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Recall: Dynamic properties

e Example: Model of a workflow
(tasks + activities + resources)

e Properties analyzed

— Does the system halt? Deadlock
— Can certain activities be performed? Liveness
— Do tasks overwhelm? Boundedness
— Can we return to the initial state? Reversibility
— Is there a processing loop? Home state
— Can activities be stopped? Persistence
— Is there an activity lacking resources? Fairness

e Problem: Exploring a large state space



Recall: Analysis methods

Depth of the analysis:

e Simulation 4= Traverse single trajectiories

o Full exploration of the state spaceem Traverse all trajectories
from a given initial state

— Analysis of reachability graph: (exhaustive traversal)

Dynamic (behavioral) properties
— Model checking

(o Analysis of the net structure «= Properties independent )
from the initial state

— Static analysis: (hold for every initial state)

Structural properties

— Invariant analysis
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Main idea of structural analysis

e Can we state something without traversing /
exploring the state space?
— Based only on the structure (places, transitions, arcs)
— Analysis independent from the initial state
— In certain cases only approximate results!

o Approximate analysis is safe if it covers the real
behavior

— If no counterexample is found for the examined property
(erroneous behavior): the property holds

— If a counterexample is found: it may be spurious:
It has to be verified with simulation and if it is spurious
a new search has to be started



Structural properties

Properties of Petri nets independent from the initial state:

e Structural boundedness e Structural liveness
e Controllability o Repetitiveness
e (Conservativeness e Consistence
— Place invariant — Transition invariant
(P-invariant) (T-invariant)

Depending on the definition, the property must hold for
e either for all bounded initial marking,
e or some existing bounded initial marking



Recall: Describing the structure

e Weighted incidence matrix: W = [w({ p)]
e Dimension: t xt = |T7T]| x |P]|
e W({ p): Change in the number of tokens on p when ¢ fires

W= W-w-
0 00 10
W'=10 0 0 1 4 1
00 100
- P1 P2 Ps PaPs Pe 2 0 0 0 O
-2 0 0 10 0|t w-_[1 10 0
0 0 100 -1|% )




Recall: Describing the structure

tokens

P1 P2 Ps3
-~ ~

t1 2 1 -1

working
[t3 11 1)

t, g
- N
p1 2 0 -1
W= p|1 1-1

playing ~ ~



Introducing the state equation

e Dynamics of Petri nets: change in the marking

— Changes can be described by equations

e Precondition (for unambiguousness): pure Petri net

— No transition exists that is both the input and output
transition of the same place: VteT et Nte =

— This subsumes: No “self-loop”

e Marking does not change after firing T
(0 element in the incidence matrix)

e But has a role in enabling the transition



Firing sequence

e Firing sequence:

G=(M M, ..t M, )=(t ..t )

gk I

e Reachability of a state (marking):
M, [6>M,

e Enabledness of a firing sequence:
— Transition ¢, has enough tokens on input places p € f;;

Vtij €0,Vpe .tij : Mij—l(p) = W_(p’tij) - W_T éij




State equation

e Change in the markings:

— When firing an enabled transition ¢
e W(p, t) tokens removed from each input place p € o,
e WH(p, t;) tokens are produced in each output place p € ;e

T _, T _, -
M, =M, ,-W &+W"&=M,_ +W'E

— When firing an enabled firing sequence o:
e Marking changes by accumulating the firings:

MO[5'>|\/|J- —> MjiMO_I_WTéT/

———

——

<__
e Firing count vector: number of occurrences for each
transition in the firing sequence
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Deriving the state equation

M, =M, +W'e,

substituting M,

r

M,=M,+WT'e =M, +W'E +W'g
2 1 2

M, =M, +W'& =M +W'g +W'g +...+ W'g,

4

m
M,=M;+W'g +W'g +..+W'g =M +W'> ¢
. / |:1

m

n+1 n+l

1y
joined

M, =My + W& =M, ~M, =W'6_
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State equation and reachability

tokens
p3 A

\ t2
1,0,1

13
2%t2,2%t3

1,1,0
t3 )

pl 2,1,0)

playing
e The firing count vector contains less information,
than the firing sequence
— The order of firing is lost by only giving (0,2,2)T!
— A non fireable sequence can be obtained from the state equation for a
given M, 12



