
1

Formalizing requirements:

Branching time temporal logics

dr. István Majzik

BME Department of Measurement and Information Systems

2

Our goal

Formal
model

Formalized requirements

Model checker

OK Counterexample

t f

Informal
design

Informal
requirements

Automatically verifiable,
exact properties

3

Classification of temporal logics

• Linear:

▪ We consider individual executions of the system

▪ Each state has exactly one subsequent state

▪ Logical time along a linear timeline (trace)

• Branching:

▪ We consider trees of executions
of the system

▪ Each state possibly has
many subsequent states

▪ Logical time along a branching timeline
(computation tree)

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3s3

{Red}

4

Computation tree

Kripke
structure:

Computation tree:
possible branchings

s5

s2s1 s3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s4

{Red, Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red, Yellow}

s5

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}

5

Branching time temporal logics: CTL, CTL*

6

Branching

In a given state,
we can formulate requirements on the outgoing
paths of the state:

• E p (Exists p): there exists at least one path
from the state for which p holds
▪ Requirement on a single path

▪ Existential operator

• A p (for All p): for all paths from the state
p holds
▪ Requirement on all possible paths

▪ Universal operator

s

s

7

Branching time temporal logics

• CTL*: Computational Tree Logic *

An arbitrary combination of

▪ Path quantifiers (E, A)

▪ Path-specific temporal operators (X, F, G, U)

• CTL: Computational Tree Logic

▪ An operator is a combination of a
path quantifier and a path-specific operator

▪ E.g. AX, E(_ U _)

8

CTL*: Computational Tree Logic *

9

CTL* operators (informal)

• Path quantifiers (interpreted over states):

▪ A: “for All futures”,
for all possible paths from the current state

▪ E: “Exists future”, “for some future”,
for at least one path from the current state

• Path-specific operators (interpreted over paths):

▪ X p: “neXt”, for the next state p holds

▪ F p: “Future”, for a state along the path p holds

▪ G p: “Globally”, for each state of the path p holds

▪ p U q: “p Until q”, for a state of the path q will hold, and
until then for all states p holds

10

CTL* formulas

A(p  F q)

For all paths,
we have that
…

if initially
p holds, …

then

in the future …

q eventually
holds.

11

Examples for CTL* formulas

• E(p  G q)

There exists at least one path such that
p holds (initially for the path) and for all suffices of the
path q holds.

• E(XXX p  F q)

There exists a path such that

▪ p holds for its fourth state, or

▪ eventually q holds

12

Formal treatment of CTL*

• So far: only an informal introduction

• To enable automatic formal verification, we need:

▪ Syntax rules:
What are the well-formed formulas in CTL*?

▪ Semantic rules:
When does a formula in CTL* hold for a given model?

13

CTL* syntax

• State formulas: evaluated over states
▪ S1: an atomic proposition P is a state formula

▪ S2: for state formulas p and q,
we have state formulas p and pq

▪ S3: for a path formula p,
we have state formulas E p and A p

• Path formulas: evaluated over paths
▪ P1: every state formula is a path formula

▪ P2: for path formulas p and q,
we have path formulas p and pq

▪ P3: for path formulas p and q,
we have path formulas X p and p U q

Well-formed formulas in CTL*: state formulas

14

CTL* semantics: notation

• M = (S, I, R, L) Kripke structure

•  = (s0, s1, s2,…) a path of M where
s0∈I and i≥0: (si, si+1)R

▪ i = (si, si+1, si+2,…) the suffix of  from i

• M, |= p (for a path formula p):
in Kripke structure M, along path , p holds

• M,s |= p (for a state formula p):
in Kripke structure M, in state s, p holds

15

CTL* semantics: state formulas

• S1:

M,s |= P iff PL(s)

• S2:

M,s |= p iff not M,s |= p

M,s |= pq iff M,s |= p and M,s |= q

• S3:

M,s |= E p (for path formula p)

iff there exists a path =(s0, s1, s2,…) in M such that

s=s0 and M, |= p.

