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Classification of temporal logics

e |Linear:

= We consider individual executions of the system
= Each state has exactly one subsequent state
= Logical time along a linear timeline (trace)

{Green} {Yellow} {Red} <{Red, Yellow}

Y BranChing: {Green}
= \We consider trees of executions (Bin /g

of the system
= Each state possibly has {Red%@ {Blinking}

{Red}
many subsequent states

= Logical time along a branching timeline
(computation tree)



Computation tree
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Branching time temporal logics: CTL, CTL*



Branching

In a given state,
we can formulate requirements on the outgoing

paths of the state:

e E p (Exists p): there exists at least one path
from the state for which p holds
= Requirement on a single path
= Existential operator

e A p (for All p): for all paths from the state
p holds

= Requirement on all possible paths A~ Je
= Universal operator 9—>.~;




Branching time temporal logics

e CTL*: Computational Tree Logic *
An arbitrary combination of
= Path quantifiers (E, A)
= Path-specific temporal operators (X, F, G, U)

e CTL: Computational Tree Logic

= An operator is a combination of a
path quantifier and a path-specific operator

= E.g. AX, E(_U )



CTL*: Computational Tree Logic *



CTL* operators (informal)

o Path quantifiers (interpreted over states):

= A: “for All futures”,
for all possible paths from the current state

= E: “Exists future”, “for some future”,
for at least one path from the current state
o Path-specific operators (interpreted over paths):
= X p: "neXt”, for the next state p holds
= F p: “Future”, for a state along the path p holds
= G p: “Globally”, for each state of the path p holds

= p Uqg: "p Until ", for a state of the path q will hold, and
until then for all states p holds



For all paths,

{we have that

CTL* formulas

(p=Fq)

If initially
p holds, ...

then
in the future ...

|

g eventually
holds.

|
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Examples for CTL* formulas
* E(pAGQ)

There exists at least one path such that
p holds (initially for the path) and for all suffices of the
path g holds.

o E(XXX p Vv FQ)

There exists a path such that
= p holds for its fourth state, or
= eventually g holds

11



Formal treatment of CTL*

e So far: only an informal introduction

e To enable automatic formal verification, we need:

= Syntax rules:
What are the well-formed formulas in CTL*?

= Semantic rules:
When does a formula in CTL* hold for a given model?

12



CTL* syntax

e State formulas: evaluated over states
= §1: an atomic proposition P is a state formula

= §2: for state formulas p and q,
we have state formulas —p and pag

= §3: for a path formula p,
we have state formulas Ep and A p

o Path formulas: evaluated over paths
= P1: every state formula is a path formula

= P2: for path formulas p and q,
we have path formulas —p and pag

= P3: for path formulas p and q,
we have path formulas X pand p U g

Well-formed formulas in CTL*: state formulas 13



CTL* semantics: notation

M= (S, I, R, L) Kripke structure

n = (Sg, Sy, Sy,-..) @ path of M where
SoeI and V|ZO: (SI’ SH_]_)ER

= t' = (S, Siyq1, Sizo,-..) the suffix of = from i

M,n |= p (for a path formula p):
in Kripke structure M, along path =, p holds

M,s |= p (for a state formula p):
in Kripke structure M, in state s, p holds

14



CTL* semantics: state formulas

o S1.:
M,s |= P iff PeL(s)
o S2:
M,s |=—piff not M,s [=p
M,s |=paqiff M,s |=pand M,s |=¢
o S3.
M,s |= E p (for path formula p)
iff there exists a path n=(s,, S, S,,...) in M such that
s=s, and M,n |= p.
M,s |= A p (for a path formula p)

iff for all paths n=(sy, Sy, S,,...) in M such that
s= s, we have M,xn [= p.
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CTL* semantics: path formulas

P1:

M,n |= p (for a state formula p) iff M, sy |=p
P2:

