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Our goal

Formal
model

Formalized requirements

Model checker

OK Counterexample
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Informal
design

Informal
requirements

Automatically verifiable,
exact properties
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Classification of temporal logics

• Linear: 

 We consider individual executions of the system 

 Each state has exactly one subsequent state

 Logical time along a linear timeline (trace)

• Branching: 

 We consider trees of executions
of the system 

 Each state possibly has
many subsequent state

 Logical time along a branching timeline
(computation tree)
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Computation tree

Kripke
structure:

Computation tree:
possible branchings
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Branching time temporal logics: CTL, CTL*
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Branching

In a given state, 
we can formulate requirements on the outgoing 
paths of the state:

• E p (Exists p): there exists at least one path 
from the state for which p holds
 Requirement on a single path

 Existential operator

• A p (for All p): for all paths from the state
p holds
 Requirement on all possible paths

 Universal operator

s

s
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Branching time temporal logics

• CTL*: Computational Tree Logic *

An arbitrary combination of

 Path quantifiers (E, A)

 Path-specific temporal operators (X, F, G, U)

• CTL: Computational Tree Logic

 An operator is a combination of a
path quantifier and a path-specific operator

 E.g. AX, E(_ U _)
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CTL*: Computational Tree Logic *
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CTL* operators (informal)

• Path quantifiers (interpreted over states):

 A: “for All futures”,
for all possible paths from the current state

 E: “Exists future”, “for some future”, 
for at least one path from the current state

• Path-specific operators (interpreted over paths):

 X p: “neXt”, for the next state p holds

 F p: “Future”, for a state along the path p holds

 G p: “Globally”, for each state of the path p holds

 p U q: “p Until q”, for a state of the path q will hold, and 
until then for all states p holds
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CTL* formulas

A(p  F q)

For all paths,
we have that 
…

if initially
p holds, …

then 

in the future …

q eventually 
holds.
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Examples for CTL* formulas

• E(p  G q)

There exists at least one path such that 
p holds (initially for the path) and for all suffices of the 
path q holds.

• E(XXX p  F q)

There exists a path such that

 p holds for its fourth state, or

 eventually q holds
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Formal treatment of CTL*

• So far: only an informal introduction

• To enable automatic formal verification, we need:

 Syntax rules: 
What are the well-formed formulas in CTL*?

 Semantic rules: 
When does a formula in CTL* hold for a given model?



13

CTL* syntax

• State formulas: evaluated over states
 S1: an atomic proposition P is a state formula

 S2: for state formulas p and q,
we have state formulas p and pq

 S3: for a path formula p,
we have state formulas E p and A p

• Path formulas: evaluated over paths
 P1: every state formula is a path formula

 P2: for path formulas p and q,
we have path formulas p and pq

 P3: for path formulas p and q,
we have path formulas X p and p U q

Well-formed formulas in CTL*: state formulas



14

CTL* semantics: notation

• M = (S, I, R, L) Kripke structure

•  = (s0, s1, s2,…) a path of M where
s0∈I and i≥0: (si, si+1)R

 i = (si, si+1, si+2,…) the suffix of  from i

• M, |= p (for a path formula p):
in Kripke structure M, along path , p holds

• M,s |= p (for a state formula p):
in Kripke structure M, in state s, p holds
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CTL* semantics: state formulas

• S1: 

M,s |= P iff PL(s)

• S2: 

M,s |= p iff not M,s |= p

M,s |= pq iff M,s |= p and M,s |= q 

• S3: 

M,s |= E p (for path formula p) 

iff there exists a path =(s0, s1, s2,…) in M such that

s=s0 and M, |= p.

M,s |= A p (for a path formula p) 

iff for all paths =(s0, s1, s2,…) in M such that

s= s0 we have M, |= p.
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CTL* semantics: path formulas

• P1: 

M, |= p (for a state formula p) iff M, s0 |= p

• P2: 

M, |= p    iff not M, |= p

M, |= pq iff M, |= p and M, |= q 

• P3:

M,  |= X p iff M,1 |= p

M,  |= p U q iff

j |= q for some j≥0 and
k |= p for all 0≤k<j
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Background: Computational
complexity of evaluation

• Worst-case time complexity: at least O (|S|2  2|p|)

 |S|2 numer of transitions in the model 
(Kripke structure) in the worst case

 |p| number of temporal operators in the formula

• The exponential complexity seems frightening

 Although temporal requirements tend to be short

• Goal: simplifying CTL*

 Should remain usable in practice

 Should reduce worst-case time complexity
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CTL: Computational Tree Logic
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CTL operators (informal introduction)

Complex operators over sates:

• EX p: there exists a path where p holds in the next state

• EF p: there exists a path where p holds in the future

• EG p: there exists a path where p holds globally

• E(p U q): there exists a path where p holds until q 
eventually holds

• AX p: for all paths p holds in the next state

• AF p: for all paths p holds in the future

• AG p: for all paths p holds globally

• A(p U q): for all paths p holds until q eventually holds
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CTL opertators (examples)

EX P EF P EG P

AX P AF P AG P
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CTL formulas (examples)

• AG EF p
starting from any state,
a state can be reached where p holds

• Example:   AG EF Reset

• AG AF p
starting from any state,
we will encounter a state where p holds

• Example:   AG AF Terminated

• AG (p  AF q)
starting from any state,
if we encounter a state where p holds,
then we will eventually reach a state where q holds.

