Meltdown: Modeling a vulnerability
with timed automata

Kristof Marussy

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

/’)\\6\\
@ Bt (% Lt

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Meltdown and Spectre

= Critical vulnerabilities
in modern CPU architectures

o Break kernel isolation of processes
o Exploitation possible from JavaScript?
= Meltdown

o Unprivileged read of kernel memory

o Exploits speculative execution

= Spectre (Variants 1 and 2) .
o Bounds check bypass

o Branch target injection https://meltdownattack.com/

Major events (but probably not a complete account):

" Jun 1, 2017 — Google Project Zero notifies Intel,
embargo to allow OS vendors to deploy patches

= Nov 7-27, 2017 — KAISER patch series
on LKML (Linux Kernel Mailing List)

" Dec4, 2017 — kpti patch on LKLM
o CPU_BUG_INSECURE — everyone is speculating

" Dec 27,2017 — do not enable pti on AMD patch

Major ¢
= Junl
emb:
= Nov |
on Lk
= Dec¢
o CP!
= Dec:

5,

Michael Schwarz

I et
@misc0110

Follow

Using #Meltdown to steal passwords in count):
real time #intelbug #kaiser #kpti /cc
@mlgxyz @lavados @StefanMangard itel,

@yuvalyarom meltdownattack.com ches
pwd x
Unlock Password Manager
R R Unlock
“History”.

mschwarz@labo6:~/DocumentsS taskset Ox1 . /reader Ox3c80e8040

Bxffff8803cBeeB040

this s my secret password] ;
pJ

4:03 PM - 3 Jan 2018
10,555 Retveets 9,603 Lkes s M PP OSSP
Q13 M1k O osk

Major events (but probably not a complete account):

" Jun 1, 2017 — Google Project Zero notifies Intel,
embargo to allow OS vendors to deploy patches

= Nov 7-27, 2017 — KAISER patch series
on LKML (Linux Kernel
Several other vulnerabilities

" Dec 4, 2017 - kpt1 pat were discovered since then
N U Uepp LI Je Ny sing the same approach

= Dec 27,2017 —do not ee

= Jan 3, 2018 — Tweet by Michael Schwarz, paper by
University of Graz and Project Zero on arXiv

References

A Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Stefan Mangard, Paul Kocher,
Daniel Genkin, Yuval Yarom, Mike Hamburg (2018).

Meltdown. arXiv:1801.01207

= Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, Yuval Yarom (2018). Spectre
Attacks: Exploiting Speculative Execution. arXiv:1801.01203

" Jann Horn, Project Zero (2018). Reading privileged

memory with a side-channel. [Online] URL:

https://googleprojectzero.blogspot.com/2018/01/reading-
privileged-memory-with-side.html

https://googleprojectzero.blogspot.hu/2018/01/reading-privileged-memory-with-side.htmlű

THE ATTACK

What are we modelling and why?

Speculative execution

= Common technique in modern CPU architecture

o CPU starts executing instructions that may not be
actually needed due to a jump or exception

o Speeds up pipelining and out-of-order execution

Insufficient privilege,
exception is raised

The instructions

were already
started to execute:
ephemeral instruction
sequence

Covert channel

= Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data — or can we?

Covert channel

Covert channel

Covert channel

= Ephemeral instructions have no side effects
observable in memory or the register file

o Even if we manage to circumvent privilege checks,
we cannot exfiltrate the data — or can we?

= Solution: covert channel
o Undetectable (hidden) channel to information transfer

o Repurposes something originally not indented to
transfer data

o In a CPU: microarchitectural covert channel

Exfiltrate data via the cache

® Channel: pre-determined memory address
o Initially not cached

o The exploiting code is allowed to read it

* Timing side channel: read data by measuring time

Kernel memory

Ox80000005 =0 Ephemeral
attack code

Covert channel Reading from
Ox7fff00a8 , Reading Ox7fff00a8 is slow

attack code

Exfiltrate data via the cache

® Channel: pre-determined memory address

o Initially not cached
o The exploiting code is allowed to read it

= Timing side channel: read data by measuring time
Ao TTTTESS

Cache

Kernel memory
0x80000005 = ¢

Ephemeral
attack code

Covert channel
Ox7fff00a8

Covert channel
Ox7fff00a8

Reading
attack code

Repeated read

When 1 is read from ,
is faster!

the kernel, we also
s access 0x7fff00a8 P o

Do we have enough time?

