving a message: ? operator

e E.g.: synchronization labels a! and a? for channel a

e Parameterization chan a
— Parameterized channels: arrays of channels
e E.g. channel a[id] for a variable id

— Parameterized automata: instantiating templates
e E.g. automaton Door(true) for template Door(bool id)

v
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Example for clocks and synchronization

Declarations: .
Recelving
clock t, u; message
chan press;
SWltCh . press? t=>=3
Off Bl =0
@
e
User: oress! u=0 LightOn Sending
= message
Think )
[T U=
O -
pre u=0 ;Eeﬁght press BrightOn
> =
u<3

press




Further extensions: broadcast channel

e Broadcast channel: one-to-many communication

— Sending message without condition
e No handshake needed

— All processes ready to receive message will synchronize
e Receiving edge can only be taken upon receiving message

— Restriction: no guard on receiving edge

broadcast chan a;
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Further extensions: Urgent channel

e Urgent channel: prohibit time delay

— The synchronization is executed without delay,
(other edges might be traversed before, but only instantly)

— Restrictions:

e No guard is allowed on an edge labeled with the name of an urgent
channel

e No invariant is allowed on a location that is the source of an edge
labeled with the name of an urgent channel

l urgent chan a;

Q\ invariant
not allowed
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Further extensions: special locations

e Urgent location: prohibit time delay

— Time is not allowed to progress in the location l
— Equivalent model: @
e Introuduce a clock variable: clock x;
e Reset clock on all incoming edges: x:=0 l

e Add invariant: x<=0

e Committed location: even more restrictive
— A committed location is urgent l

— Committed state: at least one committed
location is active @

— The next transition from a committed state l
must involve at least one out-edge of an
active committed location
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The UPPAAL model checker

Development (1999-):

— Uppsala University, Sweden
— Aalborg University, Denmark

Web page (information, examples, download):
http://www.uppaal.org/

Related tools:

— UPPAAL CoVer: Test generation

— UPPAAL TRON: On-line testing

— UPPAAL PORT: Component based modeling

Commercial version:
http://www.uppaal.com/
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Automaton model
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Simulator

File Edit
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Motivating example
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Motivating exampler: mutual exclusion

2 processes, 3 shared variables (H. Hyman, 1966)
— blockedO: process 1 (P0O) wants to enter
— blocked1l: process 2 (P1) wants to enter

— turn: which process is allowed to enter (0 for PO, 1 for P1)
while (true) { PO while (true) { P1
blockedO = true; blockedl = true;
while (turn!=0){ <+« --=-=---~-. J while (turn!=1) {
while (blocked1l==true) { N while (blocked0==true) {
skip; ™. S skip;
} .. NN
turn=0; S * turn=1;
> AN bs
/| Critical section ~< // Critical section
blocked0 = false; i blockedl = false;
// Do other things // Do other things
bs bs

Is the algorithm correct? 5



The model in UPPAAL (version 1)

Declarations:
bool blockedO;
bool blocked1;
int[0,1] turn=0;
system PO, P1;

Automaton PO:

Init
blocked0:=false
r 2®)

blockedO:=true

Check_turn !

turm:=0

Used modeling idioms:
e Global variables
e \Variables with restricted domain

while (true) {
blockedO = true; PO
while (turn!=0) {
while (blocked1l==true) {
My _turn skip;

h

turn==0 turnl=0

e Check_blocked

blocked1==false

turn=0;
s
// Critical section
blocked0 = false;
// Do other things

blocked1==true }

Wait_blocked
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The model in UPPAAL (version 2)

Declarations:
bool blocked[2];
int[0,1] turn;
PO = P(0);
P1 =P(1);
system PO,P1;

Template P
with parameter pid:

Init
-0

blocked[pid]-=true

blocked[pid]-=false

v Check_turn

Used modeling idioms:

tum := pid

Global variables
Variables with restricted domain

Modeling common behavior with
templates

Template instantiation with
parameters

Variables of array type

while (true) { PO
blockedO = true;

while (turn!=0) {
while (blocked1==true) {
skip;
My turn ¥

tum==pid

Cs Check blocked

blocked([1-pid]==true

turn=0;

h

|/ Critical section

blocked[1-pid]==false blocked0 = false;

// Do other things

Wait_blocked 28



Properties to verifiy

Mutual exclusion:

— At most one process is allowed to be in the critical
section

The expected behavior is possible:
— For PO it is possible to enter the critical section
— For P1 it is possible to enter the critical section

Starvation freedom:
— PO will eventually enter the critical section
— P1 will eventually enter the critical section

Deadlock freedom:

— It is not possible that processes are mutually waiting for
each other
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