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What is the point of
formalizing requirements?
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Motivating example: mutual exclusion

• 2 processes, 3 shared variables (H. Hyman, 1966)

 blocked0: process 1 (P0) wants to enter

 blocked1: process 2 (P1) wants to enter

 turn: which process is allowed to enter (0 for P0, 1 for P1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

} 

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

} 

Is the algorithm correct?

P0 P1
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The model in UPPAAL (version 1)
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

Automaton P0:

Modeling idioms used:
• Global variables
• Variables with restricted domain

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0
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The model in UPPAAL (version 2)
Declarations:

bool blocked[2];
int[0,1] turn;
P0 = P(0);
P1 = P(1);
system P0,P1;

Template P
with parameter pid:

Modeling idioms used:
• Global variables
• Variables with restricted domain
• Modeling common behavior with 

templates
• Template instantiation with 

parameters
• Variables of array type

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0
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Properties to verifiy

• Mutual exclusion:

 At most one process is allowed to be in the critical 
section

• The expected behavior is possible:

 For P0 it is possible to enter the critical section

 For P1 it is possible to enter the critical section

• Starvation freedom:

 P0 will eventually enter the critical section

 P1 will eventually enter the critical section

• Deadlock freedom:

 It is not possible that processes are mutually waiting for 
each other
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Our goal

Formal
model

Formalized requirements

Model checker

OK Counterexample

t f

Informal
design

Informal
requirements

Automatically verifiable,
exact properties
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Establishing and formalizing 
requirements

What are the typical 
requirements

(in critical systems)?

What to formalize?



Handling textual requirements

• Specifying a typical requirement: text

 Is the textual description unambiguous?

 Structure is not clear
(condition, requirement, output, timing, …)
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If alarm is on and alert occurs, the output of safety
should be true as long as alarm is on.

If the switch is turned to AUTO, and the light 
intensity is LOW then the headlights should stay or 
turn immediately ON, afterwards the headlights should 

continue to stay ON in AUTO as long as the light 
intensity is not HIGH.



The result of a survey

A significant proportion of 
requirements match to 
certain patterns
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http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml

Figures: The distribution of 
matched patterns for requirements 
from two development teams



Groups of patterns

Pattern:

order or 
occurence

Scope:
relative to 
further events



Patterns

Occurrence:

• Absence: the referenced state/event never occurs

• Universality: the referenced state/event is always present

• Existence: the referenced state/event eventually occurs

• Bounded existence: the referenced state/event occurs at least k 
times

Order:

• Precedence: the referenced state/event preceeds an other 
state/event

• Response: the referenced state/event is proceeded by an other 
state/event

• Chain precedence: generalization of Precedence to sequences

• Chain response: generalization of Response to sequences

13



Examples of patterns

• Pattern Response in scope Global:

• Pattern Precedence in scope After:

At any time during execution, 
if event Request occurs,

then it should be proceeded by either Reply or Reject.

After the occurrence of state NormalMode,
state ResourceGranted may only occur

if it is preceeded by state ResourceRequest.



A typical solution

• The use of textual templates*

 Composing parameterized patterns

 More transparent structure

 Formal semantics can be assigned to the patterns
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When …, Ensure …
… = ……, after … occurs

When

Ensure 

,  after occurs

… within …

within 0.1 [sec]safety

alarm = ON alert

*examples by Dániel Darvas based on the tool STIMULUS



Example: Semantics of a pattern

Here, the 
semantics of 
a block is 
given by a 
state machine
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When <CONDITION>, Ensure <BODY>

When <CONDITION> becomes true until it 
becomes false, do <BODY>

=



Example: Semantics of composite patterns
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When

Ensure safety

>number of occurrences of evt 10



The use of formalized requirements

• Validation

 Executions can be generated that satisfy the 
requirement

 Executions can be evaluated w.r.t. to the requirements

• Are we specifying what we think we do?

• Is the set of requirements complete and unambiguous?

