Model Checking

dr. Istvan Majzik
BME Department of Measurement and Information Systems

Our goal

Informal or
semi-formal design

Informal
requirements

l

l

Formal model
KS, LTS, TA

Formalized requirements
LTL, CTL

-

an s - - - - - -

Recap: linear temporal logic LTL

Elements of LTL:
e Atomic propositions (elements of AP): P, Q, ...

e Boolean connectives: A, v, —, =
A conjunction, v: disjunction, —: negation , =: implication

e Temporal connectives: X, F, G, U:
I e
e S
o P P P p P
P UG p P P p Q

Recap: branching time temporal logic CTL*

Elements of CTL*:

e Path quantifiers:

= A: for All paths
starting from the current state

= E: there Exists a path
starting from the current state

e Path-specific operators (as in LTL):
" Xp,Fp,Gp,pUQ

Recap: branching time temporal logic CTL

Elements of CTL:

Composite operators over states

EX p: there exists a path where p holds in the next state
EF p: there exists a path where p holds in the future

EG p: there exists a path where p holds globally

E(p U q): there exists a path where p holds until g
eventually holds

AX p: for al
AF p: for al

paths p holds in t
paths p holds in t

AG p: for a

| paths p holds glo

ne next state
he future

pally

A(p U q): for all paths p holds until g eventually holds

Overview

Mechanics of model checking

e Techniques for model checking

= LTL: Semantic tableau
= CTL: Labeling

Why is this useful?

o Possibilities, determining boundaries
= Discovering boundaries (e.g. size of verifiable models)
= Efficient implementation (1002900 states? — next lecture)

e Interesting applications (later)
= Automatic test case generation
= Synthesis of runtime monitors

LTL Model Checking using
Semantic Tableau

LTL model checking

If no path is given
then checking of all paths from the initial state

Kripke structure M LTL formula p

Model checker
Mmt|=p?

OK Counterexample

Introuduction:
Semantic Tableau for Propositional Logic

Problem: satisfiability in propositional logic

o Idea: decomposition of the formula to a tree (the tableau)

= Nodes: formulas to satisfy

= Adding edges: decomposition rules based on the semantics of connectives
Branching: more than one ways to satisfy a formula

e Before decomposition: negation normal form (NNF):
negation only appears on atoms
= de Morgan’s law: —(pvq)=(—-p)A(—q), —(pAq)=(=p)v(—Qq)
e Decomposition rules for PL:

PAQ Pvq

P, q P g

Introduction:
Semantic Tableau for Propositional Logic
When to stop decomposing?

e Terminating a branch:
= Only literals left
= Each literal has to be satisfied by assigning values to variables

o After terminating a branch:
= Contradiction: opposite literals
e E.g. p, —p is contradicting, no possible satisfying assignment
= Successful branch: no contradiction
e E.g.: for p, —q: p € true, g < false
e This assignment is a model of the original formula

e Each successful branch corresponds to a satisfying
assignment

10

Introduction: An example tableau for PL

e Original formula: —(pAq) v—(—pvVvp)
e Pushing — inwards: (—pv —=q)vVv(pA-—p)
e Tableau construction:
(=P v —q) v (P A—P)
—P —Q P, =P

p < false q < false contradiction
11

Generalizing tableau construction to LTL

e Model checking: searches for a counterexample, thus

The tableau is constructed for the negated formula!

= The negated formula is transformed to NNF

= If there exists a successful (not contradicting) branch,
it induces a counterexample!

= If all branches are contradicting, then the original property holds!
o Decomposition rules for temporal connectives

= Novelty: Decomposition is performed based on the model

= Notation: s |- p denotes that we evaluate p starting from state s
e Handling literals:

= s |- P holds iff PeL(s)
= s |- =P holds iff PgL(s)

e Temporal operators:
= Rules for X and U are sufficient (others can be derived)

12

Decomposition for operator X

For a given state s, when does Xp hold?

|
S |_ Xp ‘ Iff for a successor state p holds.
Sy |- p S; |- P Sy |- P
For model:

Direct contradiction,
if s has no successors

13

Decomposition for operator U

Needs extra attetnion:

e Weuse:pUqg=qgv(paX(pUaq) finite path,

s|-pUq

T~

infinite p path

S |-q

S |- p,

s|-X(pUq) | &) G

/N

s|-p, s;l-pUg

e \When can we terminate?

