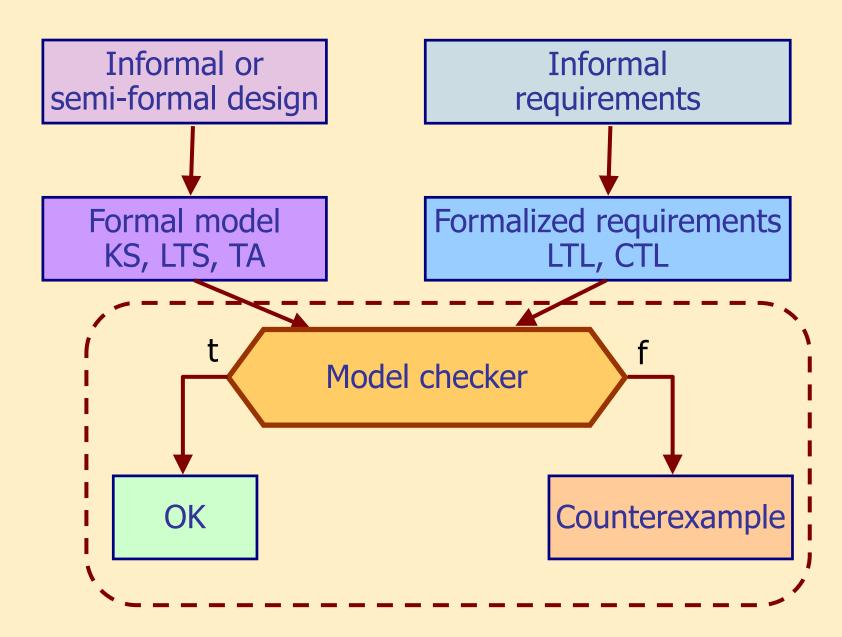
Model Checking

dr. István Majzik
BME Department of Measurement and Information Systems

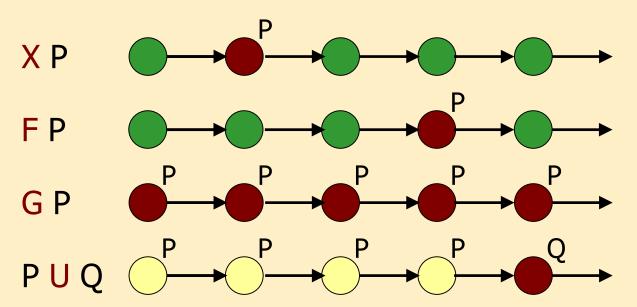
Our goal



Recap: linear temporal logic LTL

Elements of LTL:

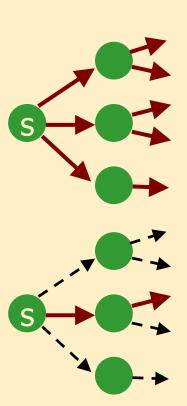
- Atomic propositions (elements of AP): P, Q, ...
- Boolean connectives: ∧, ∨, ¬, ⇒
 ∧: conjunction, ∨: disjunction, ¬: negation , ⇒: implication
- Temporal connectives: X, F, G, U:



Recap: branching time temporal logic CTL*

Elements of CTL*:

- Path quantifiers:
 - A: for All paths starting from the current state
 - E: there Exists a path starting from the current state
- Path-specific operators (as in LTL):
 - X p, F p, G p, p U q



Recap: branching time temporal logic CTL

Elements of CTL:

Composite operators over states

- EX p: there exists a path where p holds in the next state
- EF p: there exists a path where p holds in the future
- EG p: there exists a path where p holds globally
- E(p U q): there exists a path where p holds until q eventually holds
- AX p: for all paths p holds in the next state
- AF p: for all paths p holds in the future
- AG p: for all paths p holds globally
- A(p U q): for all paths p holds until q eventually holds