• Formal verification

 Verification of design (models)

• Generating a test oracle

 Verification of implementation (in a testing environment)

• Documentation

 Readable, but formalized and validated
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Example: Argosim Stimulus tool

http://argosim.com/ 
19



The takeaways

• The majority of properties match certain patterns

 If … then …,  While … ensure …,  After …

 Occurrence/order of states/events

• More complex requirements can be composed from 
simpler ones

 Parametrization: properties of a state/event

 Nesting

• Formalization of requirements helps

 Analysis of requirements: validity, completeness, 
consistency

 Verifiaction of design: exhaustive analysis of executions

 Test evaluation, runtime monitoring: components can be 
automatically generated

20
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Temporal requirements



22

What kind of requirements do we formalize?

• Verification: Model <-> Many requirements

 Functional: logically correct behavior               <- our current goal

 Extra-functional: performance, reliability, …     <- later

• Goal: verifying reachability of states

 System (model): we know local properties of states

• Name, valuation of variables, mode of operation, …

 Requirements: order of occurrence of states

• Is a desirable state reachable? -> Liveness properties

• Are we avoiding dangerous states? -> Safety properties

Can be verified by exhaustive expolation of the state space!

• Important in state based, event driven systems
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Safety properties

• Expresses freeness from dangerous situations
 “In all states, the pressure is below the critical level”

 “The press machine only operates with closed barriers.”

• Examples from Computer Science:
 Deadlock freedom: no deadlock can occur

 Mutual exclusion: at most one process in the critical section

 Data confidentiality: no unauthorized accesses

• Universal property on reachable states:
 “In all reachable states it holds that …”

 Formulates an invariant

• If a sequence of states violates it:
then already a finite prefix of the sequence violates it

…
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Liveness properties

• Expresses reachability of a desirable state
 “After start the press machine emits the finished product.”

 “After the disturbance the system stabilizes.”

• Example from Computer Science:
 “The process gets served”

 “The sent message arrives”

 “The process provides the expected result on its output”

• Existential property on reachable states
 “There exists a reachable state such that …”

 Formulates occurrence

• If a sequence of states violates it: 
then it can be extended so that it satisfies the property

… …
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What kind of description language is needed?

• Reachability: occurrence and order of states

 Order: logical time

• Current point in time: current state

• Subsequent points in time: next state(s)

 Temporal connectives can be used to express 
requirements

• Temporal logics:

 Formal system for evaluating changes in logical time

 Temporal connectives:
“always”, “at some point”, “before”, “while” …
(correspond to typical requirement patterns)
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Classification of temporal logics

• Linear: 

 We consider individual executions of the system 

 Each state has exactly one subsequent state

 Logical time along a linear timeline (trace)

• Branching: 

 We consider trees of executions
of the system 

 Each state possibly has
many subsequent state

 Logical time along a branching timeline
(computation tree)

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3s3

{Red}
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Temporal logics

Where can we use temporal logics?

 Goal: examining the state space

The simplest mathematical model: Kripke structure

 We express local properties of states by labeling

A Kripke structure 𝐾𝑆 over a set of atomic propositions
𝐴𝑃 = 𝑃,𝑄, 𝑅,… is a tuple 𝑆, 𝐼, 𝑅, 𝐿 where

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

• 𝐼 ⊆ 𝑆 is the set of initial states,

• 𝑅 ⊆ 𝑆 × 𝑆 is the set of transitions and

• 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions
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Example for KS

Traffic light

• 𝐴𝑃 = Green, Yellow, Red, Blinking

• 𝑆 = 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5

s2s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}
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Linear Temporal Logic: LTL
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Linear Temporal Logic

• Interpreted over paths of a Kripke structure 

 e.g. the effects of a concrete input

s5

s2s1 s3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

The model (KS):

A path (sequence of states):
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Linear temporal logic – Formulas

Construction of formulas: p, q, r, ...

• Atomic propositions (elements of AP): P, Q, ...

• Boolean connectives: , , , 
: conjunction, : disjunction, : negation , : implication

• Temporal connectives: X, F, G, U informally:

 X p: “neXt p”
p holds in the next state

 F p: “Future p”
p holds somewhere on the subsequent path

 G p: “Globally p”
p holds in all states of the subsequent path

 p U q: “p Until q”
p holds at least until q, which holds at the subsequent path
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LTL temporal connectives

For a path of a Kripke structure

P
F P

P P P P P
G P

P
X P

P P P P Q
P U Q

P
P
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LTL examples I.