• Example:   AG (Request  AF Reply)
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CTL formulas (examples)

• EF AG p

It is possible for the system to reach a state
after which p will hold in all states

• AF AG p

Along all paths we will eventually reach a state
from which p will always hold

• Example:   AF AG Normal

• AG (p  A (p U q))

In all reachable states,
if p holds in a state,
then for all paths starting from that state,
p holds until q eventually holds, 

• “p holds until q eventually holds”: we will reach a state where q
holds, and until then p holds in all states
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Formalizing requirements: an example

• Two processes in a system: P1 and P2

• The state of processes w.r.t the requirements:

 In critical section: C1, C2

 Not in critical section: N1, N2

 Waiting to enter critical section: W1, W2

• Atomic propositions:
AP = {C1, C2, N1, N2, W1, W2}
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Example (cont.)

• There is at most one process in the critical section:

AG ((C1  C2))

• If a process is waiting to enter the critical section, 
then it will eventually enter the critical section:

AG (W1  AF(C1))
AG (W2  AF(C2))

• Processes enter the critical section in alternating 
order; one exits, then the other enters:

AG(C1  A(C1 U (C1  A((C1) U C2))))
AG(C2  A(C2 U (C2  A((C2) U C1))))

P2 in critical
section

P2 not in 
critical section

P1 enters the
critical section
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CTL syntax I.

State formulas: 

• In CTL* we had:
 S1: an atomic proposition P is a state formula

 S2: for state formulas p and q,
we have state formulas p and pq

 S3: for a path formula p,
we have state formulas E p and A p

• In case of CTL, the same rules (S1, S2, S3) apply! 
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CTL syntax II.

Path formulas: 

• In CTL* we had:
 P1: every state formula is a path formula

 P2: for path formulas p and q,
we have path formulas p and pq

 P3: for path formulas p and q,
we have path formulas X p and p U q

• In case of CTL, we have a single rule instead:

 P0: for state formulas p and q,
we have path formulas X p and p U q
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CTL syntax: Summary

State formulas: 
 S1: an atomic proposition P is a state formula

 S2: for state formulas p and q,
we have state formulas p and pq

 S3: for a path formula p,
we have state formulas E p and A p

Path formulas: 

 P0: for state formulas p and q,
we have path formulas X p and p U q

• Path formulas cannot be directly nested
• Path formulas are only used in rule S3
• Path formulas X p and p U q can only be nested under E and A
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The consequences of formal syntax

• Path formulas cannot be directly nested

 X and U can only be applied to state formulas

 Boolean connectives can only be applied to state formulas

• Path formulas are only used in rule S3:

• Because of rule S3, only a path quantifier can be applied 

to path formulas X p and p U q

hence operators “stick together”

 EX,   E(. U .), 

 AX,   A(. U .)
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Formulas in CTL and CTL*

• Derived operators of CTL

 EF p means E (true U p)

 AF p means A (true U p)

 EG p means AF (p)

 AG p means EF (p)

• CTL* but not CTL

 E(X Red  F Yellow)

Boolean connective between path formulas

 A(X G (Red  Yellow)),
E(XXX Red)

Nested path formulas
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CTL formal semantics

• State formulas:

 rules S1, S2, S3 (see CTL*) remain unchanged

• Path formulas:

 rules P1, P2, P3 are replaced by a new rule P0:

P0: 

 M, |= X p where p is a state formula iff
M,s1 |= p

 M, |= p U q where p,q are state formulas iff
M,sj |= q for some j≥0 and
M,sk | = p for all 0≤k<j

Here we have state formulas according to syntax rule P0
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Background: Computational
complexity of evaluation

• Worst case time complexity: O (|S|2|p|)

 |S|2 numer of transitions in the model 
(Kripke structure) in the worst case

 |p| number of temporal operators in the formula

• Lower than in case of CTL*:

 No 2|p| factor

 Expressive enough for many practical requirements

• Safety requirements: AG

• Liveness requirements: EF, AF

• What is the cost?
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Expressive power

• A temporal logic is at least as expressive as an 
other temporal logic iff it is able to formalize all 
properties that the other logic can.

• It is more expressive iff furthermore there is a 
property that can be expressed in the logic but not 
in the other logic.

