Formalizing requirements: Branching time temporal logics

dr. István Majzik BME Department of Measurement and Information Systems

Our goal

Classification of temporal logics

- Linear:
 - We consider individual executions of the system
 - Each state has exactly one subsequent state
 - Logical time along a linear timeline (trace)

• Branching:

- We consider trees of executions of the system
- Each state possibly has many subsequent states
- Logical time along a branching timeline (computation tree)

Computation tree

Branching time temporal logics: CTL, CTL*

Branching

In a given state, we can formulate requirements on the outgoing paths of the state:

- E p (Exists p): there exists at least one path from the state for which p holds
 - Requirement on a single path
 - Existential operator
- A p (for All p): for all paths from the state p holds
 - Requirement on all possible paths
 - Universal operator

Branching time temporal logics

- CTL*: Computational Tree Logic * An arbitrary combination of
 - Path quantifiers (E, A)
 - Path-specific temporal operators (X, F, G, U)
- CTL: Computational Tree Logic
 - An operator is a combination of a path quantifier and a path-specific operator
 - E.g. AX, E(_ U _)

CTL*: Computational Tree Logic *

CTL* operators (informal)

- Path quantifiers (interpreted over states):
 - A: "for All futures", for all possible paths from the current state
 - E: "Exists future", "for some future", for at least one path from the current state

• Path-specific operators (interpreted over paths):

- X p: "neXt", for the next state p holds
- F p: "Future", for a state along the path p holds
- **G p**: "Globally", for each state of the path **p** holds
- p U q: "p Until q", for a state of the path q will hold, and until then for all states p holds

Examples for CTL* formulas

E(p \wedge G q)

There exists at least one path such that p holds (initially for the path) and for all suffices of the path q holds.

• E(XXX p ∨ F q)

There exists a path such that

- p holds for its fourth state, or
- eventually q holds

Formal treatment of CTL*

- So far: only an informal introduction
- To enable automatic formal verification, we need:
 - Syntax rules: What are the well-formed formulas in CTL*?
 - Semantic rules: When does a formula in CTL* hold for a given model?

CTL* syntax

- State formulas: evaluated over states
 - S1: an atomic proposition P is a state formula
 - S2: for state formulas p and q, we have state formulas ¬p and p∧q
 - S3: for a path formula p, we have state formulas E p and A p
- Path formulas: evaluated over paths
 - P1: every state formula is a path formula
 - P2: for path formulas p and q, we have path formulas ¬p and p∧q
 - P3: for path formulas p and q, we have path formulas X p and p U q

Well-formed formulas in CTL*: state formulas

CTL* semantics: notation

- M = (S, I, R, L) Kripke structure
- $\pi = (s_0, s_1, s_2, ...)$ a path of M where $s_0 \in I$ and $\forall i \ge 0$: $(s_i, s_{i+1}) \in R$

• $\pi^{i} = (s_{i}, s_{i+1}, s_{i+2}, ...)$ the suffix of π from i

- M,π |= p (for a path formula p): in Kripke structure M, along path π, p holds
- M,s |= p (for a state formula p): in Kripke structure M, in state s, p holds

CTL* semantics: state formulas

```
• S1:
    M,s |= P iff P \in L(s)
• S2:
    M,s \mid = \neg p iff not M,s \mid = p
    M,s |= p \land q iff M,s |= p and M,s |= q
• S3:
    M,s \models E p (for path formula p)
      iff there exists a path \pi = (s_0, s_1, s_2,...) in M such that
      s=s_0 and M,\pi \mid = p.
    M,s = A p (for a path formula p)
      iff for all paths \pi = (s_0, s_1, s_2,...) in M such that
      s= s<sub>0</sub> we have M,\pi |= p.
```

CTL* semantics: path formulas

• **P1**:

 $M,\pi \mid = p$ (for a state formula p) iff $M, s_0 \mid = p$

• P2:

