
1

Basic Formalisms

dr. István Majzik

BME Department of Measurement and Information Systems

2

Our goal

Formal
model

Formalized
requirements

Model checker

OK Counterexample

t f

Informal
design

Informal
requirements

3

Formalisms for formal verification

Basic mathematical
formalisms

KS, LTS, KTS

Higher level
formalisms

PN, CPN, DFN, SC

Transformations

Design
models

4

Basic fomalisms (overview)

• Kripke Structures (KS)

– States, transitions, labels

– Local properties of states as labels

• Labeled Transition Systems (LTS)

– States, transitions, actions

– Local properties of transitions as actions

• Kripke Transition Systems (KTS)

– States, transitions, labels, actions

– Local properties of states and transitions as labels and
actions

• Finite State Automata with Time

– Extensions: variables, clocks, synchronization

5

Kripke Structure

• Expresses properties of states:
labeling by atomic propositions

• Possibly more than one labels per state

• Application: description of behavior or algorithm

A Kripke structure 𝐾𝑆 over a set of atomic propositions
𝐴𝑃 = 𝑃,𝑄, 𝑅,… is a tuple 𝑆, 𝐼, 𝑅, 𝐿 where

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

• 𝐼 ⊆ 𝑆 is the set of initial states,

• 𝑅 ⊆ 𝑆 × 𝑆 is the set of transitions and

• 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

6

Example for KS

Traffic light

• 𝐴𝑃 = 𝐺𝑟𝑒𝑒𝑛, 𝑌𝑒𝑙𝑙𝑜𝑤, 𝑅𝑒𝑑, 𝐵𝑙𝑖𝑛𝑘𝑖𝑛𝑔

• 𝑆 = 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5

s2s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

7

Labeled Transition System

• Expresses properties of transitions:
labeling by actions

• Exactly one action per transition

• Application: modeling of communication and protocols

A labeled transition system 𝐿𝑇𝑆 over a set of actions
𝐴𝑐𝑡 = 𝑎, 𝑏, 𝑐, … is a triple 𝑆, 𝐼,→ where

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

• 𝐼 ⊆ 𝑆 is the set of initial states,

• → ⊆ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is the set of transitions

We denote by 𝑠→
𝑎
𝑠′ iff 𝑠, 𝑎, 𝑠′ ∈ →.

8

Example for LTS

T1 T2

Vending machine

• 𝐴𝑐𝑡 = 𝑐𝑜𝑖𝑛, 𝑐𝑜𝑓𝑓𝑒, 𝑡𝑒𝑎

coin

coffee tea

coin coin

coffee tea

9

Kripke Transition System

• Expresses properties of both states and transitions:
labeling by atomic propositions and actions

• Possibly more than one labels per state,
exactly one action per transition

A Kripke transition system 𝐾𝑇𝑆 over a set of atomic
propositions 𝐴𝑃 and set of actions 𝐴𝑐𝑡 is a tuple 𝑆, 𝐼,→, 𝐿
where

• 𝑆, 𝐼,→ is an 𝐿𝑇𝑆

• 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

10

Example for KTS

Vending machine with state labeling

• 𝐴𝑐𝑡 = coin, coffee, tea

• 𝐴𝑃 = Start, Choose, Stop

coin

coffee tea

{Start}

{Choose}

{Stop} {Stop}

11

Timed Automata
and the UPPAAL Model Checker

12

Automata and variables

• Goal: modeling state based behavior

• Basic formalism: finite state automaton (FSA)

– Locations (named)

– Edges

• Language extension: integer variables

– Variables with restricted domain (e.g. int[0, 1] id)

– Constants

– Integer arithmetic

• Use: on transitions

– Guard: predicate over variables

• The transition can fire only if predicate holds

– Action: variable assignment

13

Extension with clock variables

• Goal: modeling real-time behavior

– Time passes in locations

– Relative measurment of time (e.g. time-out):
resetting and reading clock variable

– Time dependent behavior

– Property to check: set of reachable locations within time bound

• Language extension: clock variables

– Measure time elapse by a constant rate

• Use: on transitions

– Guard: predicate over clock variables

– Action: resetting clocks to zero

• Use: on locations

– Location invariant: predicate over clock variables, restricts time
elapse for current location

