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Our goal

Formal model
KS, LTS, TA

Formalized requirements
LTL, CTL

Model checker

OK Counterexample

t f

Informal or
semi-formal design

Informal
requirements
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Recap: linear temporal logic LTL

Elements of LTL:

• Atomic propositions (elements of AP): P, Q, ...

• Boolean connectives: , , , 
: conjunction, : disjunction, : negation , : implication

• Temporal connectives: X, F, G, U:

P
F P

P P P P P
G P

P
X P

P P P P Q
P U Q
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Recap: branching time temporal logic CTL*

Elements of CTL*:

• Path quantifiers:

 A: for All paths
starting from the current state

 E: there Exists a path
starting from the current state

• Path-specific operators (as in LTL):

 X p, F p, G p, p U q

s

s
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Recap: branching time temporal logic CTL

Elements of CTL:

Composite operators over states

• EX p: there exists a path where p holds in the next state

• EF p: there exists a path where p holds in the future

• EG p: there exists a path where p holds globally

• E(p U q): there exists a path where p holds until q 
eventually holds

• AX p: for all paths p holds in the next state

• AF p: for all paths p holds in the future

• AG p: for all paths p holds globally

• A(p U q): for all paths p holds until q eventually holds
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Overview

Mechanics of model checking

• Techniques for model checking
 LTL: Semantic tableau

 CTL: Labeling

Why is this useful?

• Possibilities, determining boundaries
 Discovering boundaries (e.g. size of verifiable models)

 Efficient implementation (1069000 states? – next lecture)

• Interesting applications (later)
 Automatic test case generation

 Synthesis of runtime monitors
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LTL Model Checking using
Semantic Tableau
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LTL model checking

Kripke structure M LTL formula p

Model checker
M, |= p ?

OK Counterexample

t f

If no path is given
then checking of all paths from the initial state



9

Introuduction:
Semantic Tableau for Propositional Logic

Problem: satisfiability in propositional logic

• Idea: decomposition of the formula to a tree (the tableau)

 Nodes: formulas to satisfy

 Adding edges: decomposition rules based on the semantics of connectives

Branching: more than one ways to satisfy a formula

• Before decomposition: negation normal form (NNF): 

negation only appears on atoms

 de Morgan’s law:  (pq)=(p)(q),    (pq)=(p)(q)

• Decomposition rules for PL:

p  q

p, q

p  q

p q
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Introduction:
Semantic Tableau for Propositional Logic

When to stop decomposing?

• Terminating a branch: 

 Only literals left

 Each literal has to be satisfied by assigning values to variables

• After terminating a branch:

 Contradiction: opposite literals

• E.g. p, p is contradicting, no possible satisfying assignment

 Successful branch: no contradiction

• E.g.: for p, q: p  true, q  false

• This assignment is a model of the original formula

• Each successful branch corresponds to a satisfying 
assignment
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Introduction: An example tableau for PL

• Original formula: (p  q)   (p  p)

• Pushing  inwards: (p  q)  (p  p)

• Tableau construction:

(p  q)  (p  p)

p  p

p q p, p

p  q

p  false q  false contradiction
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Generalizing tableau construction to LTL

• Model checking: searches for a counterexample, thus

The tableau is constructed for the negated formula!

 The negated formula is transformed to NNF

 If there exists a successful (not contradicting) branch,
it induces a counterexample!

 If all branches are contradicting, then the original property holds!

• Decomposition rules for temporal connectives
 Novelty: Decomposition is performed based on the model

 Notation: s |- p denotes that we evaluate p starting from state s

• Handling literals: 
 s |- P holds iff PL(s)

 s |- P holds iff PL(s)

• Temporal operators:
 Rules for X and U are sufficient (others can be derived)
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Decomposition for operator X

For model:

s |- X p

s1 |- p s2 |- p sn |- p…

s1 s2 sn

s

…

Direct contradiction,
if s has no successors

For a given state s, when does Xp hold?
Iff for a successor state p holds.
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Decomposition for operator U

• We use: p U q = q  (p  X (p U q))

• When can we terminate?
 Contradiction:

• Atomic propositions contradict each other
• Operator X – the path terminates without encountering q
• Cycle of p states without encountering q

 Successful branches:
• Atomic propositions can be satisfied
• Cycle without contradiction

s |- p,   s1 |- p U q … s |- p,   sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q) s1 s2 sn

s

…s1 s2 sn

s

…

Needs extra attetnion:
finite path,

infinite p path
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A special operator: R

• NNF for operator U:
(p U q) = ?