 $\begin{array}{ll} \mathsf{M}_{,\pi} \mid = \neg \mathsf{p} & \text{iff not } \mathsf{M}_{,\pi} \mid = \mathsf{p} \\ \mathsf{M}_{,\pi} \mid = \mathsf{p}_{\wedge}\mathsf{q} & \text{iff } \mathsf{M}_{,\pi} \mid = \mathsf{p} \text{ and } \mathsf{M}_{,\pi} \mid = \mathsf{q} \end{array}$

• **P3**:

M, $\pi \mid = X p \text{ iff } M, \pi^1 \mid = p$ M, $\pi \mid = p U q \text{ iff}$ $\pi^j \mid = q \text{ for some } j \ge 0 \text{ and}$ $\pi^k \mid = p \text{ for all } 0 \le k < j$

Background: Computational complexity of evaluation

Worst-case time complexity: at least O(|S|² × 2^{|p|})

- |S|² number of transitions in the model (Kripke structure) in the worst case
- p number of temporal operators in the formula
- The exponential complexity seems frightening
 - Although temporal requirements tend to be short
- Goal: simplifying CTL*
 - Should remain usable in practice
 - Should reduce worst-case time complexity

CTL: Computational Tree Logic

CTL operators (informal introduction)

Complex operators over sates:

- EX p: there exists a path where p holds in the next state
- EF p: there exists a path where p holds in the future
- EG p: there exists a path where p holds globally
- E(p U q): there exists a path where p holds until q eventually holds
- AX p: for all paths p holds in the next state
- AF p: for all paths p holds in the future
- AG p: for all paths p holds globally
- A(p U q): for all paths p holds until q eventually holds

CTL operators (examples)

CTL formulas (examples)

- AG EF p
 - starting from any state, a state can be reached where p holds
 - Example: AG EF Reset
- AG AF p

starting from any state, we will encounter a state where **p** holds

- Example: AG AF Terminated
- AG (p \Rightarrow AF q)

starting from any state, if we encounter a state where **p** holds, then we will eventually reach a state where **q** holds.

• Example: AG (Request \Rightarrow AF Reply)

CTL formulas (examples)

• EF AG p

It is possible for the system to reach a state after which **p** will hold in all states

• AF AG p

Along all paths we will eventually reach a state from which p will always hold

- Example: AF AG Normal
- AG (p \Rightarrow A (p U q))

In all reachable states, if p holds in a state, then for all paths starting from that state, p holds until q eventually holds,

 "p holds until q eventually holds": we will reach a state where q holds, and until then p holds in all states

Formalizing requirements: an example

- Two processes in a system: P1 and P2
- The state of processes w.r.t the requirements:
 - In critical section: C1, C2
 - Not in critical section: N1, N2
 - Waiting to enter critical section: W1, W2
- Atomic propositions: AP = {C1, C2, N1, N2, W1, W2}

Example (cont.)

- There is at most one process in the critical section: AG (\neg (C1 \land C2))
- If a process is waiting to enter the critical section, then it will eventually enter the critical section:
 AG (W1 ⇒ AF(C1)) AG (W2 ⇒ AF(C2))
- Processes enter the critical section in alternating order; one exits, then the other enters: $AG(C1 \Rightarrow A(C1 \cup (\neg C1 \land A((\neg C1) \cup C2))))$ $AG(C2 \Rightarrow A(C2 \cup (\neg C2 \land A((\neg C2) \cup C1))))$

P2 in critical section

P2 not in critical section

P1 enters the critical section

CTL syntax I.

State formulas:

- In CTL* we had:
 - S1: an atomic proposition P is a state formula
 - S2: for state formulas p and q, we have state formulas ¬p and p∧q
 - S3: for a path formula p, we have state formulas E p and A p
- In the case of CTL, the same rules (S1, S2, S3) apply!

CTL syntax II.