Overview

Mechanics of model checking

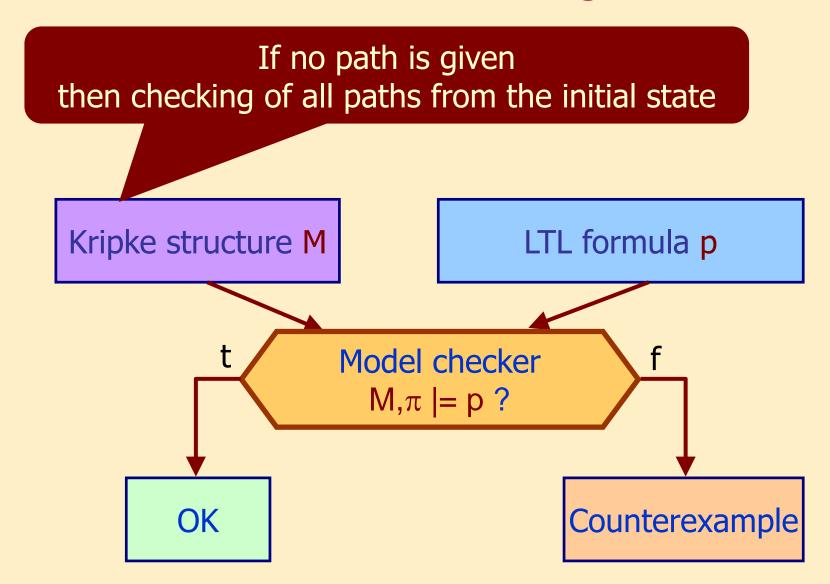
- Techniques for model checking
 - LTL: Semantic tableau
 - CTL: Labeling

Why is this useful?

- Possibilities, determining boundaries
 - Discovering boundaries (e.g. size of verifiable models)
 - Efficient implementation (10⁶⁹⁰⁰⁰ states? next lecture)
- Interesting applications (later)
 - Automatic test case generation
 - Synthesis of runtime monitors

LTL Model Checking using Semantic Tableau

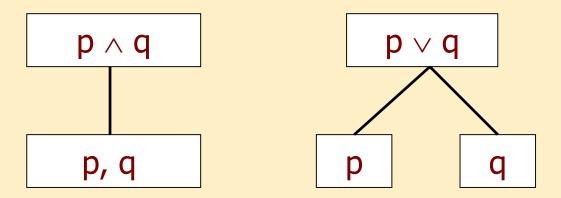
LTL model checking



Introuduction: Semantic Tableau for Propositional Logic

Problem: satisfiability in propositional logic

- Idea: decomposition of the formula to a tree (the tableau)
 - Nodes: formulas to satisfy
 - Adding edges: decomposition rules based on the semantics of connectives
 Branching: more than one ways to satisfy a formula
- Before decomposition: negation normal form (NNF): negation only appears on atoms
 - de Morgan's law: $\neg(p \lor q) = (\neg p) \land (\neg q), \quad \neg(p \land q) = (\neg p) \lor (\neg q)$
- Decomposition rules for PL:



Introduction:

Semantic Tableau for Propositional Logic

When to stop decomposing?

- Terminating a branch:
 - Only literals left
 - Each literal has to be satisfied by assigning values to variables
- After terminating a branch:
 - Contradiction: opposite literals
 - E.g. p, $\neg p$ is contradicting, no possible satisfying assignment
 - Successful branch: no contradiction
 - E.g.: for p, $\neg q$: p \leftarrow true, q \leftarrow false
 - This assignment is a model of the original formula
- Each successful branch corresponds to a satisfying assignment

Introduction: An example tableau for PL

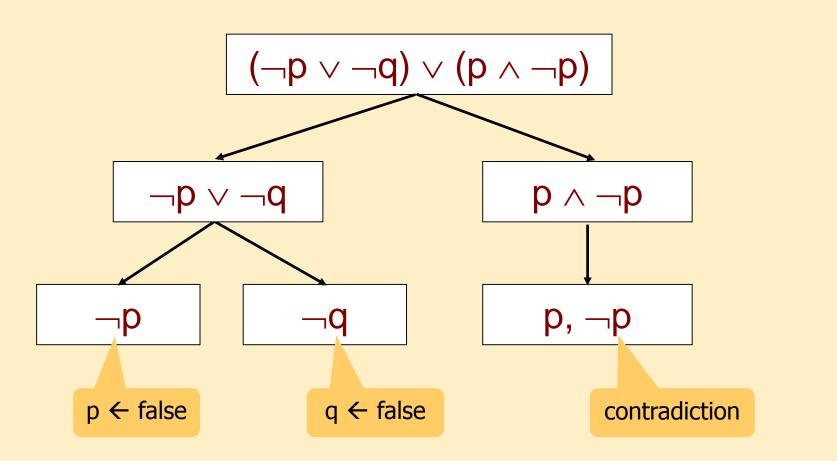
Original formula:

 $\neg(p \land q) \lor \neg(\neg p \lor p)$

Pushing – inwards:

 $(\neg p \lor \neg q) \lor (p \land \neg p)$

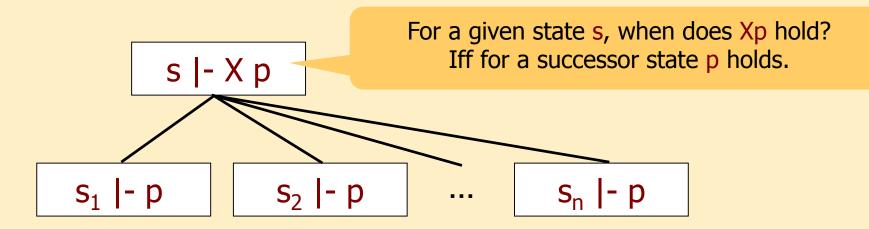
Tableau construction:



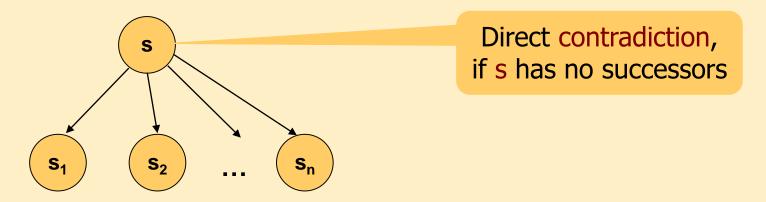
Generalizing tableau construction to LTL

- Model checking: searches for a counterexample, thus
 The tableau is constructed for the negated formula!
 - The negated formula is transformed to NNF
 - If there exists a successful (not contradicting) branch, it induces a counterexample!
 - If all branches are contradicting, then the original property holds!
- Decomposition rules for temporal connectives
 - Novelty: Decomposition is performed based on the model
 - Notation: s |- p denotes that we evaluate p starting from state s
- Handling literals:
 - $s \mid -P \text{ holds iff } P \in L(s)$
 - $s \mid -\neg P \text{ holds iff } P \notin L(s)$
- Temporal operators:
 - Rules for X and U are sufficient (others can be derived)

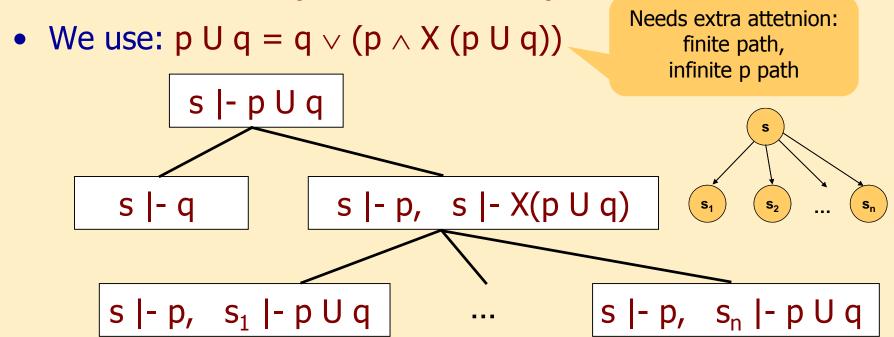
Decomposition for operator X



For model:



Decomposition for operator U



- When can we terminate?
 - Contradiction:
 - Atomic propositions contradict each other
 - Operator X the path terminates without encountering q
 - Cycle of p states without encountering q
 - Successful branches:
 - Atomic propositions can be satisfied
 - Cycle without contradiction

A special operator: R

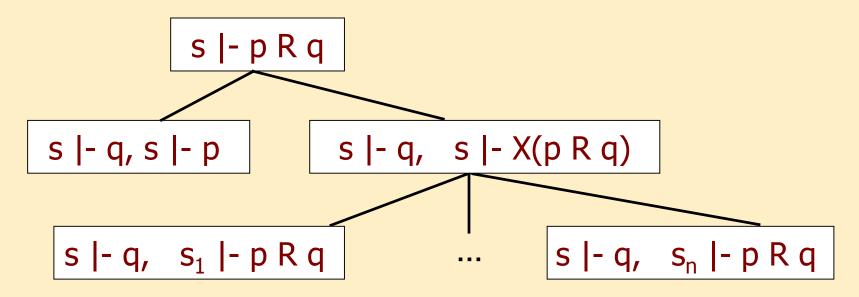
NNF for operator U:

$$\neg$$
(p U q) = ?