 We introduce the dual of operator U: R (Release)

(p U q) = (p) R (q)

 We use: p R q = q  (p  X (p R q))

• The tableau for operator R:

s |- p R q

s |- q, s |- p s |- q,   s |- X(p R q)

s |- q,   s1 |- p R q … s |- q,   sn |- p R q
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An example

• Traffic light (KS)

• Is it true that if initially Green holds, then 
eventually Red will hold?

 The formula to check: Green  F Red

s2s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

• Based on the model, can we construct a counterexample?
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The tableau for the property

• Negation of the formula:  s1 |– (Green  F Red)

• NNF (based on P  Q = P  Q):

(Green  F Red) = Green  F Red = Green  G (Red)

• Tableau construction:

S1 is labeled 
Green

s1 |- Green  G(Red)

s1 |- Green, s1 |- G(Red)

s1 |- G(Red)Simplification:
s1 |- Green
removed



s5 |- G(Red)
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The tableau for the property (cont.)
s1 is not 

labeled Red
s1 |- G(Red)

s1 |- Red, XG(Red)

s1 |- XG(Red)

s2 |- G(Red)

s1 is 
followed by 
s2 and s5

s2 |- Red, XG(Red)

s2 |- XG(Red)

s3 |- G(Red)

s3 |- Red, XG(Red)

s5 |- Red, XG(Red)

s5 |- XG(Red)

Contradicting 
branch,

s3 is labeled 
Red

s2 is not 
labeled Red

Cycles without contradiction
s1, s5, …

s1, s2, s5, …

s2 is 
followed by 
s3 and s5
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The results of model checking

• The results of tableau for the negated formula:

 A contradicting branch (here the property holds)

 Two cycles without contradiction: counterexamples

• Conclusions:

 There are executions where the negated property holds:
Cycle 1:  s1,  s2,  s5,  …
Cycle 2:  s1,  s5,  …

• The original formula Green  F Red thus fails

 Counterexamples can be shown
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Semantic tableau (summary)

p formula

p formula

M=(S,R,L)

Decomposition
rules

tableau for p

Are all branches
contradictory? Counterexample

f
p holds

t

Non-trivial
steps



Tableau construction rules (summary)
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p  q

p, q

p  q

p q

s |- X p

s1 |- p s2 |- p sn |- p…

s1 s2 sn

s

…s1 s2 sn

s

…

s |- p,   s1 |- p U q … s |- p,   sn |- p U q

s |- p U q

s |- q s |- p,   s |- X(p U q)

s |- p R q

s |- q, s |- p s |- q,   s |- X(p R q)

s |- q,   s1 |- p R q … s |- q,   sn |- p R q

s1 s2 sn

s

…s1 s2 sn

s

…

s1 s2 sn

s

…s1 s2 sn

s

…
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CTL Model Checking
Based on Labeling
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CTL model checking

Kripke structure M CTL formula p

Model checker
M,s |= p ?

OK Counterexample

t f
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Idea: Labeling of states

• Global model checking:

 Notation: Sat(p) denotes the set of states where CTL 
formula p holds  

 Labeling: we label these states by p

 This way sSat(p) can be easily evaluated
for a given state s (in particular for initial states): 
by checking whether it’s labeled p

• The labeling, that is, Sat(p), is computed 
incrementally

 We start from the labeling function L, and then expand it

 The end of the iteration: fixed point reached
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CTL model checking with state labeling

• Labeling of states: where the formula holds

• Labeling with complex formulas?

