
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Meltdown: Modeling a vulnerability
with timed automata

Kristóf Marussy

1

Meltdown and Spectre

 Critical vulnerabilities
in modern CPU architectures

o Break kernel isolation of processes

o Exploitation possible from JavaScript?

 Meltdown

o Unprivileged read of kernel memory

o Exploits speculative execution

 Spectre (Variants 1 and 2)

o Bounds check bypass

o Branch target injection

2

https://meltdownattack.com/

“History”

Major events (but probably not a complete account):

 Jun 1, 2017 – Google Project Zero notifies Intel,
embargo to allow OS vendors to deploy patches

 Nov 7–27, 2017 – KAISER patch series
on LKML (Linux Kernel Mailing List)

 Dec 4, 2017 – kpti patch on LKLM

o CPU_BUG_INSECURE – everyone is speculating

 Dec 27, 2017 – do not enable pti on AMD patch

3

“History”

Major events (but probably not a complete account):

 Jun 1, 2017 – Google Project Zero notifies Intel,
embargo to allow OS vendors to deploy patches

 Nov 7–27, 2017 – KAISER patch series
on LKML (Linux Kernel Mailing List)

 Dec 4, 2017 – kpti patch on LKLM

o CPU_BUG_INSECURE – everyone is speculating

 Dec 27, 2017 – do not enable pti on AMD patch

4

“History”

“History”

Major events (but probably not a complete account):

 Jun 1, 2017 – Google Project Zero notifies Intel,
embargo to allow OS vendors to deploy patches

 Nov 7–27, 2017 – KAISER patch series
on LKML (Linux Kernel Mailing List)

 Dec 4, 2017 – kpti patch on LKLM

o CPU_BUG_INSECURE – everyone is speculating

 Dec 27, 2017 – do not enable pti on AMD patch

 Jan 3, 2018 – Tweet by Michael Schwarz, paper by
University of Graz and Project Zero on arXiv

5

Several other vulnerabilities
were discovered since then
using the same approach

References

 Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, Mike Hamburg (2018).
Meltdown. arXiv:1801.01207

 Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, Yuval Yarom (2018). Spectre
Attacks: Exploiting Speculative Execution. arXiv:1801.01203

 Jann Horn, Project Zero (2018). Reading privileged
memory with a side-channel. [Online] URL:
https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html

6

https://googleprojectzero.blogspot.hu/2018/01/reading-privileged-memory-with-side.htmlű

THE ATTACK

What are we modelling and why?

7

Speculative execution

 Common technique in modern CPU architecture

o CPU starts executing instructions that may not be
actually needed due to a jump or exception

o Speeds up pipelining and out-of-order execution

8

i1

i2

i3

i4

i5

Insufficient privilege,
exception is raised

The instructions
were already

started to execute:
ephemeral instruction

sequence

Covert channel

 Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data – or can we?

9

Covert channel

 Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data – or can we?

10

Film: Steven Spielberg (2015). Bridge of Spies.

Covert channel

 Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data – or can we?

11

Film: Steven Spielberg (2015). Bridge of Spies.

Covert channel

 Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data – or can we?

 Solution: covert channel

o Undetectable (hidden) channel to information transfer

o Repurposes something originally not indented to
transfer data

o In a CPU: microarchitectural covert channel

12

Exfiltrate data via the cache

 Channel: pre-determined memory address

o Initially not cached

o The exploiting code is allowed to read it

 Timing side channel: read data by measuring time

13

Kernel memory
0x80000005 = 0

Covert channel
0x7fff00a8

Ephemeral
attack code

Cache

Reading from
0x7fff00a8 is slowReading

attack code

Exfiltrate data via the cache

 Channel: pre-determined memory address

o Initially not cached

o The exploiting code is allowed to read it

 Timing side channel: read data by measuring time

14

Kernel memory
0x80000005 = 1

Covert channel
0x7fff00a8

Ephemeral
attack code

Cache

Reading
attack codeWhen 1 is read from

the kernel, we also
access 0x7fff00a8

Covert channel
0x7fff00a8

Repeated read
is faster!

Do we have enough time?

 Challenge:
Implement the
exfiltration as
an ephemeral
instruction
sequence

15

Let us explore the timing possibilities
of a sufficiently short attack sequence

with timed automata!

SIMPLIFICATIONS, ABSTRACTIONS

Which part of the problem do we model?