We introduce the dual of operator U: R (Release)

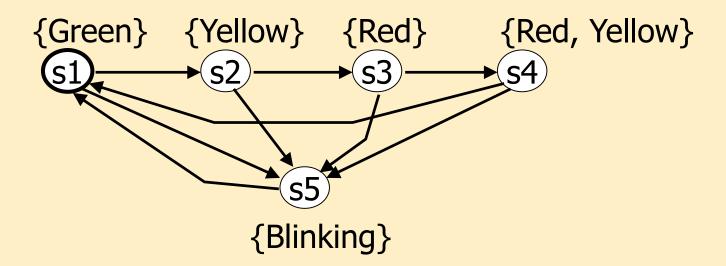
$$\neg(p U q) = (\neg p) R (\neg q)$$

- We use: $p R q = q \wedge (p \vee X (p R q))$
- The tableau for operator R:



An example

- Traffic light (KS)
- Is it true that if initially Green holds, then eventually Red will hold?
 - The formula to check: Green ⇒ F Red



Based on the model, can we construct a counterexample?

The tableau for the property

- Negation of the formula: $s_1 \mid -\neg (Green \Rightarrow F Red)$
- NNF (based on $P \Rightarrow Q = \neg P \lor Q$):
 - \neg (Green \Rightarrow F Red) = Green $\land \neg$ F Red = Green \land G (\neg Red)

{Yellow} {Red}

{Green}

Tableau construction:

S1 is labeled Green

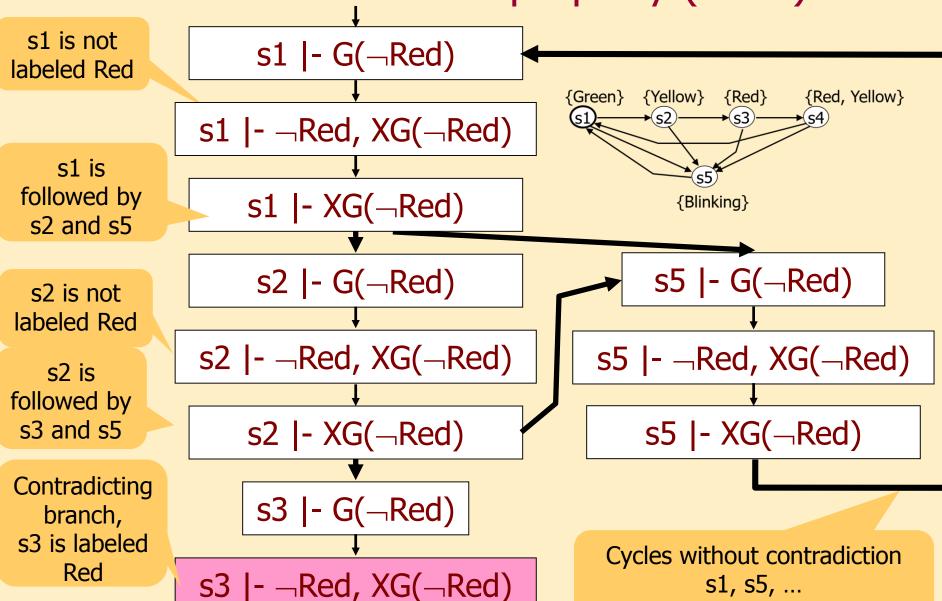
s1 |- Green ∧ G(¬Red)

s1 |- Green, s1 |- G(¬Red)

s1 |- G(¬Red)

Simplification: s1 |- Green removed {Red, Yellow}

The tableau for the property (cont.)



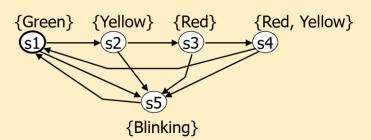
s1, s2, s5, ...

The results of model checking

- The results of tableau for the negated formula:
 - A contradicting branch (here the property holds)
 - Two cycles without contradiction: counterexamples
- Conclusions:
 - There are executions where the negated property holds:

Cycle 1: s1, s2, s5, ...

Cycle 2: s1, s5, ...