• p  Fq
If p holds in the initial state, then eventually q holds.

• Example: Start  F End 

• G(p  Fq)
For all states, if p holds, then eventually q holds.

• Example: G (Request  F Reply)
For a request, a reply always arrives

• p U (q  r)
Starting from the initial state, p holds until q or r eventually holds.

• Example: Requested U (Accept  Refuse)
A continuous request either gets accepted or refused

• (p  G(p  Xp))  Gp
Formalization of the mathematical induction principle - always holds
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LTL examples II.

• GF p

After any states along the path, p will eventually hold

• There is no state after which p does not hold eventually

• Example: GF Running
The start state is reached from all states

• FG p

After some state, p will continuously hold.

• Example: FG Normal
After an initial transient the system operates normally
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Formalizing requirements: Example

Consider an air conditioner with the following modes:

AP={Off, On, Error, MildCooling, StrongCooling, 
Heating, Ventilating}

• Potentially more than one labels!

 E.g. {On, Ventilating}

• When formalizing requirements, we might not yet 
know all potential behaviors

 We assume only the labels on states
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Example (cont.)

AP={Off, On, Error, MildCooling, StrongCooling, 
Heating, Ventilating}

• The air conditioner can (and will) be turned on:

F On

• At some point, the air conditioner always breaks 
down

GF Error

• If the air conditioner breaks down, it eventually 
gets repaired

G (Error  F Error)

• If the air conditioner breaks down, it cannot heat:

G (Error  Heating)
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Example (cont.)

AP={Off, On, Error, MildCooling, StrongCooling, Heating, 
Ventilating}

• The air conditioner can only break down when turned on:

G (X Error  On)

• After heating, the air conditioner must ventilate:

G ((Heating  X Heating)  X Ventilate)

but it may also break down:

G ((Heating  X Heating)  X (Ventilate  Error))

• After ventilation the air conditioner must not cool strongly 
until it performs some mild cooling:

G ((Ventilating  X Ventilating) 
X(StrongCooling U MildCooling))
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LTL formal intepretation

• So far we discussed the logic only informally
Questions arise, e.g.:

 Does F p hold if p holds in the first state?

 Does p U q hold if q holds in the first state?

• To enable formal verifiaction, we need the 
following:

 Syntax: 
What are the well-formed formulas?

 Semantics: 
When does a given formula hold for a given 

model?
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LTL syntax

The set of well-formed formulas (wff) in LTL are 
given as follows.

Let 𝑃 ∈ 𝐴𝑃 and 𝑝 and 𝑞 be wffs. Then

• L1: 𝑃 is a wff.

• L2: 𝑝 ∧ 𝑞 and ¬𝑝 are wffs. 

• L3: 𝑝 𝖴 𝑞 and 𝖷 𝑞 are wffs.

Precedence rules:

X, U >  >  >  >  > 
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Derived connectives

• true holds for all states
false holds in no state

• p  q means  (p  q)
p  q means p  q
p  q means  p  q  q  p

• F p means true U p
G p means F(p)
p WU q means G(p)  (p U q)

• “Before” connective:
p WB q = ((p) U q)          (weak before)
p B q = ((p) U q)  F q (strong before)

Informally: 

p must occur before q
(B: and q must occur)
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LTL semantics – Notation

• M = (S, I, R, L) Kripke structure

•  = (s0, s1, s2,…) a path of M where
s0∈I and i≥0: (si, si+1)R

 i = (si, si+1, si+2,…) the suffix of  from i

• M, |= p denotes (logical entailment):
In Kripke structure M, along path , p holds

The semantics of LTL defines when a wff holds over 
a path (i.e. it defines the entailment relation).
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LTL semantics

Defined recursively w.r.t. syntactic construction rules

• L1: M, |= P iff PL(s0)

• L2: M, |= pq iff M, |= p and M, |= q
M, |= q  iff not M, |= q.