Mz |=—-p iffnotM,n|=p

M,n |= pA(Q iff M,TC |= P and M,n |= g

P3:
M, n |=XpiffM,n1|=p
M, = |=pUqiff

o |= q for some j=0 and
nk |= p for all 0<k<j

16



Background: Computational
complexity of evaluation

e Worst-case time complexity: at least O (|S|? x 2IrI)

= |S|2 number of transitions in the model
(Kripke structure) in the worst case

= |p| number of temporal operators in the formula

e The exponential complexity seems frightening
= Although temporal requirements tend to be short
e Goal: simplifying CTL*
= Should remain usable in practice
= Should reduce worst-case time complexity

17



CTL: Computational Tree Logic



Comp
o EX
o EF
o EG

CTL operators (informal introduction)

ex operators over sates:
n: there exists a path where p holds in t

n: there exists a path where p holds in t
p: there exists a path where p holds glo

ne next state
he future

dally

e E(p U q): there exists a path where p holds until g

e AX

eventually holds

p: for all paths p holds in the next state

e AF p: for all paths p holds in the future

e AG

p: for all paths p holds globally

e A(p U q): for all paths p holds until g eventually holds

19



CTL operators (examples)
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CTL formulas (examples)

e AGEFp

starting from any state,
a state can be reached where p holds
e Example: AG EF Reset

e AG AF p

starting from any state,
we will encounter a state where p holds
e Example: AG AF Terminated

e AG (p = AF Q)

starting from any state,
if we encounter a state where p holds,

then we will eventually reach a state where g holds.

e Example: AG (Request = AF Reply)

21



CTL formulas (examples)

e EFAGp

It is possible for the system to reach a state
after which p will hold in all states

o AFAGDp

Along all paths we will eventually reach a state
from which p will always hold
e Example: AF AG Normal

e AG(p=A(pUQ))

In all reachable states,

if p holds in a state,

then for all paths starting from that state,
p holds until g eventually holds,

e "p holds until g eventually holds”: we will reach a state where g
holds, and until then p holds in all states

22



Formalizing requirements: an example

e Two processes in a system: P1 and P2

e The state of processes w.r.t the requirements:
= In critical section: C1, C2
= Not in critical section: N1, N2
= Waiting to enter critical section: W1, W2
e Atomic propositions:
AP = {C1, C2, N1, N2, W1, W2}

23



Example (cont.)

e There is at most one process in the critical section:
AG (—(C1 A C2))

o If @ process is waiting to enter the critical section,
then it will eventually enter the critical section:

AG (W1 = AF(C1))
AG (W2 = AF(C2))

e Processes enter the critical section in alternating
order; one exits, then the other enters:

AG(C1 = A(C1 U (=C1 A A((—~C1) U C2))))
AG(C2 = A(C2 U (—C2 A A((—~C2) U C1))))

P2 not in P1 enters the
critical section critical section §

P2 in critical

section



CTL syntax I.

State formulas:

e In CTL* we had:

= S1: an atomic proposition P is a state formula

= S2: for state formulas p and q,
we have state formulas —p and pag

= §3: for a path formula p,
we have state formulas E p and A p

e In the case of CTL, the same rules (S1, S2, S3)
apply!

25



CTL syntax II.

Path formulas:

e In CTL* we had:

= P1: every state formula is a path formula

= P2: for path formulas p and q,
we have path formulas —p and pag

= P3: for path formulas p and q,
we have path formulas X pand p U g

e In the case of CTL, we have a single rule instead:

= PO: for state formulas p and q,
we have path formulas X pand p U g
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CTL syntax: Summary

State formulas:
= S§1: an atomic proposition P is a state formula

= §2: for state formulas p and q,
we have state formulas —p and pag

= §3: for a path formula p,
we have state formulas E pand A p

Path formulas:

= PO: for state formulas p and q,
we have path formulas X pand p U g

Path formulas cannot be directly nested
Path formulas are used only in rule S3
Path formulas X p and p U g can be nested only under E and A

|
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The consequences of formal syntax

« Path formulas cannot be directly nested
= X and U can be applied only to state formulas
= Boolean connectives can be applied only to state formulas

e Path formulas are used only in rule S3:

e Because of rule 83, only a path quantifier can be applied
to path formulas X pand p U g
hence operators “stick together”
= EX, E(.U.),
= AX, AL U.)