Example: State equation and reachability

o State equation:

tokens

My[6>M, =M, -M,=W'g;

t1 t2 t3
- N
p1 2 0 = 1

W= p|1 1-1

-1 -1 1
start Ps - w

working

e Firing count vector can be calculated
to reach (1,1,0)" from (0,1,0)":

playing 1,,0)' —=(0,1,0)' =W'-(1,0,1)"

 Firing count vector: (1,0,1)T
 But neither t;, nor t; is enabled under the initial marking (0,1,0)!
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Transition and place invariants



Definition: Transition invariant (T-invariant)

The firing count vector o is a T-invariant, if its
firing does not change the marking:

W', =0

— Cycle in the state space: M, [&; > M,
— The firing sequence o, can be fired from state M. if

vt €G,Vpe {otij } m. (p)zw ( p.t;, ) =W'.g

j

— Note: for each firing sequence c an initial marking M,
exists, from which ¢ can be fired

e E.g. M, 2 WJ&, the marking can have initially “as many”
tokens, that the tokens produced by ¢ are not needed
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Example T-invariant

T-invariant:
marking does not change
after firing t; — t,

t1

Not a T-invariant:

firing sequence t; — t;
cannot be repeated

t3

t1

t2

_tZ
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Set of T-invariants

WT&T =0
Solutions of the homogeneous, linear system
of equations

— Multiples of a solution are also solutions
e If fireable, the loop can be traversed multiple times

— Sum of solutions is also a solution
e If fireable, multiple loops can be combined

— Linear combination of solutions is also a solution

A basis can be found for the solutions

— Minimal set that can produce each solution
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Minimal T-invariant

e Notation: basis of a firing sequence o is sup(c):
— Set of transitions 7'= {¢; |o; > 0} occurring in the
sequence o
e T-invariant o, is minimal

— If no T-invariant exists having a basis that is a proper
subset of the basis of o or

— if the subsets are equal, its firing counts are lower

Vor :W'or =0= (07 207 ) v (sup(or) & sup(oy))
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Definition: Place invariant (P-invariant)

o A set of places marked by the non-negative weight

vector u,, where the weighted sum of tokens is
constant:

T
UM = constant

e Number of tokens in a subset of places is constant
(e.g. resources are not lost or introduced)

M =M, +W'& )

M = ZTM, + ZE WG ~
T A Mo L Wi, =0

,Zzg M= ﬁg M= constant

W6 =0= a'W' =0

vé 7
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Example P-invariant

P-invariant for p,, p,, ps: Not a P-invariant:
p1 P, P, P, Number of tokens increases
2 00
110
t3 0 0 1
Weighted:

p1+p2+2*p3= const.

t2



Applications of invariants

o Applications of T-invariants
— For a process model: cyclical behavior
— Dynamic properties
e Cyclically fireable — reversibility, home state
e Can be fired later — liveness, deadlock freedom

e Applications of P-invariants
— For a process model: constant resources
— Dynamic properties
e Tokens are not lost — liveness, deadlock freedom
e Tokens are not produced — boundedness
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Calculating invariants



Does the example e For aP-invariant: W-pup =0

have invariants? b, [p, P
t, (2 1))

tokens W = t,| 0 1|-1

t; (-1 -1 1

N A 4

w-0, 1, D=0

working

e Fora T-invariant: W'-g; =0
t, |G|t

p1 2 0 -1
WT = P> 1(1]-1
ps (F1 -1 1

N +

\ 4 74 W
wl.(1, 1, 22T=0

playing



Example: Processor data transmission

wait

address

data

Processor

Q idle

t,

Bus

idle

busy

e Processor
— waiting (idle)
— asking for bus grant
— placing address to bus
— placing data to bus

e Bus(es)

— Idle (not used)

— busy (processor/periphery)
e Petri net

— n = 4 transitions
— m = 6 places
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P-invariants: Calculate by hand!