- The original formula Green ⇒ F Red thus fails
 - Counterexamples can be shown

Semantic tableau (summary)

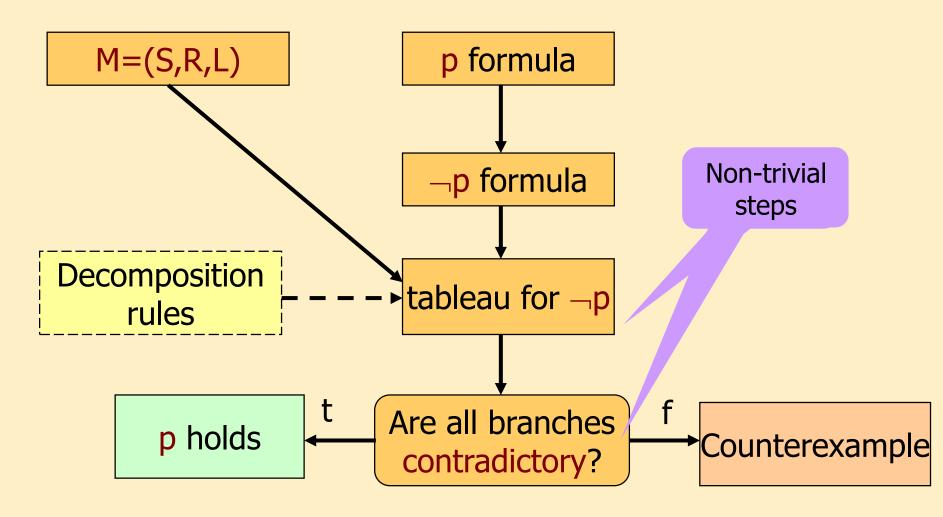
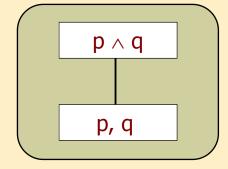
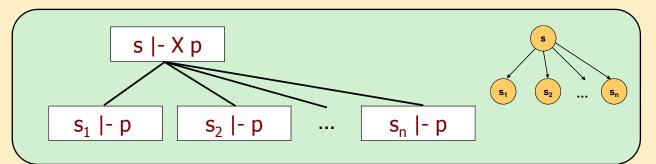
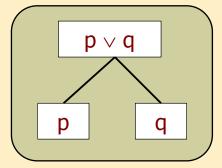
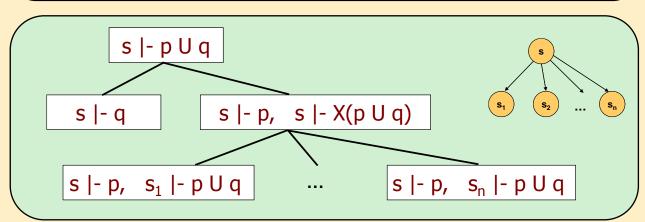


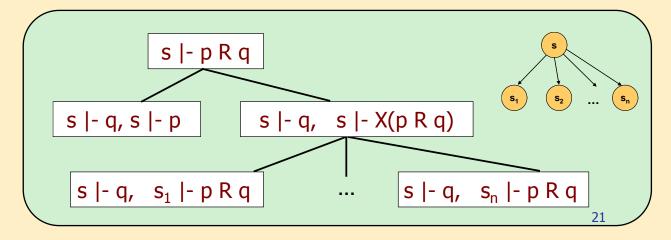
Tableau construction rules (summary)





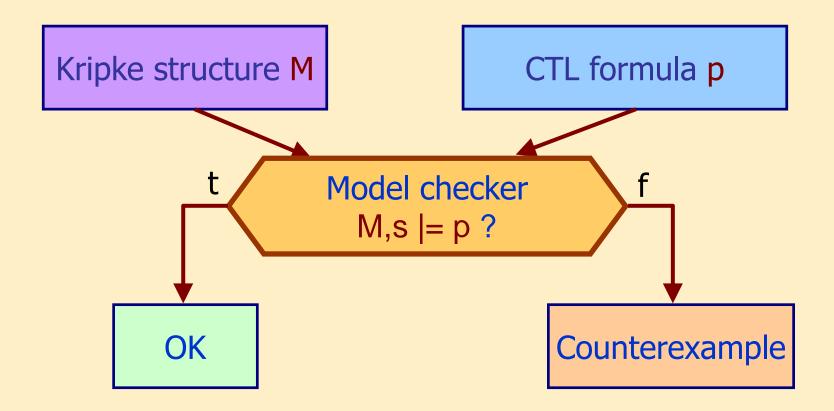






CTL Model Checking Based on Labeling

CTL model checking



Idea: Labeling of states

- Global model checking:
 - Notation: Sat(p) denotes the set of states where CTL formula p holds
 - Labeling: we label these states by p
 - This way s∈Sat(p) can be easily evaluated for a given state s (in particular for initial states): by checking whether it's labeled p
- The labeling, that is, Sat(p), is computed incrementally
 - We start from the labeling function L, and then expand it
 - The end of the iteration: fixed point reached