28



Formulas in CTL and CTL*

e Derived operators of CTL
= EF p means E (true U p)
= AF p means A (true U p)
= EG p means —AF (—p)
= AG p means —EF (—p)

e CTL* but not CTL
= E(X Red v F Yellow)
Boolean connective between path formulas

= A(X G (Red A Yellow)),
E(XXX Red)

Nested path formulas

29



CTL formal semantics

o State formulas:
= rules S1, S2, S3 (see CTL*) remain unchanged

e Path formulas:
= rules P1, P2, P3 are replaced by a new rule PO:

PO.:

= M,n |= X p where p is a state formula iff
M,ss; |[=p

= M,z |= p U g where p,q are state formulas iff
M,s; |= q for some j=0 and
M,s, | = p for all 0<k<]

Here we have state formulas according to syntax rule PO



Background: Computational
complexity of evaluation

e Worst case time complexity: O (|S|%x|p|)

= |S|2 numer of transitions in the model
(Kripke structure) in the worst case

= |p| number of temporal operators in the formula

e Lower than in case of CTL*:
= No 2!/l factor

= Expressive enough for many practical requirements
o Safety requirements: AG
e Liveness requirements: EF, AF

e What is the cost?
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Expressive power

e A temporal logic is at least as expressive as an
other temporal logic iff it is able to formalize all
properties that the other logic can.

o It is more expressive iff furthermore there is a

property that can be expressed in the logic but not
in the other logic.

e Experience so far:

= LTL can not consider branching
(implicitly ,for all paths™)

= CTL is more restricted than CTL*,
hence it is less expressive

= CTL* also includes all properties expressible in LTL

32



Expressive power — Formally

e The expressive power of TL2 is at least as big as the
expressive power of TL1 iff
for all Kripke structure M and for all its states s:

VpeTL1:
dgeTL2: (M,s|=p & M,s|=0)

o Iff this relation holds mutually then TL2 and TL1 have the
same expressive powetr.
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Expressive power of LTL, CTL, CTL*

implicit A
operator

f

-

AF(p A Xq)
(implicit A

operator)

(implicit A

| operator) y

AF(p A Xq) v AG EF p,
EXXX p

==

g
“ | A(p U q)
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Supplementary: Extensions

Stochastic logics:

e Reliability and timing requirements:

= E.qg.: if the current state is ERROR then there is a probability less
than 30% that this condition holds after 2 time units as well

e Extension of CTL:
= Qver Continuous-time Markov chains (not a Kripke structure)

= Probability criteria for state reachability (steady state), path
traversal

= Timing criteria (time intervals) for operators X and U

Real-time logics:

e Requirements of real-time systems
= The logic can reference clock variables
= Handling of time intervals
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The model checking problem

36



LTL model checking

If no path is given
then checking of all paths from the initial state

Kripke structure M LTL formula p

Model checker
Mmt|=p?

OK Counterexample
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The model checker SPIN (old interface)

f Linear Time Temporal Logic Formulae -. P - O] =]

Farrnula: |{:>[]u::neLean:|er Load...