14

Timed automata in UPPAAL

Location

Guard

Invariant

Action

clock x;

15

Role of guards and invariants

Guard

Invariant

clock x;

Upon exiting location open, the value of clock is in interval [4, 8]

4 8 t

16

Extensions for concurrency

• Goal: modeling networks of automata

– Synchronization between automata

– Synchronized transitions (handshake):

• Sending and receiving a message occurs at the same time

• Enables modeling of asynchronous behavior as well

• Language extension: synchronized actions

– Channels

– Sending a message: ! operator
Receiving a message: ? operator

• E.g.: synchronization labels a! and a? for channel a

• Parameterization

– Parameterized channels: arrays of channels

• E.g. channel a[id] for a variable id

– Parameterized automata: instantiating templates

• E.g. automaton Door(true) for template Door(bool id)

a! a?

chan a

17

Example for clocks and synchronization

Declarations:

clock t, u;

chan press;

Switch:

User: Sending
message

Receiving
message

1818

Further extensions: broadcast channel

• Broadcast channel: one-to-many communication

– Sending message without condition

• No handshake needed

– All processes ready to receive message will synchronize

• Receiving edge can only be taken upon receiving message

– Restriction: no guard on receiving edge

a!

broadcast chan a;

a? a? a?

1919

Further extensions: Urgent channel

• Urgent channel: prohibit time delay

– The synchronization is executed without delay,
(other edges might be traversed before, but only instantly)

– Restrictions:

• No guard is allowed on an edge labeled with the name of an urgent
channel

• No invariant is allowed on a location that is the source of an edge
labeled with the name of an urgent channel

a!

invariant

not allowed

guard

not allowed

urgent chan a;

2020

Further extensions: special locations

• Urgent location: prohibit time delay

– Time is not allowed to progress in the location

– Equivalent model:

• Introuduce a clock variable: clock x;

• Reset clock on all incoming edges: x:=0

• Add invariant: x<=0

• Committed location: even more restrictive

– A committed location is urgent

– Committed state: at least one committed
location is active

– The next transition from a committed state
must involve at least one out-edge of an
active committed location

U

C

21

The UPPAAL model checker

• Development (1999-):
– Uppsala University, Sweden

– Aalborg University, Denmark

• Web page (information, examples, download):
http://www.uppaal.org/

• Related tools:
– UPPAAL CoVer: Test generation

– UPPAAL TRON: On-line testing

– UPPAAL PORT: Component based modeling

– …

• Commercial version:
http://www.uppaal.com/

22

A
u

to
m

a
to

n
 m

o
d

e
l

23

S
im

u
la

to
r

2424

V
e
ri

fi
c
a

ti
o

n

25

Motivating example
(optional)

26

Motivating exampler: mutual exclusion

• 2 processes, 3 shared variables (H. Hyman, 1966)

– blocked0: process 1 (P0) wants to enter

– blocked1: process 2 (P1) wants to enter

– turn: which process is allowed to enter (0 for P0, 1 for P1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

}

Is the algorithm correct?

P0 P1

27

The model in UPPAAL (version 1)
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

Automaton P0:

Used modeling idioms:
• Global variables
• Variables with restricted domain

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

28

The model in UPPAAL (version 2)
Declarations:

bool blocked[2];
int[0,1] turn;
P0 = P(0);
P1 = P(1);
system P0,P1;

Template P
with parameter pid:

Used modeling idioms:
• Global variables
• Variables with restricted domain
• Modeling common behavior with

templates
• Template instantiation with

parameters
• Variables of array type

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

29

Properties to verifiy

• Mutual exclusion:

– At most one process is allowed to be in the critical
section

• The expected behavior is possible:

– For P0 it is possible to enter the critical section

– For P1 it is possible to enter the critical section

• Starvation freedom:

– P0 will eventually enter the critical section

– P1 will eventually enter the critical section

• Deadlock freedom:

– It is not possible that processes are mutually waiting for
each other

30

Our goal

Automatically
verifiable,

exact properties

Formal
model

Formalized
requirement

Model checker

OK Counterexample

t f

• Basic or
• higher level or
• design models