M,s |= A p (for a path formula p)

iff for all paths =(s0, s1, s2,…) in M such that

s= s0 we have M, |= p.

16

CTL* semantics: path formulas

• P1:

M, |= p (for a state formula p) iff M, s0 |= p

• P2:

M, |= p iff not M, |= p

M, |= pq iff M, |= p and M, |= q

• P3:

M,  |= X p iff M,1 |= p

M,  |= p U q iff

j |= q for some j≥0 and
k |= p for all 0≤k<j

17

Background: Computational
complexity of evaluation

• Worst-case time complexity: at least O (|S|2  2|p|)

▪ |S|2 number of transitions in the model
(Kripke structure) in the worst case

▪ |p| number of temporal operators in the formula

• The exponential complexity seems frightening

▪ Although temporal requirements tend to be short

• Goal: simplifying CTL*

▪ Should remain usable in practice

▪ Should reduce worst-case time complexity

18

CTL: Computational Tree Logic

19

CTL operators (informal introduction)

Complex operators over sates:

• EX p: there exists a path where p holds in the next state

• EF p: there exists a path where p holds in the future

• EG p: there exists a path where p holds globally

• E(p U q): there exists a path where p holds until q
eventually holds

• AX p: for all paths p holds in the next state

• AF p: for all paths p holds in the future

• AG p: for all paths p holds globally

• A(p U q): for all paths p holds until q eventually holds

20

CTL operators (examples)

EX P EF P EG P

AX P AF P AG P

21

CTL formulas (examples)

• AG EF p
starting from any state,
a state can be reached where p holds

• Example: AG EF Reset

• AG AF p
starting from any state,
we will encounter a state where p holds

• Example: AG AF Terminated

• AG (p  AF q)
starting from any state,
if we encounter a state where p holds,
then we will eventually reach a state where q holds.

• Example: AG (Request  AF Reply)

22

CTL formulas (examples)

• EF AG p

It is possible for the system to reach a state
after which p will hold in all states

• AF AG p

Along all paths we will eventually reach a state
from which p will always hold

• Example: AF AG Normal

• AG (p  A (p U q))

In all reachable states,
if p holds in a state,
then for all paths starting from that state,
p holds until q eventually holds,

• “p holds until q eventually holds”: we will reach a state where q
holds, and until then p holds in all states

23

Formalizing requirements: an example

• Two processes in a system: P1 and P2

• The state of processes w.r.t the requirements:

▪ In critical section: C1, C2

▪ Not in critical section: N1, N2

▪ Waiting to enter critical section: W1, W2

• Atomic propositions:
AP = {C1, C2, N1, N2, W1, W2}

24

Example (cont.)

• There is at most one process in the critical section:

AG ((C1  C2))

• If a process is waiting to enter the critical section,
then it will eventually enter the critical section:

AG (W1  AF(C1))
AG (W2  AF(C2))

• Processes enter the critical section in alternating
order; one exits, then the other enters:

AG(C1  A(C1 U (C1  A((C1) U C2))))
AG(C2  A(C2 U (C2  A((C2) U C1))))

P2 in critical
section

P2 not in
critical section

P1 enters the
critical section

25

CTL syntax I.

State formulas:

• In CTL* we had:
▪ S1: an atomic proposition P is a state formula

▪ S2: for state formulas p and q,
we have state formulas p and pq

▪ S3: for a path formula p,
we have state formulas E p and A p

• In the case of CTL, the same rules (S1, S2, S3)
apply!

26

CTL syntax II.