= Contradiction:

sl-p, spl-pUg

e Atomic propositions contradict each other
e Operator X — the path terminates without encountering q
e Cycle of p states without encountering g

= Successful branches:

e Atomic propositions can be satisfied
e Cycle without contradiction

14

A special operator: R

e NNF for operator U:
—(pUQq) =7

= We introduce the dual of operator U: R (Release)

—(p U q) = (-p) R (=0q)
" Weuse:pRg=qga(pvX(pRq))

e The tableau for operator R:

s|-pRg
s|-q,s|-p s|-g, s|-X(pRaq)

| T

s|-a, s;|-pRq .- s|-a, s,|-pRQ

An example

o Traffic light (KS)

o Is it true that if initially Green holds, then
eventually Red will hold?
= The formula to check: Green = F Red

{Green} {Yellow} <{Red} {Red, Yellow}

s1 ——(s)——(s4

{Blinking}

» Based on the model, can we construct a counterexample?

16

The tableau for the property

e Negation of the formula: s, |- —(Green = F Red)

e NNF (basedon P = Q = —P v Q):
—(Green = F Red) = Green A —F Red = Green A G (—Red)

e Tableau construction: {Green) {Yellow) {Red} {Red, Yellow)
sl »s2 =@ »s4
S1 is labeled {Blinking}
Green sl |- Green A G(—Red)

sl |- Green, sl |- G(—Red)

|
Simplification: s1 |- G(—Red)
sl |- Green l

removed

17

The tableau1 for the property (cont.)

sl is not
abeled Red s1 |- G(—Red)
l {Green} {ﬂow} {Red} {Red, Yellow}
s1 |- —Red, XG(—Red) | X 2=
slis ‘
followed by _ il
s2ands5 | 51 |- XG(—Red) (Blnking)
y-————
s2 is not s2 |- G(—Red) s5 |- G(—Red)
labeled Red v
52 i s2 |- —Red, XG(—Red) s5 |- —Red, XG(—Red)
followed by ‘ !
53 and s> s2 |- XG(—Red) s5 |- XG(—Red)
Contradicting L
branch, s3 |- G(—Red)
s3 is labeled |

Cycles without contradiction

Red 1 53 |- —Red, XG(—Red) s1, 5, ...
sl, s2,s5, ...

The results of model checking

e The results of tableau for the negated formula:
= A contradicting branch (here the property holds)
= Two cycles without contradiction: counterexamples

e Conclusions:

= There are executions where the negated property holds:
Cycle 1: s1, s2, s5, ..
CYC|€ 2: S]., 55, {Green} {Yellow} {Red} {Red, Yellow}

s2 =@ »s4

{Blinking}

e The original formula Green = F Red thus fails
= Counterexamples can be shown

19

Semantic tableau (summary)

M=(5R/L)

e e e . o — —— —— —— — — — — — —

|
F _— —_— _—

p formula

l

—p formula

l

»tableau for —p

l

—

Are all branches
contradictory?

Y f

Non-trivial
steps

Counterexample

20

Tableau construction rules (summary)

PAQ

P, 9

~

N

AN

e I
L3l ﬁ\\@
ST &
S;|-p S, |-p Sn |- P
- J
/ s|-pUg \
/\ N
s |-q w@ G .
s|-p, s;l-pUg s|-p, sal-pUQq
\ /
4 I
s|-pRq %@
sl-a,s|-p s|-q, s|[-X(pRQq)

o

s|-q, s;|-pRq

s|-q, s,|-pPRq
y

CTL Model Checking
Based on Labeling

CTL model checking

Kripke structure M

CTL formula p

Model checker
Ms|=p?

h 4

Counterexample

23

Idea: Labeling of states

e Global model checking:

= Notation: Sat(p) denotes the set of states where CTL
formula p holds

= Labeling: we label these states by p

= This way seSat(p) can be easily evaluated
for a given state s (in particular for initial states):
by checking whether it's labeled p

e The labeling, that is, Sat(p), is computed
incrementally
= We start from the labeling function L, and then expand it
= The end of the iteration: fixed point reached

24

CTL model checking with state labeling

e Labeling of states: where the formula holds

e Labeling with complex formulas?