O Challenge: 6.4 Limitations on ARM and AMD

Im p|ement the We also tried to reproduce the Meltdown bug on several
. i ARM and AMD CPUs. However, we did not manage
exfiltration as to successfully leak kernel memory with the attack de-
scribed in Section 5, neither on ARM nor on AMD. The

_an ephe.meral reasons for this can be manifold. First of all, our im-
Instruction plementation might simply be too slow and a more opti-
mized version might succeed. For instance, a more shal-
low out of-order execution pipeline could tip the race
qoainst the data leakage. Similarly,
certain features, e.g., no re-order
Let us explore the timing possibilities NENSNCTORIT R SR SR
of a sufficiently short attack sequence [QElvul N B CWEVL | DR TR ()%

with timed automata! in Section 3 works reliably, indi-
er execution generally occurs and

cg¢al memory accesses are also per-

sequence

formed.

SIMPLIFICATIONS, ABSTRACTIONS

Which part of the problem do we model?

Simple processor model

= We consider a 3-stage pipeline
without out-of-order execution

= Each instruction goes through the states
in this order, each state processes one instruction

at a time sequentially

= We ignore any data dependencies
between instructions

Abstraction

= We do not model the internal state
of the hardware (NOT hardware model checking)

= Abstraction of system clock ticks: Clock variables
o How many clock ticks since the start of an activity?

o Specify execution times by invariants and guards
o Uppaal XTA formalism

= Abstraction of cache: flag variable (Boolean)

o Is the memory location corresponding to
the covert channel cached?

Structure of the exploit

Instruction Decoding Execution Check

1. | Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 ... | Computation 1 ticks 10-15 ticks 5 ticks
N-2

N - 1. | Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution proceeds from below after a privilege exception:
N. | Read covert channel 1 ticks 45-120 or 15-25 ticks
15-30 ticks

= Large execution times for illustration
= Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Structure of the exploit

Instruction Decoding Execution Check
1. | Read kernel memory 1 ticks 45-120 ticks 40-100 ticks
2 ... | Computation ' 5 ticks
N-2.
N — 1. | Covert channel to cacHACGLN LAl Ry Ty [oTg ' 10-25 ticks
TR Checking throws exception ¥
N. | Read covert channel gor 15-25 ticks

15-30 ticks

= Large execution times for illustration

= Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Structure of the exploit

Instruction Decoding Execution Check
1. | Read kernel memory 1 ticks 45-120 ticks 40-100 ticks
2 ... | Computation 1 ticks 10-15 ticks 5 ticks
1 ticks 45-120 ticks 10-25 ticks
Ephemeral instructions after a privilege exception:
establishing the 1 ticks 45-120 or 15-25 ticks
covert channel 15-30 ticks

= Large execution times for illustration

= Length of the instruction sequence can be changed

o What is the maximum length
that allows the exploit to work?

Structure of the exploit

Instruction Decoding Execution Check

1. | Read kernel memory 1 ticks 45-120 ticks 40-100 ticks

2 ... | Computation 1 ticks 10-15 ticks 5 ticks
N-2

N - 1. | Covert channel to cache 1 ticks 45-120 ticks 10-25 ticks

Execution procee alow after a privilege exception:
N. | Read covert cha Brings the covert channel r 15-25 ticks
memory location to the cache 3§

if the computation determined

" Large execut N

= Length of the memory to be 1 be changed

o What is the maximum length
that allows the exploit to work?

Structure of the exploit

Instruction Decoding Execution Check

1. | Read kernel memory 20 ticks 40-100 ticks
2 ... | Computation Read covert channel -15 ticks 5 ticks

N-2. contents after the
N — 1. | Covert channel to cac exception by timing BIRIEE 10-25 ticks

Execution proceet e exception:

1 ticks 45-120 or 15-25 ticks
15-30 ticks

N. | Read covert channel

| . .
Large execution times fi Depends on whether the

= Length of the instructigieeEade ERLERGENASH nge d

. . location is cached
o What is the maximum ¢

that allows the exploit to work?

THE MODEL

How do we model the exploit?