Path formulas:

- In CTL* we had:
 - P1: every state formula is a path formula
 - P2: for path formulas p and q, we have path formulas ¬p and p∧q
 - P3: for path formulas p and q, we have path formulas X p and p U q

• In the case of CTL, we have a single rule instead:

 P0: for state formulas p and q, we have path formulas X p and p U q

CTL syntax: Summary

State formulas:

- S1: an atomic proposition P is a state formula
- S2: for state formulas p and q, we have state formulas ¬p and p∧q
- S3: for a <u>path formula</u> p, we have state formulas E p and A p

Path formulas:

- P0: for state formulas p and q, we have path formulas X p and p U q
- Path formulas cannot be directly nested
- Path formulas are used only in rule **S3**
- Path formulas X p and p U q can be nested only under E and A

The consequences of formal syntax

- Path formulas cannot be directly nested
 - X and U can be applied only to state formulas
 - Boolean connectives can be applied only to state formulas
- Path formulas are used only in rule **S3**:
- Because of rule S3, only a path quantifier can be applied to path formulas X p and p U q hence operators "stick together"
 - EX, E(. U .),
 - AX, A(.U.)

Formulas in CTL and CTL*

- Derived operators of CTL
 - EF p means E (true U p)
 - AF p means A (true U p)
 - EG p means ¬AF (¬p)
 - AG p means ¬EF (¬p)
- CTL* but not CTL
 - E(X Red ∨ F Yellow)
 Boolean connective between path formulas
 - A(X G (Red ^ Yellow)), E(XXX Red)
 - Nested path formulas

CTL formal semantics

- State formulas:
 - rules S1, S2, S3 (see CTL*) remain unchanged
- Path formulas:
 - rules P1, P2, P3 are replaced by a new rule P0:
 P0:
 - M,π |= X p where p is a state formula iff
 M,s₁ |= p
 - $M_{,\pi} \mid = p \cup q$ where p,q are state formulas iff $M_{,s_{j}} \mid = q$ for some $j \ge 0$ and $M_{,s_{k}} \mid = p$ for all $0 \le k < j$

Here we have state formulas according to syntax rule **PO**

Background: Computational complexity of evaluation

- Worst case time complexity: O(|S|²×|p|)
 - |S|² numer of transitions in the model (Kripke structure) in the worst case
 - p number of temporal operators in the formula
- Lower than in case of CTL*:
 - No 2^{|p|} factor
 - Expressive enough for many practical requirements
 - Safety requirements: AG
 - Liveness requirements: EF, AF
- What is the cost?

- A temporal logic is at least as expressive as an other temporal logic iff it is able to formalize all properties that the other logic can.
- It is more expressive iff furthermore there is a property that can be expressed in the logic but not in the other logic.
- Experience so far:
 - LTL can not consider branching (implicitly "for all paths")
 - CTL is more restricted than CTL*, hence it is less expressive
 - CTL* also includes all properties expressible in LTL

Expressive power – Formally

• The expressive power of TL2 is at least as big as the expressive power of TL1 iff for all Kripke structure M and for all its states s:

 $\forall p \in TL1:$ $\exists q \in TL2: (M, s \models p \iff M, s \models q)$

• Iff this relation holds mutually then TL2 and TL1 have the same expressive power.

Expressive power of LTL, CTL, CTL*

Supplementary: Extensions

Stochastic logics:

- Reliability and timing requirements:
 - E.g.: if the current state is ERROR then there is a probability less than 30% that this condition holds after 2 time units as well
- Extension of CTL:
 - Over Continuous-time Markov chains (not a Kripke structure)
 - Probability criteria for state reachability (steady state), path traversal
 - Timing criteria (time intervals) for operators X and U

Real-time logics:

- Requirements of real-time systems
 - The logic can reference clock variables
 - Handling of time intervals

The model checking problem
LTL model checking

The model checker SPIN (old interface)

Counterexample in SPIN

CTL* or CTL model checking

Model checking in UPPAAL

- Atomic propositions:
 - Predicates over state variables: a!=1
 - Terms: integer arithmetic, bitwise operators, ? : (if-then-else)
 - Reference for a location: Train(0).cross
 - For parameterized processes: forall, exists
 - Deadlock: deadlock expression (no action)
- Boolean connectives:
 - and, or, imply, not
- Temporal connectives: restricted CTL
 - Notation: [] (box) for G, <> (diamond) for F
 - Hence: A[], A<>, E[], E<>
 - E[] also for finite traces (to terminal state)
 - Temporal connectives can not be nested
 - One option though: p --> q for A[] (p imply A<> q)