 Decomposition of the formula based on its structure, 
and computing Sat() for subformulas (from the inside outwards):

AF ( P  E (Q U R))

• Algorithm based on the decomposition of the formula:

 Base case: KS is labeled by atomic propositions

 Continuation: labeling with more complex formulas

 Rules: if we have established labels p and q
then we can establish where we have labels
p,   pq,   EX p,   AX p,   E(p U q),   A(p U q)
This way we progress outwards from the inside of a complex formula
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Rules: Atomic propositions and Boolean connectives

• P holds in a state s iff PL(s)
 Here, P is already a label of s

• P holds in a state s iff PL(s)
 These states can be labeled P

• pq holds in a state s where p and q holds
 A state can be labeled pq iff it is already labeled p and q

• Temporal operators: EX, AX, E( U ), A( U ) 
 More complex labeling rules
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Rules: AX, EX

• EX p holds in a state s iff it has a successor where p holds
 A state can be labeled EX p iff it has a successor labeled p

• AX p holds in a state s iff for all its successors p holds
 A state can be labeled AX p iff all its successors are labeled p

.

s
p

s
p

EX p

s
p

p

p
s

AX p
p

p

p
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Rules: E(p U q)

• Where does E(p U q) hold?

 We use: E(p U q) = q  (p  EX E(p U q))

 “Recursive” formula

• So when can a state s be labeled E(p U q)?

 if s is labeled q, or

 if s is labeled p and there is at least one succeeding state (EX) 
that is already labeled E(p U q)

• An iteration arises:

 States labeled q are the states where label E(p U q) first appears

 We consider the predecessors of these states: 
If it is labeled p, we can add label E(p U q)

 This way we traverse those paths backwards that lead to states 
labeled q through states labeled p
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Labeling by E(P U Q)

• We iterate until a 
fixpoint is reached

{P,Q}

PPP

Kripke structure with 
initial labeling

{P,Q}

PPP

E(P U Q)First step: Q

{P,Q}

PPP

E(P U Q)

E(P U Q)

Second step: 
“P EX”

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

Third step:
“P EX”



30

Rules: A(p U q)

• Where does A(p U q) hold?

 We use: A(p U q) = q  (p  AX A(p U q))

 “Recursive” formula

• So when can a state s be labeled A(p U q)?

 if s is labeled q, or

 if s is labeled p and all succeeding states (AX) are already labeled 
A(p U q)

• An iteration arises:

 States labeled q are the states where label A(p U q) first appears

 We consider the predecessors of these states: 
If it is labeled p, and all its successors are labeled A(p U q), we can 
add label A(p U q)

This way we covered all operators defined in the syntax.



31

An additional rule: AF p

• Where does AF p hold?

 We use: AF p = p  AX AF p

 “Recursive” formula

• So when can a state s be labeled AF p?

 if s is labeled p, or

 all its successors (AX) are labeled AF p

• An iteration arises:

 States labeled p are the states where label AF p first 
appears

 We consider the predecessors of these states: 
If all its successors are AF p, we can add label AF p

 This way we traverse those paths backwards that lead to 
a state labeled p
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Iteration using set operations

• We expand the labeling using operations on sets
 Initial set: states already labeled by subformulas

 Expanding the labeling:
• E(p U q): “At least one successor is labeled …”

• A(p U q): “All successors are labeled …”

 This way we can label preceding states

• How can we define the set of preceding states?
 Based on set of already labeled states Z: 

preE(Z) = {sS | there exists s’ such that (s,s’)R and s’Z}

preA(Z) = {sS | for all s’ such that (s,s’)R we have s’Z}

• Example: E(P U Q):
 Initial set: Z0    = {s | QL(s)}

 Expansion: Zi+1= Zi (preE(Zi)  {s | PL(s)})

 End of the iteration: if Zi+1= Zi (fixedpoint)

Predecessors of

already labeled states
labeled P

Labeled so far

At least one 

successor is 

labeled

All successors 

are labeled
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CTL model checking – summary

• Global model checking:

 Labeling of states by (sub)formulas that hold in the state

• Labeling by increasingly complex formulas

 Starting from atomic formulas to more complex formulas, from the 
inside outwards

 Using the labeling obtained in the previous iteration
based on rules derived from operator semantics

• EX, AX: Examining and labeling predecessors

• E(p U q), A(p U q): Incremental labeling

 Initial set:

• State sets determined by the innermost formulas (p, q)

• Iteration: based on semantics (applied to predecessors)

 End of iteration: no more labels can be added to the labeling
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Example

• Decomposition of formulas:

AF ( P  E (Q U R)) Q and R are labels 

in KS

Incremental labeling: E(. U .)

at the end of the iteration, label

E(Q U R)

The intersection of states labeled P

and E(Q U R)

(treating E(Q U R) as atomic):

We add the label PE(Q U R)

Incremental labeling: based on AF

(treating PE(Q U R) as atomic):

We add the label AF(PE(Q U R)).