Structure of the model

1. Timed automata for execution units

2. Timed automata for instructions

3. Synchronization between execution units

and instructions

. Customize instruction automata
for individual behaviors of instructions

Pipeline stage: Unit

m P
start[ip]?

busy done
-' end[ip]?
|p —= -1 >O

End of instruction sequence

Wait for

Instruction Jump to (before)

end[ip]? _ .
ip=ip + 1 the next instruction

Processing times are measured inside another automaton

Instruction lifecycle: Instruction

Decode Execute Check privileges
tlk_decode >= decode_min clK_memory 71‘)-:":1 ory_min eck >= check_min
decode startiill _ M decode endil! (@ memory starfi]! _ M memory endliit @ check startfill {8 check end £
clk_decode = 0 4 4 clk_memory =0 4 /’ 4 clk_check =0 & =Odone
initial decoding decoded memory_access memory_accessed checking
clk_decode <= decode_max C“‘._!T:E'Q’Tt)/f'y <= memory |max clk_check <= check_max
clock clk_decode; Start stage,
clock clk_memory; reset clock
clock clk_check; clk_check >= check_min
const int decode_min = 1; _’O check “startfi]! ’O check end]i]! d
const int decode max = 1; @ .k check =0 » onhe
const int memory_min = 5; memory_accessed checking
const int memory max = 10; clk_check <= check_max
const int check min = 5;
const int check max = 5;

Synchronization of automata

" The pipeline stage (Unit) starts processing
as soon as the current instruction can proceed

= Stages process instructions sequentially

" Instruction lifecycle (Instruction) determines
processing times of pipeline stages

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

\5@ channel! >O/

‘ urgent chan channel;

z@ channel? >O\

Time cannot elapse in this
state configuration of the automata

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

\so channel! >@/

‘ urgent chan channel;

/"O channel? >@\

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

= Array of channels Global declarations

for sequential
processing

const int exploit size = 3;
const int N = exploit size + 3;
typedef int[O,N - 1] instr t;

urgent chan decode start[instr t];
chan decode end[instr t];

urgent chan exec_start[instr_t];
chan exec_end[instr t];

urgent chan check start[instr t];
chan check _end[instr t];

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

= Array of channels Global declarations

ife Enumeration
type identifies

instructions

const int exploit size = 3;
const int N = exploit size + 3;
typedef int[O,N - 1] instr_t;

urgent chan decode start[instr t];
chan decode end[instr t];

urgent chan exec_start[instr_t];
chan exec_end[instr t];

urgent chan check start[instr t];
chan check _end[instr t];

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

= Array of channels Global declarations

f EnLHheraq?n const int exploit size = 3;
type identifies const int N = exploit size + 3;
instructions typedef int[O,N - 1] instr t;

Immediately urgent chan decode start[instr_ t];
start processing chan decode end[instr t];
urgent chan exec_start[instr_t];
chan exec_end[instr t];

urgent chan check_start[instr_t];
chan check _end[instr t];

Synchronization of automata

= Urgent channel

o Immediately fires the state transition
as soon as both the sender and receiver can proceed

= Array of channels Global declarations

ife Enumeration
type identifies
instructions

Immediately
start processing

During processing,
time can elapse as
long as the

const int exploit size = 3;
const int N = exploit size + 3;
typedef int[O,N - 1] instr t;

urgent chan decode start[instr t];
chan decode end[instr_t];

urgent chan exec_start[instr_t];
chan exec_end[instr t];

urgent chan check start[instr t];
chan check _end[instr t];

invariant permits

Synchronization of automata

= Single Unit template for each pipeline state

o Parameterized by channel array references
Unit(urgent chan &start[instr t],

Array reference

chan &end[instr t]) parameter

start[ip]?

busy
end[ip]?

p—N-1 Instantiate with the
appropriate arrays

System declarations

DecodeUnit = Unit(decode start, decode éend);
MemoryUnit = Unit(memory start, memory end);

CheckUnit = Unit(check start, check end);

system DecodeUnit, MemoryUnit, CheckUnit, Instruction;

Modelling exception handling

= Every pipeline stage should receive the exception
o Broadcast channels: arbitrarily many (=0) receivers

Global declarations

check_fail?

ip = transaction_end broadcast chan check fail;
const int transaction _end = N - 1;

busy done

f endlipl? >O
¥ ip==N-1

We have to jump All instructions
ip<N -1 but the last

to (before) the endlin]?
end(ip] are interrupted

last instruction ip=ip + 1
even when idle Ip !=transaction_end when an eXCthIOn

__check_fail? is raised
ip = transaction_end

Modelling the attack code

i | Instruction Behavior
0. | ReadKernellnstruction Fails privilege check and raises exception
1 ... | Instruction Computations for establishing the covert channel in
N-3 exploit size instances of the template