Checking requirements in UPPAAL

- Editable list of requirements
- Requirements can be checked one by one
- Counterexample can be generated:
 - Shortest, fastest, any
 - Can be replayed in simulator
- Traversal of the state space:
 - Depth-first search
 - Breadth-first search
- State representation:
 - Reduction
 - Approximate (under- or overapproximation)
 - The size of the hash table can be parameterized

The model checker interface in UPPAAL

🖳 F:/FTapps/Uppaal/demo/train-gate.xml - UPPAAL	
Eile Edit View Tools Options Help	
$\square \blacksquare \blacksquare$	
Editor Simulator Verifier	
Overview	
E<> Gate.Occ	
E<> Train(0).Cross	
E⇔ Train(1).Cross	Insert
E<> Train(0).Cross and Train(1).Stop	Insert Remove
E<> Train(0).Cross and (forall (i : id_t) i != 0 imply Train(i).Stop)	Comments
Query	
E<> Train(0).Cross	
Comment	
Train O can reach crossing.	
▲ ▼	
Status	
Established direct connection to local server.	
(Academic) UPPAAL version 4.0.7 (rev. 4140), November 2008 server.	
Disconnected.	
Established direct connection to local server.	
(Academic) UPPAAL version 4.0.7 (rev. 4140), November 2008 server. E<> Train(0).Cross	
Property is satisfied.	

Counterexample in UPPAAL's simulator

Completing the motivating example

Motivating example: Mutual exclusion

- 2 processes, 3 shared variables (H. Hyman, 1966)
 - **blocked0**: process 1 (P0) wants to enter
 - **blocked1**: process 2 (P1) wants to enter
 - turn: which process is allowed to enter (0 for P0, 1 for P1)

Is the algorithm correct?

The model in UPPAAL (version 1)

Declarations: bool blocked0; bool blocked1; int[0,1] turn=0; system P0, P1;

Automaton P0:

Modeling idioms used:

- Global variables
- Variables with restricted domain

UPPAAL: formalizing requirements

• Mutual exclusion:

At most one process is allowed to be in the critical section

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other

- The expected behavior is possible:
 - For P0 it is possible to enter the critical section:
 - For P1 it is possible to enter the critical section:
- Starvation freedom:

P0 will eventually enter the critical section: P1 will eventually enter the critical section:

Labels: P0.cs, P1.cs, deadlock

UPPAAL: formalizing requiremetns

• Mutual exclusion:

At most one process is allowed to be in the critical section A[] not (P0.cs and P1.cs)

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other A[] not deadlock

- The expected behavior is possible:
 - For P0 it is possible to enter the critical section: E<>(P0.cs)
 - For P1 it is possible to enter the critical section: E<>(P1.cs)
- Starvation freedom:

P0 will eventually enter the critical section: A<>(P0.cs) P1 will eventually enter the critical section: A<>(P1.cs)

Labels: P0.cs and P1.cs

UPPAAL: Results of model checking

- Mutual exclusion is not ensured!
 - Counterexample: interleaving between the two processes (can be replayed in simulator)
- No deadlocks
- The expected behavior is possible
- Starvation freedom cannot be analyzed without specification of timing
 - Trivial counterexample: time elapses indefinitely in the initial location
 - A special consequence of timed behavior
 - Enforcing progress: urgent location or invariants
 - Starvation freedom?
 - The system is not starvation free (cyclic counterexample)

Fixing the algorithm

Peterson's algorithm

 For process P0 (P1 analogously):

Peterson:

}

// Critical section
blocked0 = false;
// Do other things

Hyman:

```
while (true) {
    blocked0 = true;
    while (turn!=0) {
        while (blocked1==true) {
            skip;
        }
        turn=0;
    }
    // Critical section
    blocked0 = false;
    // Do other things
}
```