This can be evaluated on the initial state.



Exercise

• A traffic light has three aspects:
red, yellow and green. 

 Initially all aspects are off.

 After turning the light on, the red aspect is on.

 From this, there are two ways to proceed:
red-yellow (both are on), and
green.

 Red-yellow is followed by green, and green is followed 
by red again. From this, the behavior is the same as 
before.

• Check whether the following formula holds for the 
initial state of the model: E((¬red) U (EX green))

35
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Summary

• LTL model checking

 Tableau construction

• Propositional logic: contradictory and successful branches

• LTL: searching for a counterexample (witness for negated 
formula)

• CTL model checking

 Iterative labeling

• Incremental labeling with increasingly complex formulas
(global model checking)

• Set operations

How can these algorithms be implemented efficiently?
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LTL model checking: 
Automata theoretic approach

(Supplementary)
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Automata for finite words

• A=(, S, S0, , F) where 

  is the alphabet, S are states, S0 are initial states

  is the transition relation, : S    2S

 F is the set of accepting states

• A run of the automaton:

 For a sequence of symbols from the alphabet
– a word w=(a0, a1, a2, … an) –
a sequence of states r=(s0, s1, s2, … sn)

 r is an accepting run iff snF

 Word w is accepted iff there exists an accepting run

• L(A)={ w * | w is accepted }
the language accepted by the automaton
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Automata on infinite words

• Application: continuously operating systems

 No final state – can not be checked for acceptance

• Büchi acceptance condition:
 For a word w=(a0, a1, a2, … )

a sequence of states r=(s0, s1, s2, … )

 lim(r) = {s | s occurs infinitely many times,
that is, there is no j such that k>j: ssk}

 A run is accepting iff lim(r)  F  0

 A word w is accepted iff there exists an accepting run 
over it
(an accepting state is encountered infinitely many times)

• L(A)={w * | w accepted}
the language accepted by the automaton
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Automata theoretic approach

• For a state s of KS: L(s) is a symbol of alphabet 2AP

E.g. {Red, Yellow} is a symbol of the alphabet

• A path =(s0, s1, s2, … sn) induces a word

(L(s0), L(s1), L(s2), … L(sn))

• We construct two automata:
 Based on Kripke structure M=(S,R,L) an automaton AM

can be constructed that accepts exactly those words that 
correspond to paths of M.

 Based on formula p an automaton Ap can be constructed 
that accepts exactly those words that characterize paths 
for which p holds
Tableau construction rules can be used: what must hold 
in the current state, and what for the successor states
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Model checking using automata

• Model checking problem: L(AM)L(Ap), i.e., is the model’s 
language part of the property’s language?

 If so then M |= p

• Reformulating the problem:

 Checking emptiness of intersection of languages: 
L(AM)L(Ap)

c=0,   here L(Ap)
c is the complement of the language

 Is the language accepted by the synchronous product automaton 
AM Ap

c, induced by the model automaton AM and the complement 
automaton of the property Ap

c , empty?

• If so then M, |= p

• The accepted language is empty iff there is no reachable accepting 
state

• Continuously operating systems

 Automata on infinite words; 
Büchi acceptance condition: searching for loops

L(Ap)
L(AM)
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Automata theoretic model checking

p formulaM=(S,R,L)

AMAp
c automaton

Accepted language
empty? Counterexample

f
p holds

t

Ap
c automatonAM automaton
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“On-the-fly” model checking

• Idea: 

 During construction of automaton Ap the synchronous 
product can be constructed

• Construction of synchronous product automaton

 Directed by the property to verify:
as the states of the automaton Ap are established,
the states of AM has to be “looked up”

 The generation of the full state space is not necessary

• E.g. when deriving from a higher level formalism