• Experience so far:

 LTL can not consider branching 
(implicitly „for all paths”)

 CTL is more restricted than CTL*, 
hence it is less expressive

 CTL* also includes all properties expressible in LTL
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Expressive power – Formally

• The expressive power of TL2 is at least as big as the 
expressive power of TL1 iff
for all Kripke structure M and for all its states s:

1:

2 : ( , | , | )

p TL

q TL M s p M s q

 

    

• Iff this relation holds mutually then TL2 and TL1 have the 
same expressive power.
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Expressive power of LTL, CTL, CTL*

CTL*

PLTL CTL

AF(p  Xq)
(implicit A
operator)

A(p U q)
(implicit A
operator)

AG EF p 

AF(p  Xq)  AG EF p,

EXXX p

implicit A
operator
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Supplementary: Extensions

Stochastic logics: 

• Reliability and timing requirements:
 E.g.: if the current state is ERROR then there is a probability less 

than 30% that this condition holds after 2 time units as well

• Extension of CTL:
 Over Continuous-time Markov chains (not a Kripke structure)

 Probability criteria for state reachability (steady state), path 
traversal

 Timing criteria (time intervals) for operators X and U

Real-time logics:

• Requirements of real-time systems
 The logic can reference clock variables

 Handling of time intervals
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The model checking problem
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LTL model checking

Kripke structure M LTL formula p

Model checker
M, |= p ?

OK Counterexample

t f

If no path is given
then checking of all paths from the initial state
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The model checker SPIN (old interface)

LTL operators:
F is <> (diamond)
G is [] (box)
(no operator X)

Labeling is 
defined by state 
variables

Handling of paths
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Counterexample in SPIN

Order of states and 
communication
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CTL* or CTL model checking

Kripke structure M CTL* or CTL formula p

Model checker
M,s |= p ?

OK Counterexample

t f
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Model checking in UPPAAL

• Atomic propositions:
 Predicates over state variables: a!=1

• Terms: integer arithmetic, bitwise operators, ? : (if-then-else)

 Reference for a location: Train(0).cross
• For parameterized processes: forall, exists

 Deadlock: deadlock expression (no action)

• Boolean connectives:
 and, or, imply, not

• Temporal connectives: restricted CTL
 Notation: [] (box) for G, <> (diamond) for F

• Hence: A[],   A<>,   E[],   E<>

• E[] also for finite traces (to terminal state)

 Temporal connectives can not be nested
• One option though: p --> q for A[] (p imply A<> q)
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Checking requirements in UPPAAL

• Editable list of requirements

• Requirements can be checked one by one

• Counterexample can be generated:
 Shortest, fastest, any

 Can be replayed in simulator

• Traversal of the state space:
 Depth-first search

 Breadth-first search

• State representation:
 Reduction

 Approximate (under- or overapproximation)

 The size of the hash table can be parameterized
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The model checker interface in UPPAAL
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Countereample in UPPAAL’s simulator
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Completing the motivating example
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Motivating example: Mutual exclusion

• 2 processes, 3 shared variables (H. Hyman, 1966)

 blocked0: process 1 (P0) wants to enter

 blocked1: process 2 (P1) wants to enter

 turn: which process is allowed to enter (0 for P0, 1 for P1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

} 

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

} 

Is the algorithm correct?

P0 P1
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The model in UPPAAL (version 1)
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

Automaton P0:

Modeling idioms used:
• Global variables
• Variables with restricted domain

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0
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UPPAAL: formalizing requiremetns

• Mutual exclusion:

At most one process is allowed to be in the critical section

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other

• The expected behavior is possible:

 For P0 it is possible to enter the critical section: 

 For P1 it is possible to enter the critical section: 

• Starvation freedom:

P0 will eventually enter the critical section: 

P1 will eventually enter the critical section: 

Labels: P0.cs, P1.cs, deadlock
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UPPAAL: formalizing requiremetns

• Mutual exclusion:

At most one process is allowed to be in the critical section

A[] not (P0.cs and P1.cs)

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other

A[] not deadlock

• The expected behavior is possible:

 For P0 it is possible to enter the critical section: E<>(P0.cs)

 For P1 it is possible to enter the critical section: E<>(P1.cs)

• Starvation freedom:

P0 will eventually enter the critical section: A<>(P0.cs)

P1 will eventually enter the critical section: A<>(P1.cs)

Labels: P0.cs and P1.cs
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UPPAAL: Results of model checking

• Mutual excusion is not ensured!

 Counterexample: interleaving between the two 
processes (can be replayed in simulator)

• No deadlocks

• The expected behavior is possible

• Starvation freedom cannot be analyzed without 
specification of timing

 Trivial counterexample: time elapses indefinitely in the 
initial location

• A special consequence of timed behavior

• Enforcing progress: urgent location or invariants

 Starvation freedom?

• The system is not starvation free (cyclic counterexample)
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Fixing the algorithm

Peterson’s algorithm

• For process P0
(P1 analogously):

Peterson:

while (true) {

blocked0 = true;

turn=1;

while (blocked1==true && 
turn!=0) {

skip;

}

// Critical section

blocked0 = false;

// Do other things

} 

Hyman:

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

} 


