Basic Formalisms

dr. Istvan Majzik

BME Department of Measurement and Information Systems

’_______~

Our goal

\

Informal : Informal
design : requirements
I
b '
I
Formal l Formalized
model ! requirements

~

_______ /

OK Counterexample

Formalisms for formal verification

Transformations

Design
models

Higher level
formalisms
PN, CPN, DFN, SC

Basic mathematical
formalisms

KS, LTS, KTS

Basic fomalisms (overview)

Kripke Structures (KS)

— States, transitions, labels
— Local properties of states as labels

Labeled Transition Systems (LTS)

— States, transitions, actions
— Local properties of transitions as actions

Kripke Transition Systems (KTS)
— States, transitions, labels, actions

— Local properties of states and transitions as labels and
actions

Finite State Automata with Time
— Extensions: variables, clocks, synchronization

Kripke Structure

e Expresses properties of states:

labeling by atomic propositions

e Possibly more than one labels per state
o Application: description of behavior or algorithm

A Kripke structure KS over a set of atomic propositions
AP ={P,Q,R, ...} is a tuple (S,I,R,L) where

S ={sq,s,,..,5,} IS a finite set of states,

I € S is the set of initial states,

R € S x S is the set of transitions and

L : S — 24P is the labeling of states by atomic propositions

Example for KS

Traffic light
e AP = {Green,Yellow, Red, Blinking}
o S ={51,52,53,54,55 }

{Green} {Red} {Redq, }

& »@

{Blinking}

Labeled Transition System

e EXxpresses properties of transitions:
labeling by actions

e Exactly one action per transition
e Application: modeling of communication and protocols

A labeled transition system LTS over a set of actions
Act ={a,b,c,...} is a triple (S,1,—) where

e S =1{s4,55..,5,} IS a finite set of states,
e | €S isthe set of initial states,
e - C S X Act XS is the set of transitions

We denote by s s iff (s,a,s') € -.

Example for LTS

Vending machine
e Act = {coin,coffe,tea}

11 T2

Kripke Transition System

e Expresses properties of both states and transitions:
labeling by atomic propositions and actions

e Possibly more than one labels per state,
exactly one action per transition

A Kripke transition system KTS over a set of atomic
propositions AP and set of actions Act is a tuple (S,1,-, L)
where

e (§,1,»)isan LTS
e L:S— 24F s the labeling of states by atomic propositions

Example for KTS

Vending machine with state labeling
e Act = {coin, coffee, tea}
e AP = {Start, Choose, Stop}

{Sta rt}

coin

coffee tea

{Stop} {Stop}

10

Timed Automata
and the UPPAAL Model Checker

Automata and variables

Goal: modeling state based behavior

Basic formalism: finite state automaton (FSA)
— Locations (named)

— Edges

Language extension: integer variables

— Variables with restricted domain (e.g. int[0, 1] id)
— Constants

— Integer arithmetic

Use: on transitions

— Guard: predicate over variables
e The transition can fire only if predicate holds

— Action: variable assignment

12

Extension with clock variables

Goal: modeling real-time behavior

Time passes in locations

Relative measurment of time (e.g. time-out):
resetting and reading clock variable

Time dependent behavior
Property to check: set of reachable locations within time bound

Language extension: clock variables

Measure time elapse by a constant rate

Use: on transitions

Guard: predicate over clock variables

— Action: resetting clocks to zero
Use: on locations

Location invariant: predicate over clock variables, restricts time
elapse for current location

13

Timed automata in UPPAAL

@ Edit Location

clock x;

. Marme: Iwait
[Locatl O n g Invariank:

idle |

O activated = frue
% éD Wit [Initial

[Urgent

[Guard g i _
W ==h [~ Committed

o —
§ —
et X

| . I Cancel |

. closed o
| Invariant L 7 0 opening

==k Seleck:

- =0, -
[Action % activated=false x=0
Guard: [.==¢

clasing =4 x=0 éujpen SIS
K<=h O< X<=8

pdate: [==n

Cancel

Role of guards and invariants

clock x;
activated = frue
O
wait

N —
W =1
AU

closed (‘l) apening

Guard }

x=0,
activated=false

— Invariant
closing O< (>=4 x=0 é-jpwn

Upon exiting location open, the value of clock is in interval [4, 8]

[
»

