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Formal Methods (VIMIM100) 2016/2017. year II. semester 23. March 2017. 

First Mid-term Exam 1. 2. 3. 4. 5.  

Name:  _____________________________________        

NEPTUN code:  _____________________________  12 points 14 points 8 points 8 points 8 points 50 points 

1. Theoretical questions (12 points) 

A Kripke structure 𝐾𝑆 over a set of atomic propositions 𝐴𝑃 = {𝑃, 𝑄, 𝑅, … } is a tuple (𝑆, 𝐼, 𝑅, 𝐿) where 

• 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑛} is a finite set of states, 

• 𝐼 ⊆ 𝑆 is the set of initial states, 

• 𝑅 ⊆ 𝑆 × 𝑆 is the set of transitions and 

• 𝐿 : 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions 

The basic difference is that in Kripke structures, we label states (with zero or more atomic propositions), 

while in LTSs, we label transitions with exactly one action. 

In CTL, operands are composed of exactly one path quantifier and one temporal operator (connective). 

Example: EXXp (not CTL because of XX). 

1. (X, U): atomic propositions contradict each other or the labeling of the state 

2. (X, U): there is no next state 

3. (U): loop of p without q. 

By using characteristic functions, describe a path of length i leading to a state that violates the invariant to 

check. Look for a satisfying model with a SAT solver. If a model is found, it induces a counterexample, 

otherwise the bound i should be increased. 
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1.1. Give the formal definition of a Kripke structure! Describe the basic difference between a 

Kripke structure and a labeled transition system (LTS)! 
3 points 

1.2. Describe the most important restrictions (constraints) in CTL compared to CTL*! Give an 

example formula that is a valid CTL* expression but not a valid CTL expression! 
3 points 

1.3. How can we reach a contradicting branch when using the tableau decomposition method 

for PLTL model checking and applying the decomposition rules for 1) operator X 2) and 

operator U? 

3 points 

1.4. Describe the basic idea of bounded model checking (BMC) and describe with a flow chart 

how to use it in an iterative strategy to cover the state space up to a given bound! 
3 points 
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2. Binary Decision Diagrams (12 points)  Please provide the solution on a new sheet! 

2.1. Give the reduced ordered binary decision diagram (ROBDD) representation of the 

function f given by the truth table below! Use the variable order 𝑥, 𝑦, 𝑧 in the ROBDD 

representation! 

3 points 

𝒙 𝒚 𝒛 𝒇(𝒙, 𝒚, 𝒛) 

0 0 0 1 

0 0 1 0 

0 1 0 0 

0 1 1 1 

1 0 0 1 

1 0 1 1 

1 1 0 0 

1 1 1 1 
 

 

2.2. There is exactly one node missing from the dotted rectangle in the ROBDD above. (Note 

that this ROBDD is not related to the function f in the previous subtask.) Which 

variable(s) may belong to this missing node? For each possible variable, give the 

algebraic form of the function described by the ROBDD! 

4 points 

Only y is good, because otherwise the node would be identical to the other z node. 

Algebraic form: (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ ¬𝑦 ∧ 𝑧) ∨ (¬𝑥 ∧ 𝑦) 

2.3. Select one of the possible functions from the previous subtask (2.2) and denote this 

function by g. Compute the ROBDD representation of the function 𝑓 ∨ 𝑔! Perform the 

computation directly using the ROBDD operations on f and g (OR operation)! Use the 

same variable order as before (𝑥, 𝑦, 𝑧)! 

7 points 
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3. Symbolic model checking (8 points)  Please provide the solution on a new sheet! 

The following Kripke structure is given including the bit vector 

encoding of the states: 

 

3.1. Describe the characteristic function of each state (using variables x1 and x2)! 

𝐶00 = ¬𝑥1 ∧ ¬𝑥2;  𝐶01 = ¬𝑥1 ∧ 𝑥2;  𝐶10 = 𝑥1 ∧ ¬𝑥2;  
1 point 

3.2. Describe the characteristic function of the set of states labeled with p! 

𝐶{00,01} = (¬𝑥1 ∧ ¬𝑥2) ∨ (¬𝑥1 ∧ 𝑥2) 
1 point 

3.3. Describe the characteristic function of the transition relation (containing all transitions of 

the Kripke structure)! 