= Decomposition of the formula based on its structure,
and computing Sat() for subformulas (from the inside outwards):

AF (P AE(QURY))

O y

N /

e Algorithm based on the decomposition of the formula:
= Base case: KS is labeled by atomic propositions
= Continuation: labeling with more complex formulas

= Rules: if we have established labels p and g
then we can establish where we have labels

—p, prq, EXp, AXp, E(pUq), A(pUQq)
This way we progress outwards from the inside of a complex formula

25

Rules: Atomic propositions and Boolean connectives

e P holds in a state s iff PeL(s)
= Here, P is already a label of s

e —P holds in a state s iff PzL(s)
= These states can be labeled —P

e pAg holds in a state s where p and g holds
= A state can be labeled pAq iff it is already labeled p and g

e Temporal operators: EX, AX, E(U), A(U)
= More complex labeling rules

26

Rules: AX, EX

e EX p holds in a state s iff it has a successor where p holds
= A state can be labeled EX p iff it has a successor labeled p

O O
P 0 EXp ~ 0
\‘0 \‘0

e AX p holds in a state s iff for all its successors p holds
= A state can be labeled AX p iff all its successors are labeled p

o’ o
Pl 0 AXp 7 0
\‘p \‘p

27

Rules: E(p U q)

e Where does E(p U g) hold?
= Weuse:E(pUq)=qv(pArEXE(pUAQq))
= “Recursive” formula

e S0 when can a state s be labeled E(p U q)?
= jf sis labeled g, or

= if sis labeled p and there is at least one succeeding state (EX)
that is already labeled E(p U q)

e An iteration arises:

= States labeled g are the states where label E(p U q) first appears

= We consider the predecessors of these states:
If it is labeled p, we can add label E(p U q)

= This way we traverse those paths backwards that lead to states
labeled g through states labeled p

28

Labeling by E(P U Q)

P
{P.Q} C{ ,k/\“ {P.Q}
C{ Flrst Stepﬁ E(PU Q)
Kripke structure with
initial labeling E(P U Q)
Q"

{P.Q}
Second step: Cf—‘

E(P U Q) E(P U Q)

. g {P.Q}
Third step: C{
[“P A E)ﬁ E(PUQ)

e \We iterate until a
fixpoint is reached

29

Rules: A(p U q)

e Where does A(p U q) hold?
= Weuse: A(pUqg)=qv(pArAXA(pUAQq))
= “"Recursive” formula
e S0 when can a state s be labeled A(p U q)?
= jf sis labeled g, or
= if sis labeled p and all succeeding states (AX) are already labeled
A(p U q)
e An iteration arises:
= States labeled g are the states where label A(p U q) first appears

= We consider the predecessors of these states:
If it is labeled p, and all its successors are labeled A(p U q), we can
add label A(p U q)

This way we covered all operators defined in the syntax.

30

An additional rule: AF p

e Where does AF p hold?
= Weuse: AFp=pv AXAFp
= "Recursive” formula

e So when can a state s be labeled AF p?
= if sis labeled p, or
= all its successors (AX) are labeled AF p

e An iteration arises:

= States labeled p are the states where label AF p first
appears

= \We consider the predecessors of these states:
If all its successors are AF p, we can add label AF p

= This way we traverse those paths backwards that lead to
a state labeled p 31

Iteration using set operations

e We expand the labeling using operations on sets
= Initial set: states already labeled by subformulas
= Expanding the labeling:
e E(p UQq): “At least one successor is labeled ...”
e A(p U qg): “All successors are labeled ..."

= This way we can label preceding states

e How can we define the set of preceding states?
= Based on set of already labeled states Z: At least one |
preg(Z) = {seS | there exists s’ such that (s,s")eR and s’ez{ S“fgg:;%r IS
pre,(Z) = {seS | for all s" such that (s,s")eR we have s'eZ =
e Example: E(P U Q): ﬁ All successors
= Initial set: Z, = {s | QeL(s)} g
= Expansion: Z,,= Z;u (preg(Z) n {s | PeL(s)})

Labeled so far Predecessors 01\’
[ﬁ already labeled states % labeled P]

= End of the iteration: if Z_ ;= Z (fixedpoint) 32

~

CTL model checking — summary

Global model checking:
= Labeling of states by (sub)formulas that hold in the state

Labeling by increasingly complex formulas

= Starting from atomic formulas to more complex formulas, from the
inside outwards

= Using the labeling obtained in the previous iteration
based on rules derived from operator semantics
EX, AX: Examining and labeling predecessors

E(p U q), A(p U g): Incremental labeling

= [nitial set:
o State sets determined by the innermost formulas (p, q)
o [teration: based on semantics (applied to predecessors)

= End of iteration: no more labels can be added to the labeling

33

Example

e Decomposition of formulas:

AF (P A E (Q UR))

(Q and R are Iabels}

. ;/ \ in KS

\.) /

-

Incremental labeling: based on AF
(treating PAE(Q U R) as atomic):
We add the label AF(PAE(Q U R)).
This can be evaluated on the initial state.