4 8 t

idle

15

Extensions for concurrency

e Goal: modeling networks of automata
— Synchronization between automata

— Synchronized transitions (handshake):
¢ Sending and receiving a message occurs at the same time
e Enables modeling of asynchronous behavior as well

e Language extension: synchronized actions Q
— Channels
al

— Sending a message: ! operator
Receiving a message: ? operator

e E.g.: synchronization labels a! and a? for channel a

e Parameterization chan a
— Parameterized channels: arrays of channels
e E.g. channel a[id] for a variable id

— Parameterized automata: instantiating templates
e E.g. automaton Door(true) for template Door(bool id)

v

16

Example for clocks and synchronization

Declarations: .
Recelving
clock t, u; message
chan press;
SWltCh . press? t=>=3
Off Bl =0
@
e
User: oress! u=0 LightOn Sending
= message
Think)
[T U=
O -
pre u=0 ;Eeﬁght press BrightOn
> =
u<3

press

Further extensions: broadcast channel

e Broadcast channel: one-to-many communication

— Sending message without condition
e No handshake needed

— All processes ready to receive message will synchronize
e Receiving edge can only be taken upon receiving message

— Restriction: no guard on receiving edge

broadcast chan a;

18

Further extensions: Urgent channel

e Urgent channel: prohibit time delay

— The synchronization is executed without delay,
(other edges might be traversed before, but only instantly)

— Restrictions:

e No guard is allowed on an edge labeled with the name of an urgent
channel

e No invariant is allowed on a location that is the source of an edge
labeled with the name of an urgent channel

l urgent chan a;

Q\ invariant
not allowed

19

Further extensions: special locations

e Urgent location: prohibit time delay

— Time is not allowed to progress in the location l
— Equivalent model: @
e Introuduce a clock variable: clock x;
e Reset clock on all incoming edges: x:=0 l

e Add invariant: x<=0

e Committed location: even more restrictive
— A committed location is urgent l

— Committed state: at least one committed
location is active @

— The next transition from a committed state l
must involve at least one out-edge of an
active committed location

20

The UPPAAL model checker

Development (1999-):

— Uppsala University, Sweden
— Aalborg University, Denmark

Web page (information, examples, download):
http://www.uppaal.org/

Related tools:

— UPPAAL CoVer: Test generation

— UPPAAL TRON: On-line testing

— UPPAAL PORT: Component based modeling

Commercial version:
http://www.uppaal.com/

21

Automaton model

£ E:/Tools/Uppaal/demo;2doors.xml - UPPAAL
File Edit View Tools Options Help

(=[S

[RaPAaa RO

Editor I Simulator | verifier |
Drag out

4 Project

- @ Declarations

o S

- User

“..@ System declarations

|: Mame: IDoor Parameters: Ibool &activated, urgent chan &pushed, urgent chan &closedl, urgent chan &closedz
pushed?
closed1! activated = true

closed!

"iﬂﬁif >€%;

N idle wait

closed2?

¥>=hH x=0

E) opening
; X <= 6

closed
X<=H

(@]
LTU
@D
o X
-

¥==06 =6

x=0

closing

X<=8

22

Simulator

File Edit

& E:/Tools/Uppaal/demo;2doors.xml - UPPAAL

View Tools Options Help

1o x|

IBalbaa e R@»o

Editor Verifier I
Drag out Drag out :
activatedl =1
Enabled Transitions R

closed2: Door2 --= Doorl

Mext | Reset

Simulation Trace

Userl

(idle, idle, idle, idle)

(idle, idle, -, idle)
pushedl: Userl --> Doorl
sait, idle, idle, idle)

Trace File: |

Prev [dext Replay
Open Save Random
|
Slolw : I { l l Falst

activatedz =0
Doorl.x ==
Door2.x >=0
Userl.w=0
User2,w >=0
Doorl.x = Door2, x
Door2,.x = User2.w

pushed1!

pushed2!