CTL model checking with state labeling

- Labeling of states: where the formula holds
- Labeling with complex formulas?
 - Decomposition of the formula based on its structure,
 and computing Sat() for subformulas (from the inside outwards):

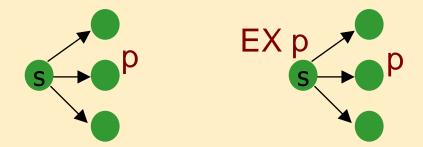
- Algorithm based on the decomposition of the formula:
 - Base case: KS is labeled by atomic propositions
 - Continuation: labeling with more complex formulas
 - Rules: if we have established labels p and q
 then we can establish where we have labels
 ¬p, p∧q, EX p, AX p, E(p U q), A(p U q)
 This way we progress outwards from the inside of a complex formula

Rules: Atomic propositions and Boolean connectives

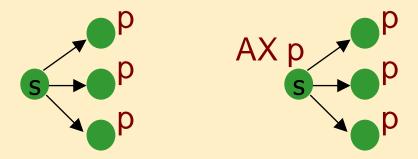
- P holds in a state s iff P∈L(s)
 - Here, P is already a label of s
- ¬P holds in a state s iff P∉L(s)
 - These states can be labeled ¬P
- p\q holds in a state s where p and q holds
 - A state can be labeled p∧q iff it is already labeled p and q
- Temporal operators: EX, AX, E(U), A(U)
 - More complex labeling rules

Rules: AX, EX

- EX p holds in a state s iff it has a successor where p holds
 - A state can be labeled EX p iff it has a successor labeled p



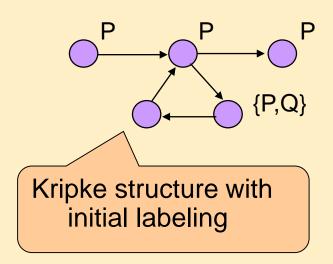
- AX p holds in a state s iff for all its successors p holds
 - A state can be labeled AX p iff all its successors are labeled p



Rules: E(p U q)

- Where does E(p U q) hold?
 - We use: $E(p U q) = q \vee (p \wedge EX E(p U q))$
 - "Recursive" formula
- So when can a state s be labeled E(p U q)?
 - if s is labeled q, or
 - if s is labeled p and there is at least one succeeding state (EX) that is already labeled E(p U q)
- An iteration arises:
 - States labeled q are the states where label E(p U q) first appears
 - We consider the predecessors of these states:
 If it is labeled p, we can add label E(p U q)
 - This way we traverse those paths backwards that lead to states labeled q through states labeled p

Labeling by E(P U Q)

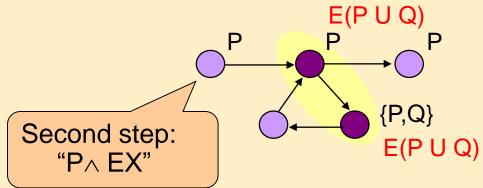


First step: Q

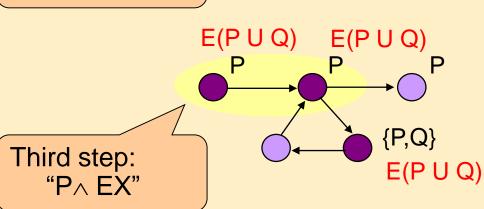
P

{P,Q}

E(P U Q)



 We iterate until a fixpoint is reached



Rules: A(p U q)

- Where does A(p U q) hold?
 - We use: $A(p \cup q) = q \vee (p \wedge AX \land (p \cup q))$
 - "Recursive" formula
- So when can a state s be labeled A(p U q)?
 - if s is labeled q, or
 - if s is labeled p and all succeeding states (AX) are already labeled
 A(p U q)
- An iteration arises:
 - States labeled q are the states where label A(p U q) first appears
 - We consider the predecessors of these states:
 If it is labeled p, and all its successors are labeled A(p U q), we can add label A(p U q)

This way we covered all operators defined in the syntax.