• L3: M, |= (p U q) iff
j |= q for some j≥0 and
k |= p for all 0≤k<j

M, |= X p iff 1 |= p



43

Interpreting LTL formulas, example

• Kripke structure M :

• Paths:
s5

s2s1 s3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s2

{Yellow}

M,1

s5s1 s3

{Green} {Blinking} {Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

M,2
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Examples (cont.)

• M,1 |= Green, as GreenL(s1)

• not M,1 |= Red, as Red∉L(s1)

• not M,1 |= Green U Red, 
as Red∉L(s1), Red∉L(s2) and Green∉L(s2)

• M,1 |= F Red, as RedL(s3)
More precisely: 𝜋1

2 ⊨ 𝑅𝑒𝑑

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s2

{Yellow}

M,1
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Examples (cont.)

• M,1 |= F (Red U Green),
as there exists a suffix for which
(Red U Green) holds: 

s3

{Red}

s4

{Red, Yellow}

s1

{Green}

s2

{Yellow}

1
2

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s2

{Yellow}

M,1
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Examples (cont.)

• M,2 |= F (Blinking  X Red),
as there exists a suffix such that Blinking  X Red

s5 s3

{Blinking} {Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

2
1

s3

{Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

2
2

s5s1 s3

{Green} {Blinking} {Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

M,2

Also true for 2
0: 

p  q is true if p is false
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Examples (cont.)

• M,2 |= XF (XX Red), as for suffix

s5 s3

{Blinking} {Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

2
1

F (XX Red) holds, as 
it has a suffix such that XX Red holds:

s3

{Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

2
2

s5s1 s3

{Green} {Blinking} {Red}

s5

{Blinking}

s3

{Red}

s5

{Blinking}

M,2
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Extending LTL for LTSs

A labeled transition system 𝐿𝑇𝑆 over a set of actions
𝐴𝑐𝑡 = 𝑎, 𝑏, 𝑐, … is a triple 𝑆, 𝐼,→ where

• 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

• 𝐼 ⊆ 𝑆 is the set of initial states,

• → ∶ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is the set of transitions

We denote by 𝑠→
𝑎
𝑠′ iff 𝑠, 𝑎, 𝑠′ ∈ →.

• Expresses properties of transitions:
labeling by actions

• Exactly one action per transition

• Application: modeling of communication and protocols
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Example for LTS

T1 T2

Vending machine

• 𝐴𝑐𝑡 = coin, coffe, tea

coin

coffee tea

coin coin

coffee tea
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LTL for LTSs

A path now is an alternating sequence of
states and actions:

•  = (s0, a1, s1, a2, s2, a3, …)

Extending syntax:

• L1*: If aAct then (a) is a wff.

The corresponding case in semantics:

• L1*: M, |= (a) iff. a1=a
where a1 is the first action in .

This way we can describe requirements of 
communicating systems.



Where we started:
typical patterns for requirements

Pattern:

order or 
occurence

Scope:
relative to 
further events



Formalization of patterns (examples)

Universality within scope Property in LTL

P occurs in each step of the 
execution globally.

G P

P occurs in each step of the 
execution before Q.

F Q  (P U Q)

P occurs in each step of the 
execution after Q.

G(Q  G P)

P occurs in each step of the 
execution between Q and R.

G((Q  R  F R) 
(P U R))

Existence within scope Property in LTL

P occurs in the execution 
globally.

F P

P occurs in the execution before 
Q.

 Q WU (P   Q)

P occurs in the execution after Q. G (Q) 
F (Q  F P)

P occurs in the execution 
between Q and R.

G((Q  R  F R) 
(R U (P  R)))

A
ft

e
r

is
 i
n
cl

u
si

v
e
,

B
e
fo

re
is

 e
x
cl

u
si

v
e



Formalization of textual requirements 
(examples)
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If α and β holds, then α has to remain true as long as 
β is true as well. 

If alarm is on and alert occurs, the output of safety
should be true as long as alarm is on.
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LTL summary

• Formalization of requirements

• Temporal logics

 Linear temporal logic

 Branching time temporal logic

• LTL

 Connectives

 Syntax

 Semantics

• Interpretation of LTL formulas

• Formalization of requirements in LTL