Operators; ] {}| L | -3 |3r'|t| |:|r|r'||:||

Froperty hiold Al Executions [desired behavior) © Mo Executions [emor behavior)

Handling of paths
LTL operators:

F is <> (diamond)
G is [] (box)
(no operator X)

j fdefine elected [rr_leaders > 0)
fdefine noLeader  [n_leaders == 0] - -
fdefine oneleader [nr_leaders == 1) La bellng IS

| defined by state
- variables
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Counterexample in SPIN

Order of states and
communication

39



CTL* or CTL model checking

Kripke structure M

CTL* or CTL formula p

Model checker
Ms|=p?

h 4

Counterexample

40



Model checking in UPPAAL

e Atomic propositions:
= Predicates over state variables: al=1
e Terms: integer arithmetic, bitwise operators, ? : (if-then-else)

= Reference for a location: Train(0).cross
e For parameterized processes: forall, exists

= Deadlock: deadlock expression (no action)

e Boolean connectives:
= and, or, imply, not
e Temporal connectives: restricted CTL

= Notation: [] (box) for G, <> (diamond) for F
e Hence: A[], A<>, E[], E<>
e E[] also for finite traces (to terminal state)

= Temporal connectives can not be nested
e One option though: p --> q for A[] (p imply A<> q)

41



Checking requirements in UPPAAL

Editable list of requirements
Requirements can be checked one by one

Counterexample can be generated:
= Shortest, fastest, any

= Can be replayed in simulator
Traversal of the state space:

= Depth-first search

= Breadth-first search

State representation:

= Reduction

= Approximate (under- or overapproximation)
= The size of the hash table can be parameterized

42



The model checker interface in UPPAAL

:j:l} F:/FTapps/Uppaal/demo/train-gate.xml - UPPAAL - |EI|£|

File Edit Wiew Tools Options Help

[baEeaaarna@g-:me

Eu:litu:url Simulator  Merifier |

CErvie

E<> Gate.lcc o

E<> Train(0).Cross

E<> Traini(l).Cross o Insert

E«<> Traini0).Crosz and Train(l).3top o Remowve

E«<> Traini0).Crosz and (forall (i : id t£) i != 0 imply Trainii).3top) o Comments
-

Cuery

E== Train{i.Cross

Comrmenk

Train O can reach crossing.

. ]

Skatus

Established direct connection o local server.

[Academic) LPPAAL version ¢.0.7 (resv, 41400, Movember 2008 -- server,
Disconnecked.

Established direct connection ko local server.

i Academic) UPPAAL version ¢.0.7 (rew. 4140), November 2003 -- server,
E <z Trainf0).Cross

Property is satisfied,
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Counterexample in UPPAAL’s simulator

:g F:/FTapps/Uppaal/demo,/train-gate.xml - UPPAAL -0l x|
File Edit Yew Tools Oplions Help
[
Da@ & é|R@-»o
Editor Simulator | verifier |
| Drag out; Drag ouk |: -
Enabled Transh (zate.list[0] =0 Train{0) Train{1}
nabled Transitions zate.list[1] = 1 =3 >=3
appr[2]: Tr'arn::'-"" > Gake Gate.list[z] =0 Safe leave[ O] Cross e leave[1]! Cross
appt[3]: Train{3) -- = Gate pate.list[3] =0 =5 ¥<=5
appr[4]: Train(4) -- > Gate Gate.list[4] =10 i
appt[S]: Train{S) -- = Gate aate.list[S] =0 ;:=|EII or ;LIJ' i
leave[0]: Train{d) --= Gate Gate.list[6] =0 »=7 ==7
Gake.len =2 x=0 w=0
LI Trainf0d. in [0,5]
Traini 13, in [0,5] Appr Start Appor Start
=20 we= 15 we=20 ¥e= 15

Mext | Reset |

Simulation Trace

(Safe, Safe, Safe, Safe, Safe, Safe, Free)
appr[0]: Train(0) -- > Gate

(Appr, Safe, Safe, Safe, Safe, Safe, Occ)
Train(0)

(Cross, Safe, Safe, Safe, Safe, Safe, Qcc)
appt[1]: Trainfl) -- = Gate

(Cross, Appr, Safe, Safe, Safe, Safe, -)
stop[tail(i]: Gate --= Train(1)