\)

\

Incremental labeling: E(. U .)
at the end of the iteration, label
E(QUR)

|

The intersection of states labeled P
and E(Q U R)
(treating E(Q U R) as atomic):
We add the label PAE(Q U R)

~

)

34

Exercise

e A traffic light has three aspects:
red, yellow and green.
= Initially all aspects are off.
= After turning the light on, the red aspect is on.

= From this, there are two ways to proceed:
red-yellow (both are on), and
green.

= Red-yellow is followed by green, and green is followed

by red again. From this, the behavior is the same as
before.

e Check whether the following formula holds for the
initial state of the model: E((—=red) U (EX green))

35

Summary

e LTL model checking

= Tableau construction
e Propositional logic: contradictory and successful branches

o LTL: searching for a counterexample (witness for negated
formula)

e CTL model checking

= [terative labeling

o Incremental labeling with increasingly complex formulas
(global model checking)

e Set operations

How can these algorithms be implemented efficiently?

36

LTL model checking:
Automata theoretic approach

(Supplementary)

37

Automata for finite words

e A=(3, S, S,, p, F) where
= ¥ is the alphabet, S are states, S, are initial states
= pis the transition relation, p: S x £ — 23
» Fis the set of accepting states

e A run of the automaton:

* For a sequence of symbols from the alphabet
—a word w=(a,, ay, a,, ... a,) —
a sequence of states r=(s,, Sy, Sy, --- Sp)

= ris an accepting run iff s.eF
= Word w is accepted iff there exists an accepting run
e L(A)={ we X* | wis accepted }
the language accepted by the automaton

38

Automata on infinite words

e Application: continuously operating systems
= No final state — can not be checked for acceptance

e Blchi acceptance condition:
= For a word w=(a,, a;, a,, ...)
a sequence of states r=(s,, S;, Sy, ...)
= [im(r) = {s | s occurs infinitely many times,
that is, there is no j such that vk>j: s#s, }
= A run is accepting iff lim(r) nF =0
= A word w is accepted iff there exists an accepting run

over it
(an accepting state is encountered infinitely many times)

e L(A)={we X* | w accepted}
the language accepted by the automaton

39

Automata theoretic approach

e For a state s of KS: L(s) is a symbol of alphabet 24?
E.g. {Red, Yellow} is a symbol of the alphabet

e A path n=(s,, Sy, S, ... S,,) induces a word
(L(So), L(S1), L(S7), --- L(Sp))

e We construct two automata:

= Based on Kripke structure M=(S,R,L) an automaton Ay,
can be constructed that accepts exactly those words that
correspond to paths of M.

= Based on formula p an automaton A, can be constructed
that accepts exactly those words that characterize paths
for which p holds
Tableau construction rules can be used: what must hold
in the current state, and what for the successor states

40

Model checking using automata

e Model checking problem: L(Ay)cL(A,), i.e., is the model’s
language part of the property’s language?
= [fsothenM |=p

o Reformulating the problem:

= Checking emptiness of intersection of languages:
L(AW)NL(A,))*=0, here L(A,)° is the complement of the language

= [s the language accepted by the synchronous product automaton
Awx A5, induced by the model automaton Ay and the complement
automaton of the property A,°, empty?
o IfsothenM,n |=p

e The accepted language is empty iff there is no reachable accepting
state

e Continuously operating systems

= Automata on infinite words;
Blichi acceptance condition: searching for loops

41

Automata theoretic model checking

M=(5R/L)

l

Ay automaton

~.

p formula

l

ApC automaton

e

AnxA,¢ automaton

l

p holds

t | Accepted language

f

empty? }—’Counterexample

43

“On-the-fly” model checking

e Idea:
= During construction of automaton A, the synchronous
product can be constructed

e Construction of synchronous product automaton

= Directed by the property to verify:
as the states of the automaton A, are established,
the states of Ay has to be “looked up”
= The generation of the full state space is not necessary
e E.g. when deriving from a higher level formalism

44