16

Simple processor model

 We consider a 3-stage pipeline
without out-of-order execution

 Each instruction goes through the states
in this order, each state processes one instruction
at a time sequentially

 We ignore any data dependencies
between instructions

17

Decode Execute
Check

privileges

Abstraction

 We do not model the internal state
of the hardware (NOT hardware model checking)

 Abstraction of system clock ticks: Clock variables

o How many clock ticks since the start of an activity?

o Specify execution times by invariants and guards

o Uppaal XTA formalism

 Abstraction of cache: flag variable (Boolean)

o Is the memory location corresponding to
the covert channel cached?

18

Structure of the exploit

19

Instruction Decoding Execution Check

1. Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 …
N – 2.

Computation 1 ticks 10-15 ticks 5 ticks

N – 1. Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:

N. Read covert channel 1 ticks 45-120 or
15-30 ticks

15-25 ticks

 Large execution times for illustration

 Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Structure of the exploit

20

Instruction Decoding Execution Check

1. Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 …
N – 2.

Computation 1 ticks 10-15 ticks 5 ticks

N – 1. Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:

N. Read covert channel 1 ticks 45-120 or
15-30 ticks

15-25 ticks

 Large execution times for illustration

 Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Read privileged memory:
Checking throws exception

Structure of the exploit

21

Instruction Decoding Execution Check

1. Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 …
N – 2.

Computation 1 ticks 10-15 ticks 5 ticks

N – 1. Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:

N. Read covert channel 1 ticks 45-120 or
15-30 ticks

15-25 ticks

 Large execution times for illustration

 Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Ephemeral instructions
establishing the
covert channel

Structure of the exploit

22

Instruction Decoding Execution Check

1. Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 …
N – 2.

Computation 1 ticks 10-15 ticks 5 ticks

N – 1. Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:

N. Read covert channel 1 ticks 45-120 or
15-30 ticks

15-25 ticks

 Large execution times for illustration

 Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Brings the covert channel
memory location to the cache
if the computation determined

the bit read from the kernel
memory to be 1

Structure of the exploit

23

Instruction Decoding Execution Check

1. Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 …
N – 2.

Computation 1 ticks 10-15 ticks 5 ticks

N – 1. Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:

N. Read covert channel 1 ticks 45-120 or
15-30 ticks

15-25 ticks

 Large execution times for illustration

 Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Read covert channel
contents after the

exception by timing

Depends on whether the
covert channel memory

location is cached

THE MODEL

How do we model the exploit?

24

Structure of the model

1. Timed automata for execution units

2. Timed automata for instructions

3. Synchronization between execution units
and instructions

4. Customize instruction automata
for individual behaviors of instructions

25

Pipeline stage: Unit

26

Start processing

Jump to (before)
the next instruction

End of instruction sequence
Wait for

instruction

int ip = 0;

Processing times are measured inside another automaton

Instruction lifecycle: Instruction

27

clock clk_decode;
clock clk_memory;
clock clk_check;
const int decode_min = 1;
const int decode_max = 1;
const int memory_min = 5;
const int memory_max = 10;
const int check_min = 5;
const int check_max = 5;

Decode Execute Check privileges

Start stage,
reset clock

Invariant

Guard

Synchronization of automata

 The pipeline stage (Unit) starts processing
as soon as the current instruction can proceed

 Stages process instructions sequentially

 Instruction lifecycle (Instruction) determines
processing times of pipeline stages

28

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

29

Time cannot elapse in this
state configuration of the automata

urgent chan channel;

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

30

urgent chan channel;

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

 Array of channels
for sequential
processing

31

const int exploit_size = 3;
const int N = exploit_size + 3;
typedef int[0,N - 1] instr_t;

urgent chan decode_start[instr_t];
chan decode_end[instr_t];
urgent chan exec_start[instr_t];
chan exec_end[instr_t];
urgent chan check_start[instr_t];
chan check_end[instr_t];

Global declarations

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

 Array of channels
for sequential
processing

32

const int exploit_size = 3;
const int N = exploit_size + 3;
typedef int[0,N - 1] instr_t;

urgent chan decode_start[instr_t];
chan decode_end[instr_t];
urgent chan exec_start[instr_t];
chan exec_end[instr_t];
urgent chan check_start[instr_t];
chan check_end[instr_t];

Global declarations
Enumeration

type identifies
instructions

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

 Array of channels
for sequential
processing

33

const int exploit_size = 3;
const int N = exploit_size + 3;
typedef int[0,N - 1] instr_t;

urgent chan decode_start[instr_t];
chan decode_end[instr_t];
urgent chan exec_start[instr_t];
chan exec_end[instr_t];
urgent chan check_start[instr_t];
chan check_end[instr_t];