Kl |+
Trace File: I
Pres Iexk Replay
open Save Auko
|
| | K | | |
Slow Fast

Trainfzd,x == 10

Train(3).x == 10

Trainfdd,x == 10

Train(5).x == 10

Traing0.x - Traini2).x <= -10
Traing 1.3 - Train(0).x in [-5,0]
Train(2).x = Train(3).x
Train3).x = Train(4).x
Traing4),x = Train{S).x
TrainfSi,x = Train(2).x

Stop

P

Train{0y Train(1) Train{2) Train(3) Trainid) Train(d) Gate

[Safe] [Safe] [Safel [Safe] [Safel [Safe][Free]

appild]

(Arer]

@DSS

appil1]

oz

(pp]

E

)

op[taill)]

Stop

Oce
N




Completing the motivating example
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Motivating example: Mutual exclusion

2 processes, 3 shared variables (H. Hyman, 1966)
= blockedO: process 1 (P0O) wants to enter
= blockedl: process 2 (P1) wants to enter

= turn: which process is allowed to enter (0 for PO, 1 for P1)
while (true) { PO while (true) { P1
blockedO = true; blockedl = true;
while (turn!=0){ <+« --=-=---~-. J while (turn!=1) {
while (blocked1l==true) { N while (blocked0==true) {
skip; ™. S skip;
} .. NN
turn=0; S * turn=1;
> AN bs
/| Critical section ~< // Critical section
blocked0 = false; i blockedl = false;
// Do other things // Do other things
bs bs

Is the algorithm correct? .



The model in UPPAAL (version 1)

Declarations:
bool blockedO;
bool blocked1;
int[0,1] turn=0;
system PO, P1;

Automaton PO:

Init
blocked0:=false
r 2®)

blockedO:=true

Check_turn !

turm:=0

Modeling idioms used:
e Global variables
e \Variables with restricted domain

while (true) {
blockedO = true; PO
while (turn!=0) {
while (blocked1l==true) {
My _turn skip;

h

turn==0 turnl=0

e Check_blocked

blocked1==false

turn=0;
s
// Critical section
blocked0 = false;
// Do other things

blocked1==true }

Wait_blocked
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UPPAAL: formalizing requirements

Mutual exclusion:
At most one process is allowed to be in the critical section

Deadlock freedom:
It is not possible that processes are mutually waiting for each other

The expected behavior is possible:
= For PO it is possible to enter the critical section:
= For P1 it is possible to enter the critical section:

Starvation freedom:
PO will eventually enter the critical section:
P1 will eventually enter the critical section:

Labels: PO.cs, P1.cs, deadlock
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UPPAAL: formalizing requiremetns

Mutual exclusion:

At most one process is allowed to be in the critical section
A[] not (PO.cs and P1.cs)

Deadlock freedom:
It is not possible that processes are mutually waiting for each other
A[] not deadlock

The expected behavior is possible:
= For PO it is possible to enter the critical section: E<>(P0.cs)
= For P1 it is possible to enter the critical section: E<>(P1.cs)

Starvation freedom:
PO will eventually enter the critical section: A<>(P0.cs)
P1 will eventually enter the critical section: A<>(P1.cs)

Labels: PO.cs and P1l.cs
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UPPAAL: Results of model checking

Mutual exclusion is not ensured!
= Counterexample: interleaving between the two
processes (can be replayed in simulator)
No deadlocks
The expected behavior is possible

Starvation freedom cannot be analyzed without

specification of timing

= Trivial counterexample: time elapses indefinitely in the
initial location

e A special consequence of timed behavior
e Enforcing progress: urgent location or invariants

= Starvation freedom?
e The system is not starvation free (cyclic counterexample)
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Fixing the algorithm

Hyman:

while (true) {
blockedO = true;
while (turn!=0) {
while (blockedl==true) {
skip;
bs
turn=0;
by
// Critical section
blocked0 = false;
// Do other things

Peterson’s algorithm

e For process PO
(P1 analogously):

Peterson:

while (true) {
blockedO = true;

turn=1;
while (blockedl==true &&
turn!=0) {
skip;
bs

// Critical section
blocked0 = false;
// Do other things
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