Four P-invariants can be found

26



Example: Incidence matrices

idle

P1 P2 P3 P4 Ps Pe

100000
010010
001000

000101

P1 P2 P3 P4 Ps Pe

010000
001001
000100

100010

t,
t
G

t

t
t
t;
t
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Example: Incidence matrices

idle

W = W*+-W =

P1 P2 P3 P4 Ps Ps

-1 10000
0-110-11
00-1100

1 00-11-1
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Example: Incidence matrices

idle

© O O O =

P1
P2
P3
P4
Ps
Ps
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Martinez-Silva algorithm: Initialization

[« 1

T« {teT}

A~W',D«1 //n=|P|

Q; < [D | A] // identity matrix and incidence matrix
L, < the pth row of Q;

-el e e; e, €; esit1 L 4
100000-100 1p,

Tl = { tll t2/ t3/ 1:4 } Q1 -

r
00 0O0O
OCO0OO0OO0O =
OO0 = O
OO = OO
o= OO0OO0O




Martinez-Silva algorithm: Loop

while Ai + 0
if t e T; // choose a column not yet examined
Ti+1 < Ti\{tj}
I-delete «—
Qi1 ¢ Q/’
for all u,v:A(U, ) F0AA(N,)#0A
A, A, € oI A AU ) A AV ) =0

addrow A, L+A, L, t0 Q,,

I—delete < I—delete N { Lut Lv}
end for

delete rows in Ly from Q. 4
< 1+1

Find pairs of nonzero values in the jth column, whose
weighted sum with given positive weights equals to 0

end while
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Martinez-Silva algorithm: Step 1/1

e, e e €e,e ity t, t; t,
|

1

0O 0O00O0O

0

©CO0OO0OO0O =

0

OO0 RO

)

OO OO

0

o= OO0OO0O

0i1-1 0 0p,

000 1-1 0p;
‘0 0 1-1p,
000-1 0 1p.
10/ 1 0 -1 p;
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Martinez-Silva algorithm: Step 1/2

t, t,

t

O 0 1p,
'100p2

000
0000
o000
OO w O
o= OO
- O OO

1 '1 0 p3
0 1 -1 p4

(=
-
o
o
(=
o

1 0'1 pG

|
o
o
o
©
o

n,,.,mm.n,.opm
04_.1_4_1_
4_1000
O v
0000
OO+ O
OO0 =-OO0O
o= OO O
- O O OO
CO0OO0OO0O ™
OO0 00O

2 2
©
(4) (8) | Q4

‘ﬁ--------- - - -

llllllllllllllllllllllllllllllllllllll
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t, ]
1 0p;
0 0 1-1p,

0-1 0 1p,,,

01

001000
000100
000010
0 00O0O01
110000

Q1II —

Martinez-Silva algorithm: Subresult 1
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Martinez-Silva algorithm: Step 2/1, 2/2

—31 €, € €, €& eeit1
0010000 Ps
0001000 Ps
Q:=|000010/0 B
000O0O0T10 Pe
110000@0 P14o

Qz'=
111000 0/0[-1 1p,,,,s
001010 001 1p,,
1100010 00 0p,,.,
000O0T1T1O0/00 0p.,,
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Martinez-Silva algorithm: Subresult 2

e; e, e;3e, e €65/t b, t; ¢, -
00010000 1-1p,
11100000-11p,,,,;
~1 0010100 0-11p,,.
11000 1.0 0 0 00p,e
oooo11§0000p5+6
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Martinez-Silva algorithm: Step 3/1, 3/2

)

O = O =
O = O =
C O = =

O = O =

0

O = O =

0

= = O O
= = O O
= O = O

1

000
= O = O

0

©C O = =

0
0
0
0

0
0
0
0

0
0
0
0

— |
e,e,e;e,e;¢et, t, & t,
|

-1p,
1 Pii243
1 p3;s

0 Pii2+6
0 ps.6

0 Pii2+6
0 ps.6

0 P1i24+3+4
0 Psi445
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Martinez-Silva algorithm: Final results

12345:
110001000 0Dp,,,,
Q. = 000011000 0p;;,
111100 000 0Dp,..3.4
1001110000 0P34 |

e Invariants:

— Coefficients in the rows of matrix D, in
the final matrix Q.= [D,,|0]

e Resulting P-invariants:

1. m(p;)+m(p,)+m(ps) = 1
2. m(ps)+m(pg) = 1

3. m(py)+m(p,)+m(p3)+m(p,) = 1

4. m(p3)+m(py)+m(ps) =1
e Sum of tokens can be determined
from the initial marking
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Example: Calculating
T-invariants