An additional rule: AF p

- Where does AF p hold?
 - We use: $AF p = p \vee AX AF p$
 - "Recursive" formula
- So when can a state s be labeled AF p?
 - if s is labeled p, or
 - all its successors (AX) are labeled AF p
- An iteration arises:
 - States labeled p are the states where label AF p first appears
 - We consider the predecessors of these states:
 If all its successors are AF p, we can add label AF p
 - This way we traverse those paths backwards that lead to a state labeled p

Iteration using set operations

- We expand the labeling using operations on sets
 - Initial set: states already labeled by subformulas
 - Expanding the labeling:
 - E(p U q): "At least one successor is labeled ..."
 - A(p U q): "All successors are labeled ..."
 - This way we can label preceding states
- How can we define the set of preceding states?
 - Based on set of already labeled states Z:

```
pre_{F}(Z) = \{s \in S \mid \text{there exists } s' \text{ such that } (s,s') \in R \text{ and } s' \in \hat{Z} \}
pre_A(Z) = \{s \in S \mid \text{ for all } s' \text{ such that } (s,s') \in R \text{ we have } s' \in Z\}
```

At least one successor is labeled

All successors

are labeled

- Example: E(P U Q):
 - Initial set: $Z_0 = \{s \mid Q \in L(s)\}$
 - Expansion: $Z_{i+1} = Z_i \cup (pre_E(Z_i) \cap \{s \mid P \in L(s)\})$

Labeled so far

Predecessors of already labeled states

labeled P

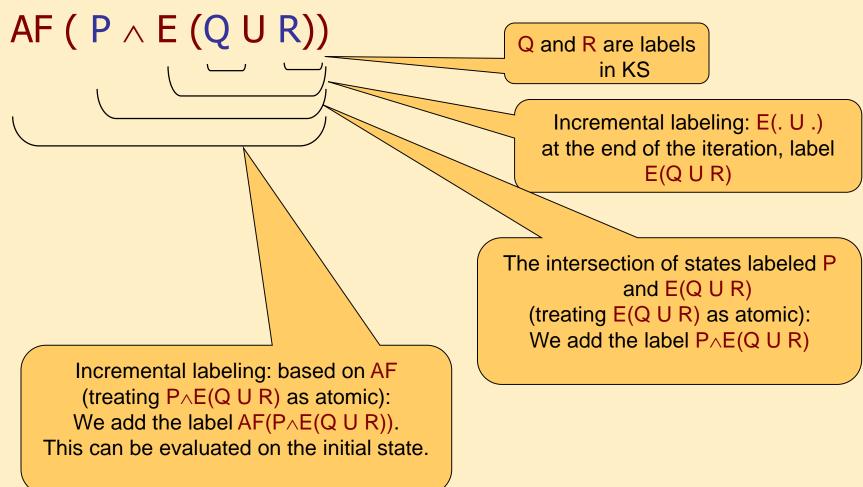
■ End of the iteration: if Z_{i+1} = Z_i (fixedpoint)

CTL model checking – summary

- Global model checking:
 - Labeling of states by (sub)formulas that hold in the state
- Labeling by increasingly complex formulas
 - Starting from atomic formulas to more complex formulas, from the inside outwards
 - Using the labeling obtained in the previous iteration based on rules derived from operator semantics
- EX, AX: Examining and labeling predecessors
- E(p U q), A(p U q): Incremental labeling
 - Initial set:
 - State sets determined by the innermost formulas (p, q)
 - Iteration: based on semantics (applied to predecessors)
 - End of iteration: no more labels can be added to the labeling

Example

Decomposition of formulas:



Exercise

- A traffic light has three aspects: red, yellow and green.
 - Initially all aspects are off.
 - After turning the light on, the red aspect is on.
 - From this, there are two ways to proceed: red-yellow (both are on), and green.
 - Red-yellow is followed by green, and green is followed by red again. From this, the behavior is the same as before.
- Check whether the following formula holds for the initial state of the model: E((¬red) U (EX green))

Summary

- LTL model checking
 - Tableau construction
 - Propositional logic: contradictory and successful branches
 - LTL: searching for a counterexample (witness for negated formula)
- CTL model checking
 - Iterative labeling
 - Incremental labeling with increasingly complex formulas (global model checking)
 - Set operations

How can these algorithms be implemented efficiently?