Path formulas:

• In CTL* we had:
▪ P1: every state formula is a path formula

▪ P2: for path formulas p and q,
we have path formulas p and pq

▪ P3: for path formulas p and q,
we have path formulas X p and p U q

• In the case of CTL, we have a single rule instead:

▪ P0: for state formulas p and q,
we have path formulas X p and p U q

27

CTL syntax: Summary

State formulas:
▪ S1: an atomic proposition P is a state formula

▪ S2: for state formulas p and q,
we have state formulas p and pq

▪ S3: for a path formula p,
we have state formulas E p and A p

Path formulas:

▪ P0: for state formulas p and q,
we have path formulas X p and p U q

• Path formulas cannot be directly nested
• Path formulas are used only in rule S3
• Path formulas X p and p U q can be nested only under E and A

28

The consequences of formal syntax

• Path formulas cannot be directly nested

▪ X and U can be applied only to state formulas

▪ Boolean connectives can be applied only to state formulas

• Path formulas are used only in rule S3:

• Because of rule S3, only a path quantifier can be applied

to path formulas X p and p U q

hence operators “stick together”

▪ EX, E(. U .),

▪ AX, A(. U .)

29

Formulas in CTL and CTL*

• Derived operators of CTL

▪ EF p means E (true U p)

▪ AF p means A (true U p)

▪ EG p means AF (p)

▪ AG p means EF (p)

• CTL* but not CTL

▪ E(X Red  F Yellow)

Boolean connective between path formulas

▪ A(X G (Red  Yellow)),
E(XXX Red)

Nested path formulas

30

CTL formal semantics

• State formulas:

▪ rules S1, S2, S3 (see CTL*) remain unchanged

• Path formulas:

▪ rules P1, P2, P3 are replaced by a new rule P0:

P0:

▪ M, |= X p where p is a state formula iff
M,s1 |= p

▪ M, |= p U q where p,q are state formulas iff
M,sj |= q for some j≥0 and
M,sk | = p for all 0≤k<j

Here we have state formulas according to syntax rule P0

31

Background: Computational
complexity of evaluation

• Worst case time complexity: O (|S|2|p|)

▪ |S|2 numer of transitions in the model
(Kripke structure) in the worst case

▪ |p| number of temporal operators in the formula

• Lower than in case of CTL*:

▪ No 2|p| factor

▪ Expressive enough for many practical requirements

• Safety requirements: AG

• Liveness requirements: EF, AF

• What is the cost?

32

Expressive power

• A temporal logic is at least as expressive as an
other temporal logic iff it is able to formalize all
properties that the other logic can.

• It is more expressive iff furthermore there is a
property that can be expressed in the logic but not
in the other logic.

• Experience so far:

▪ LTL can not consider branching
(implicitly „for all paths”)

▪ CTL is more restricted than CTL*,
hence it is less expressive

▪ CTL* also includes all properties expressible in LTL

33

Expressive power – Formally

• The expressive power of TL2 is at least as big as the
expressive power of TL1 iff
for all Kripke structure M and for all its states s:

1:

2 : (, | , |)

p TL

q TL M s p M s q

 

  =  =

• Iff this relation holds mutually then TL2 and TL1 have the
same expressive power.

34

Expressive power of LTL, CTL, CTL*

CTL*

PLTL CTL

AF(p  Xq)
(implicit A
operator)

A(p U q)
(implicit A
operator)

AG EF p

AF(p  Xq)  AG EF p,

EXXX p

implicit A
operator

35

Supplementary: Extensions

Stochastic logics:

• Reliability and timing requirements:
▪ E.g.: if the current state is ERROR then there is a probability less

than 30% that this condition holds after 2 time units as well

• Extension of CTL:
▪ Over Continuous-time Markov chains (not a Kripke structure)

▪ Probability criteria for state reachability (steady state), path
traversal

▪ Timing criteria (time intervals) for operators X and U

Real-time logics:

• Requirements of real-time systems
▪ The logic can reference clock variables

▪ Handling of time intervals

36

The model checking problem

37

LTL model checking

Kripke structure M LTL formula p

Model checker
M, |= p ?