𝐶𝑅 = (¬𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥1
′ ∧ 𝑥2

′ ) ∨ 
(¬𝑥1 ∧ ¬𝑥2 ∧ 𝑥1

′ ∧ ¬𝑥2
′ ) ∨ 

(¬𝑥1 ∧ 𝑥2 ∧ 𝑥1
′ ∧ ¬𝑥2

′ ) ∨ 
(𝑥1 ∧ ¬𝑥2 ∧ ¬𝑥1

′ ∧ 𝑥2
′ ) 

2 points 

3.4. Run the semantics-based model checking procedure based on the iterative labeling 

algorithm to check if the CTL expression A((EX p) U ¬q) holds for the initial state! For 

every step of the iteration, give the labeling expression and enumerate the labeled states! 

4 points 

1. iteration: (labeling with ¬q) 

01 

2. iteration: (labeling with EX p) 

00 

10 

3. iteration: (labeling with A((EX p) U ¬q)) 

01 (because of ¬q) 

10 (because of EX p and every successor is labeled with A((EX p) U ¬q)) 

00 (because of EX p and now every successor is labeled with A((EX p) U ¬q)) 
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4. LTL requirement formalization (8 points) 

The behavior of a beer in a dormitory room is modeled with the Kripke structure on the right (the initial 

state is A). The behavior of Steve (a student in the dormitory) is defined by the following rules (the rules 

are in the form: <condition> -> <state transition>): 

var steve: {sleeping, sober, drunk} 
initialization: 
 steve := sleeping 
transition rules: 

steve = sober && beer = full -> steve := drunk 
steve = sober && beer = empty -> steve := sleeping 

 steve = sleeping -> steve := sober 
 steve = drunk -> steve := sleeping  

 

Furthermore, we know that during the time Steve gets drunk, he drinks all the beer. 

 

4.1. First, give the Kripke structure representing Steve. Note that in some cases the behavior 

of Steve depends on the state of the beer. In such cases assume that the beer can be in 

any state. Use the state labels {sleeping, sober, drunk} to describe Steve! Then, give the 

Kripke structure representing the whole system (i.e., Steve and the beer)! In this case, the 

states will be pairs.  

2 points 

{sleeping} {sober}

{drunk}
           

{sleeping,
full}

{sober, full}
{drunk,

full}

{sleeping,
empty}

{sober,
empty}

{drunk, empty}
 

 

4.2. Use LTL expressions to formalize the following requirements, which must apply to the 

behavior of the system in every case! Use the labels introduced in the previous subtask! 

Note that the requirements may or may not hold for the actual system. 

6 points 

4.2-1. It is universally true that Steve will eventually be sober. 

GF sober 

4.2-2. It is universally true that when Steve is drunk, he will be sleeping at the next step. 

G (drunk  X sleeping) 

4.2-3. It is universally true that if Steve is sober, he will not get drunk until the beer is empty. 

G (sober  (drunk U empty)) 
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5. Statecharts (8 points) 

Consider the following statechart, in which for all states sk there is also an entry action sk.entry and an exit 

action sk.exit that is not displayed in the figure. The expressions on the arrows (transitions) have the 

following form: transition_name: trigger [guard] / action. Guards are given as expressions, actions are 

given as letters (such as n) or by assignments (such as g := true). 

 

The current state of the statechart is the following state configuration: (s0, s3, s4, s6) and the value of the 

logical variable g is true. The incoming event is z. 

 

5.1. Which transitions are enabled? 1 point 

t3, t5, t7, t8 

5.2. Which enabled transitions are in conflict? 1 point 

(t3, t7), (t3, t8), (t5, t7), (t5, t8), (t7, t8) 

5.3. What is the set of fireable transitions after resolving the conflicts? If there are multiple 

sets of fireable transitions, give all sets! 
1 point 

{t3, t5} 

5.4. What is (are) the next stable state configuration(s)? If there are more than one possible 

stable state configurations, give all of them! Give the actions and their order during firing 

the transitions! Do not forget to include the entry and exit actions! 

2 points 

Next stable state configuration: {s0, s3, s5, s7} 

Actions: Any interleaving of (s4.exit, n, s5.entry) and (s6.exit, q, s7.exit), e.g. (s4.exit, n, s5.entry, s6.exit, 

q, s7.exit) 

5.5. Decide whether the following statements are true or false! Explain the answer (on a 

separate sheet)! Reachability is considered from the initial configuration with arbitrary 

incoming event(s). 

3 points 

a) A configuration can be reached where t8 is fireable. 

False, because in every state, there will be a higher-priority enabled transition (t1, t2 or t7). 

b) The configuration (s0, s3, s4, s7) is reachable. 

False, because the transitions in concurrent regions must fire together. 

c) A configuration can be reached where the next configuration is not deterministic (there are more 

possibilities) even if the incoming event and the guard is known. 

False, because there are no states with multiple outgoing transitions with the same trigger and 

overlapping guards. 