Global declarations
Enumeration

type identifies
instructions

Immediately
start processing

Synchronization of automata

 Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

 Array of channels
for sequential
processing

34

const int exploit_size = 3;
const int N = exploit_size + 3;
typedef int[0,N - 1] instr_t;

urgent chan decode_start[instr_t];
chan decode_end[instr_t];
urgent chan exec_start[instr_t];
chan exec_end[instr_t];
urgent chan check_start[instr_t];
chan check_end[instr_t];

Global declarations
Enumeration

type identifies
instructions

Immediately
start processing

During processing,
time can elapse as

long as the
invariant permits

Synchronization of automata

 Single Unit template for each pipeline state

o Parameterized by channel array references

35

Unit(urgent chan &start[instr_t],
chan &end[instr_t])

DecodeUnit = Unit(decode_start, decode_end);
MemoryUnit = Unit(memory_start, memory_end);
CheckUnit = Unit(check_start, check_end);
system DecodeUnit, MemoryUnit, CheckUnit, Instruction;

System declarations

Array reference
parameter

Instantiate with the
appropriate arrays

int i = 0;

Modelling exception handling

 Every pipeline stage should receive the exception

o Broadcast channels: arbitrarily many (≥0) receivers

36

broadcast chan check_fail;
const int transaction_end = N – 1;

Global declarations

All instructions
but the last

are interrupted
when an exception

is raised

We have to jump
to (before) the
last instruction
even when idle

Modelling the attack code

37

i Instruction Behavior

0. ReadKernelInstruction Fails privilege check and raises exception

1 …
N – 3

Instruction Computations for establishing the covert channel in
exploit_size instances of the template
(configurable as a global constant),
the index i is a template parameter

N – 2 WriteSCInstruction Cache the covert channel memory location if 1 is read

Ide ugrik a végrehajtás kivétel keletkezése esetén:

N - 1 ReadSCInstruction Execution time depends on whether the covert
channel memory location was cached

 We create multiple copies
of the original Instruction template

oModified to model individual behaviors of instructions

ReadKernelInstruction

38

 Checking raises an exception

int i = 0;

Instruction(exploit_t i)

 1st, …, (N – 3)th instructions: calculation

 Move to location aborted upon exception

 exploit_t i parameter of enumerated type

o Instantiate as system Instruction;
for all possible values of exploit_t

39

typedef int[1,exploit_size] exploit_t;

Global declarations

WriteSCInstruction

 Caches the covert channel memory location
if the bit 1 is read from kernel memory

40

const bool kernel_bit = true;
bool side_channel_cached = false;

Global declarations

int i = N - 2;

WriteSCInstruction

 Caches the covert channel memory location
if the bit 1 is read from kernel memory

41

const bool kernel_bit = true;
bool side_channel_cached = false;

Global declarations

int i = N - 2;

ReadSCInstruction

 Execution time depends on covert channel state

 Will not be interrupted by exception

42

int i = N - 1;

int memory_min() {
if (side_channel_cached) {
return cached_memory_min;

} else {
return uncached_memory_min;

}
}
int memory_max() {
if (side_channel_cached) {
return cached_memory_max;

} else {
return uncached_memory_max;

}
}

Putting it together

 Timing values are
global constants

 Instantiate processes
in the system
declaration section

43

const int decode_min = 1;
const int decode_max = 1;
const int uncached_memory_min = 45;
const int uncached_memory_max = 120;
const int cached_memory_min = 15;
const int cached_memory_max = 30;
const int kernel_check_min = 40;
const int kernel_check_max = 100;
const int user_check_min = 10;
const int user_check_max = 25;

Global declarations

DecodeUnit = Unit(decode_start, decode_end);
MemoryUnit = Unit(memory_start, memory_end);
CheckUnit = Unit(check_start, check_end);
system DecodeUnit, MemoryUnit, CheckUnit, ReadKernelInstruction,
Instruction, WriteSCInstruction, ReadSCInstruction;

System declarations

Timed automata model checking

 Is the instruction before the last (WriteSCInstruction)
never fully processed?

 Can the last instruction (ReadSCInstruction) always read
kernel memory via the covert channel?

 At least how many clock cycles does running the exploit
take, if ReadSCInstruction is executed and…

o …kernel memory contains a 1 bit?

o …kernel memory contains a 0 bit?

 How many calculation instructions (exploit_size)
can we use while still ensuring a successful attack?

44

DEMO