(configurable as a global constant),
the index 1 is a template parameter

N — 2 | WriteSClnstruction Cache the covert channel memory location if 1 is read

Ide ugrik a végrehajtas kivétel keletkezése esetén:

N - 1 | ReadSClnstruction Execution time depends on whether the covert
channel memory location was cached

= We create multiple copies
of the original Instruction template

o Modified to model individual behaviors of instructions

ReadKernellnstruction

clk_decode >= decode mir Clv‘ memaory == memaory_min clk_check >= check_min

decode startli _ @ decode endli] @) memory starifill @B memory endi] _ @ check startli]! @ check fa >Oaboned
clk_decode = 0 4 <& clk_memory = 0 4 A clk_check =0 4

initial decoding decoded

memory_access memory_accessed

clk_decode <= decode_max clk_memory <= memory_max

checking
clk_check <= check_max

int 1 = 0;

clk_check >= check _min

il
e,C.D check fail! >Oaborted

checking
clk_check <= check max

= Checking raises an exception

I t t . (p I . t t .)
O
clk_decode >= decode_muin clk_memory >= memory_mir
lecode startil! decode end nel sStart e ry end 1ECK _Slart
= clk_decode = ~ & clk_memory = 0 7 clk_check =
infitial efodin oded mory_ac e
d decods (ode max Memc mamo ma

BCy = Cchecx mir
: >-/) done
eck_max

=]st, ..., (N — 3)th instructions: calculation
= Move to location aborted upon exception

" exploit t 1 parameter of enumerated type

o Instantiate as system Instruction;
for all possible values of exploit t

Global declarations

typedef int[1l,exploit size] exploit t;

WriteSClnstruction

side_channel_cached = kemel_bit Ik_check >= check
R

¥/ clk_decode = 0 | clk_check = 0 L
initial code emory_access emory_accessed
ecode <= decode max clk_memory <= memory_maj cK_max

aborted

int 1 = N - 2;

= Caches the covert channel memory location
if the bit 1 is read from kernel memory

Global declarations

const bool kernel bit = true;
bool side channel cached = false;

WriteSClnstruction

leg == '

0= clk_memory = memory_min

il memory_end[i]!
side_channel_cached = kernel_bit

i check

clk_ch
= Caches the covert channel memory location
if the bit 1 is read from kernel memory

Global declarations

const bool kernel bit = true;
bool side channel cached = false;

int 1 = N - 2;

ReadSClnstruction

clk_decode >= decode_min clk_memory >= memory_min clk_check >= check_mir
@v%;: je_start MR\ decode end M memory start @ memory end[il! @ check startli]l B check end =O .
clk_decode =0 4 A4 clk_memory =0 4 4 clk_check =0 A fone
initial decoding decoded memory_access memory_accessed checking
lk_decode <= decode_max clk_memaory <= memory_max() cik_check <= check_max

= Execution time depends on covert channel state

= Will not be interrupted by exception [int i =N - 1;

int memory min() {
if (side channel cached) {
return cached _memory min;

clk_memory >= memory_min() } else {
éO memory endJi]! () che return uncached memory min;
clk_ }
memory_access memory }

int memory max() {
if (side channel cached) {
return cached_memory max;
} else {
return uncached memory max;

}
}

clk_memory <= memory_max()

Putting it together
« Timing values are

global constants const int decode min = 1;

const int decode max = 1;
const int uncached memory min = 45;

- InStantiate prOCGSS@S const int uncached_memory max = 120;
in the System const int cached memory min = 15;

const int cached memory max = 30;
declaratlon Sect|on const int kernel check min = 40;
const int kernel check max = 100;
const int user check min = 10;
const int user check max = 25;

System declarations

DecodeUnit = Unit(decode start, decode _end);

MemoryUnit = Unit(memory_ start, memory end);

CheckUnit = Unit(check start, check end);

system DecodeUnit, MemoryUnit, CheckUnit, ReadKernelInstruction,
Instruction, WriteSCInstruction, ReadSCInstruction;

mTimed automata model checking

= |s the instruction before the last (WriteSClnstruction)
never fully processed?

= Can the last instruction (ReadSClnstruction) always read
kernel memory via the covert channel?

= At least how many clock cycles does running the exploit
take, if ReadSClnstruction is executed and...

o ...kernel memory contains a 1 bit?

o ...kernel memory contains a O bit?

= How many calculation instructions (exploit size)
can we use while still ensuring a successful attack?