OK Counterexample

t f

If no path is given
then checking of all paths from the initial state

38

The model checker SPIN (old interface)

LTL operators:
F is <> (diamond)
G is [] (box)
(no operator X)

Labeling is
defined by state
variables

Handling of paths

39

Counterexample in SPIN

Order of states and
communication

40

CTL* or CTL model checking

Kripke structure M CTL* or CTL formula p

Model checker
M,s |= p ?

OK Counterexample

t f

41

Model checking in UPPAAL

• Atomic propositions:
▪ Predicates over state variables: a!=1

• Terms: integer arithmetic, bitwise operators, ? : (if-then-else)

▪ Reference for a location: Train(0).cross
• For parameterized processes: forall, exists

▪ Deadlock: deadlock expression (no action)

• Boolean connectives:
▪ and, or, imply, not

• Temporal connectives: restricted CTL
▪ Notation: [] (box) for G, <> (diamond) for F

• Hence: A[], A<>, E[], E<>

• E[] also for finite traces (to terminal state)

▪ Temporal connectives can not be nested
• One option though: p --> q for A[] (p imply A<> q)

42

Checking requirements in UPPAAL

• Editable list of requirements

• Requirements can be checked one by one

• Counterexample can be generated:
▪ Shortest, fastest, any

▪ Can be replayed in simulator

• Traversal of the state space:
▪ Depth-first search

▪ Breadth-first search

• State representation:
▪ Reduction

▪ Approximate (under- or overapproximation)

▪ The size of the hash table can be parameterized

43

The model checker interface in UPPAAL

44

Counterexample in UPPAAL’s simulator

45

Completing the motivating example

46

Motivating example: Mutual exclusion

• 2 processes, 3 shared variables (H. Hyman, 1966)

▪ blocked0: process 1 (P0) wants to enter

▪ blocked1: process 2 (P1) wants to enter

▪ turn: which process is allowed to enter (0 for P0, 1 for P1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section

blocked1 = false;

// Do other things

}

Is the algorithm correct?

P0 P1

47

The model in UPPAAL (version 1)
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

Automaton P0:

Modeling idioms used:
• Global variables
• Variables with restricted domain

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

48

UPPAAL: formalizing requirements

• Mutual exclusion:

At most one process is allowed to be in the critical section

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other

• The expected behavior is possible:

▪ For P0 it is possible to enter the critical section:

▪ For P1 it is possible to enter the critical section:

• Starvation freedom:

P0 will eventually enter the critical section:

P1 will eventually enter the critical section:

Labels: P0.cs, P1.cs, deadlock

49

UPPAAL: formalizing requiremetns

• Mutual exclusion:

At most one process is allowed to be in the critical section

A[] not (P0.cs and P1.cs)

• Deadlock freedom:

It is not possible that processes are mutually waiting for each other

A[] not deadlock

• The expected behavior is possible:

▪ For P0 it is possible to enter the critical section: E<>(P0.cs)

▪ For P1 it is possible to enter the critical section: E<>(P1.cs)

• Starvation freedom:

P0 will eventually enter the critical section: A<>(P0.cs)

P1 will eventually enter the critical section: A<>(P1.cs)

Labels: P0.cs and P1.cs

50

UPPAAL: Results of model checking

• Mutual exclusion is not ensured!

▪ Counterexample: interleaving between the two
processes (can be replayed in simulator)

• No deadlocks

• The expected behavior is possible

• Starvation freedom cannot be analyzed without
specification of timing

▪ Trivial counterexample: time elapses indefinitely in the
initial location

• A special consequence of timed behavior

• Enforcing progress: urgent location or invariants

▪ Starvation freedom?

• The system is not starvation free (cyclic counterexample)

51

Fixing the algorithm

Peterson’s algorithm

• For process P0
(P1 analogously):

Peterson:

while (true) {

blocked0 = true;

turn=1;

while (blocked1==true &&
turn!=0) {

skip;

}

// Critical section

blocked0 = false;

// Do other things

}

Hyman:

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