P1 P2 P3 P4 Ps
tq 10 0 0 O0:i-1 1 -2 0O -1 sS4
t; 01 00 0:3-2 0-1 1] sq2
ts 0 01 0 01 0 -1 -1 -1 s43
ty 0 00 1 0:-2 1 2 1 0| s
ts 0 000 1:1-1 1 0 1| s45
Step 1 (work with 5th column)
1100 0:2-1-2-10 (11+12)
01 1004-2-1-2020 (12+13)
1 00 0 1:0 0-1 0O (11+15)
0010 1:2-10-120 (13+15)
(delete and reorder)
Before step 2
0 00 1 0i-2 1 2 1 0] sz
11 0 0 0:2-1-2-1 0| s
01 1 0 04 -2-1-2 0| spn
1 0 0 0 1: 0 0 -1 0O Of sz
0 01 0 12-1 0-1 0] sz
Step 2 (work with 4th column)
1101 0:000O0O0 (21+22)
00111002 00 (21+25)
011 2 000300 (2*21+23)
(delete and reorder)
Before step 3
1 0 0 0 1: 0 0 -1 0O Of sa
110 1 0:0 0 0 O Of sz
0 01 1 10 0 2 0 O] s3
011 2 00 0 3 0 0] s34
Step 3 (work with 3rd column)
2 01 1 3 O (2*31+33)
311 2 3 (3*31+34)

(delete)

39



Structural properties of Petri nets



Structural liveness, structural boundedness

o A Petri net N is structurally live,
if there exists a live initial marking M, for N

— A Petri net is live, if it is L4-live,
i.e., each transition te7 is L4-live

e A transition is L4-live: can be fired at least once in some firing
sequence from any reachable state

o A Petri net N is structurally bounded,
if it is bounded for all bounded initial markings M,
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Controllability

o A Petri net NV is completely controllable,
if for all bounded initial marking M,

any marking is reachable from any other marking,
.e.,

VM, M, :M,,M eR(N,M;)= M, eR(N,M )AM eR(N,M,)
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Conservativeness

e A Petri net N is conservative, if there exists a

positive integer weight ., for every place peP in
every bounded M, and M € R(N, M,) such that:

M /j — Moﬁ — constant

— Example: For each initial marking, each place in each
reachable marking is part of a P-invariant

o Partially conservative, if the above only holds for
some places.

— Example: For each initial marking, some places in each
reachable marking is part of a P-invariants
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Repetitiveness

e A Petri net NV is repetitive, if an initial marking
M, and a firing sequence o from M, exists, such
that every transition t € T occurs infinitely
often in o.

— Example: An initial marking exists with a returning firing
sequence (loop) containing every transition

o Partially repetitive, if the above only holds for
some transitions.

— Example: An initial marking exists with a returning firing
sequence (loop) containing some transitions
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Consistency

e A Petri net NV is consistent, if an initial marking M,
and a firing sequence o from M, to M, exists, such
that every transition t e T occurs at least once in o.

e Partially consistent, if the above only holds for some
transitions.
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Structural B-fairness

e Two transitions are structurally B-fair, if for all
initial markings M, the two transitions are B-fair

— Two transitions are B-fair: One of them can fire only a
bounded number of times without firing the other

o A Petri net N is structurally B-fair, if for all initial
markings M, the net is B-fair

— A Petri net (N, M,) is B-fair, if any two transitions are in
a B-fair relationship

. i - p— i -
Structural B-fair relation —Z B-fair relation
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B-fair, but not structurally B-fair net

® O

@

B-fair M, Not B-fair M,
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Conditions for the properties™

Property

Necessary and sufficient condition

SB

Structurally bounded

3>0,Wi<0( or A6 >0,W'5>0)

CN |Conservative 3>0,Wi=0 ( or A&, WT5'§O)
PCN | Partially conservative 11>0,Wpu=0

RP | Repetitive 36>0W'6>0

PRP | Partially repetitive = 630, W'5 >0

CS

Consistent

36 >0,W'G=0 ( or A, Wi>0)

PCS

Partially consistent

36>0,W'6=0
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Other properties™

If ...

Then ...

NV structurally bounded and
structurally live

N is conservative and consistent.

— — A non-live M, exists for M.
> < 0
Ju 2 0, W,u ;O /V is not consistent.
= T (N, M) is not bounded with live M,.
SR 0, Wi :O /V is not consistent.

36 >0,W'6<0

A non-live M, exists for structurally
bounded N. NV is not consistent.

36>0,W'6>0

NV is not structurally bounded.
/V not conservative.
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