Door1 Door2
pushed1? pushed2?
closad1! activated1 = true closed2! activated?2 = true
2@ ,% J dosed1! 2. ,(_ ﬁ] dosed2!
idle wait idle wait
dosed2? closed1?
=5 x=0 =5 x=0
cossd1! dosed2!
T dossd d opening dosed (5 opening
& x<=5 7 x<=B6 x<=5 V x<=B
== == 5)
x=0, x=0 x=0, =0
activatedi=fals= activated2=falss
dosing open dosing
x<=6 x<=8 x<=6
User1 User2
idle idle

lactivatedt lactivated?2
we=0 w=0
=
Door1 Door2 User1 User2

0

pushed1

idle.

lon

t

ITICa

Ver

tj_-!} F:/FTapps/Uppaal/demo;/2doors.xml - UPPAAL - | Ellﬂ

File Edit Wew Tools Options Help

[ba@meaaage-:ms

Editu:url Simulatar Verifier |

Ceryis
Check

A[] not [(Doorl.open and Dookz.open)

. . . . Insetrk
A[] (Doorl.opening imply Userl.w<=31) and (DoorZ.opehing imply UserZ.w<=31) .
E<> Doorl.open o Remote
E<> Doori.open . Camments

‘ll

Quety
Al not (Doort.open and Door2.open)

Commenkt

Mutex: The two doors are never open at the same time.

.]

Skatus

Established direct connection bo local server,

(Academic) UPPAAL version 4.0.7 (rey. 41407, November 2008 -- server,
Disconnecked,

Established direct connection bo local server,

(Academic) UPPAAL version 4.0.7 (rev. 4140, November 2008 -- server,
A[] not (Doorl .open and DoorZ . open)

Property is satisfied.

&[] (Door 1, opening imply Userl w<=317 and (Doorz, opening imply Userz w<=31)
Property is satisfied.

E <= Doors,open

Property is satisfied,

a[] not deadlock.

Property is satisfied,

ook, waik --= DoorZ, apen

Property is satisfied.

Dioorl waik --= Doorl . open

Property is satisfied.

Motivating example

25

Motivating exampler: mutual exclusion

2 processes, 3 shared variables (H. Hyman, 1966)
— blockedO: process 1 (P0O) wants to enter
— blocked1l: process 2 (P1) wants to enter

— turn: which process is allowed to enter (0 for PO, 1 for P1)
while (true) { PO while (true) { P1
blockedO = true; blockedl = true;
while (turn!=0){ <+« --=-=---~-. J while (turn!=1) {
while (blocked1l==true) { N while (blocked0==true) {
skip; ™. S skip;
} .. NN
turn=0; S * turn=1;
> AN bs
/| Critical section ~< // Critical section
blocked0 = false; i blockedl = false;
// Do other things // Do other things
bs bs

Is the algorithm correct? 5

The model in UPPAAL (version 1)

Declarations:
bool blockedO;
bool blocked1;
int[0,1] turn=0;
system PO, P1;

Automaton PO:

Init
blocked0:=false
r 2®)

blockedO:=true

Check_turn !

turm:=0

Used modeling idioms:
e Global variables
e \Variables with restricted domain

while (true) {
blockedO = true; PO
while (turn!=0) {
while (blocked1l==true) {
My _turn skip;

h

turn==0 turnl=0

e Check_blocked

blocked1==false

turn=0;
s
// Critical section
blocked0 = false;
// Do other things

blocked1==true }

Wait_blocked

27

The model in UPPAAL (version 2)

Declarations:
bool blocked[2];
int[0,1] turn;
PO = P(0);
P1 =P(1);
system PO,P1;

Template P
with parameter pid:

Init
-0

blocked[pid]-=true

blocked[pid]-=false

v Check_turn

Used modeling idioms:

tum := pid

Global variables
Variables with restricted domain

Modeling common behavior with
templates

Template instantiation with
parameters

Variables of array type

while (true) { PO
blockedO = true;

while (turn!=0) {
while (blocked1==true) {
skip;
My turn ¥

tum==pid

Cs Check blocked

blocked([1-pid]==true

turn=0;

h

|/ Critical section

blocked[1-pid]==false blocked0 = false;

// Do other things

Wait_blocked 28

Properties to verifiy

Mutual exclusion:

— At most one process is allowed to be in the critical
section

The expected behavior is possible:
— For PO it is possible to enter the critical section
— For P1 it is possible to enter the critical section

Starvation freedom:
— PO will eventually enter the critical section
— P1 will eventually enter the critical section

Deadlock freedom:

— It is not possible that processes are mutually waiting for
each other

29

Our goal

e Basic or
e higher level or

Automatically
verifiable,

e design models exact properties

Formal Formalized
model requirement

Model checker

OK Counterexample

30