LTL model checking: Automata theoretic approach

(Supplementary)

Automata for finite words

- $A=(\Sigma, S, S_0, \rho, F)$ where
 - Σ is the alphabet, S are states, S_0 are initial states
 - ρ is the transition relation, $\rho: S \times \Sigma \to 2^S$
 - F is the set of accepting states
- A run of the automaton:
 - For a sequence of symbols from the alphabet
 a word w=(a₀, a₁, a₂, ... a_n) –
 a sequence of states r=(s₀, s₁, s₂, ... s_n)
 - r is an accepting run iff $s_n \in F$
 - Word w is accepted iff there exists an accepting run
- L(A)={ w∈ Σ* | w is accepted }
 the language accepted by the automaton

Automata on infinite words

- Application: continuously operating systems
 - No final state can not be checked for acceptance
- Büchi acceptance condition:
 - For a word w=(a₀, a₁, a₂, ...) a sequence of states r=(s₀, s₁, s₂, ...)
 - lim(r) = {s | s occurs infinitely many times, that is, there is no j such that ∀k>j: s≠s_k}
 - A run is accepting iff lim(r) ∩ F ≠ 0
 - A word w is accepted iff there exists an accepting run over it (an accepting state is encountered infinitely many times)
- L(A)={w∈ Σ* | w accepted}
 the language accepted by the automaton

Auxiliary material

Automata theoretic approach

- For a state s of KS: L(s) is a symbol of alphabet 2^{AP}
 E.g. {Red, Yellow} is a symbol of the alphabet
- A path $\pi = (s_0, s_1, s_2, ... s_n)$ induces a word $(L(s_0), L(s_1), L(s_2), ... L(s_n))$
- We construct two automata:
 - Based on Kripke structure M=(S,R,L) an automaton A_M can be constructed that accepts exactly those words that correspond to paths of M.
 - Based on formula p an automaton A_p can be constructed that accepts exactly those words that characterize paths for which p holds
 - Tableau construction rules can be used: what must hold in the current state, and what for the successor states

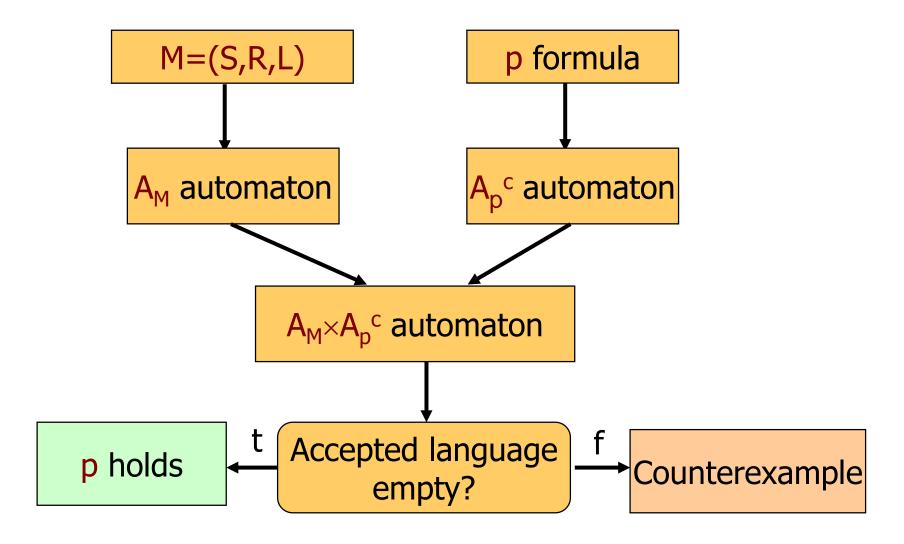
Auxiliary material

 $L(A_p)$

Model checking using automata

- Model checking problem: ∠(A_M)⊆∠(A_p), i.e., is the model's language part of the property's language?
 - If so then M |= p
- Reformulating the problem:
 - Checking emptiness of intersection of languages: $L(A_M) \cap L(A_D)^c = 0$, here $L(A_D)^c$ is the complement of the language
 - Is the language accepted by the synchronous product automaton $A_M \times A_p^c$, induced by the model automaton A_M and the complement automaton of the property A_p^c , empty?
 - If so then $M,\pi \mid = p$
 - The accepted language is empty iff there is no reachable accepting state
- Continuously operating systems
 - Automata on infinite words;
 Büchi acceptance condition: searching for loops

Auxiliary material Automata theoretic model checking



"On-the-fly" model checking

• Idea:

- During construction of automaton A_p the synchronous product can be constructed
- Construction of synchronous product automaton
 - Directed by the property to verify: as the states of the automaton A_p are established, the states of A_M has to be "looked up"
 - The generation of the full state space is not necessary
 - E.g. when deriving from a higher level formalism