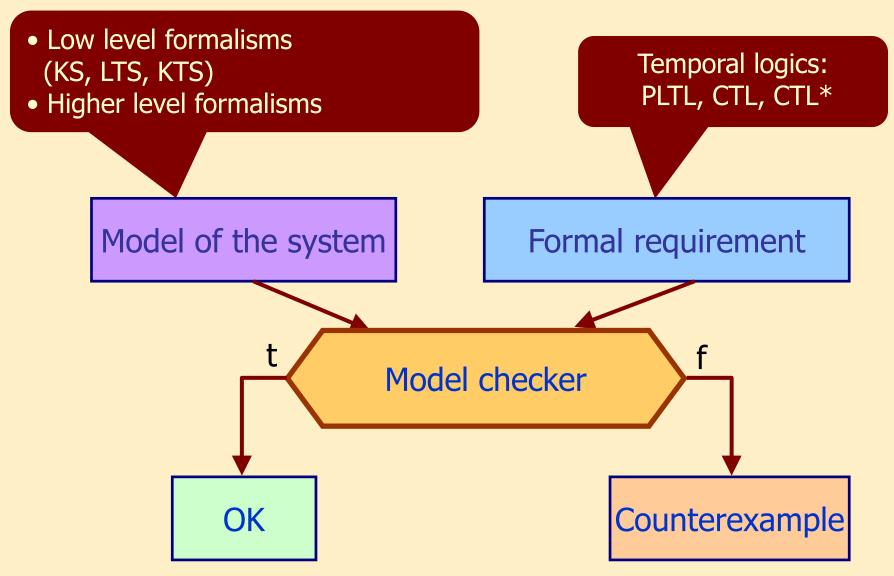
Efficient Techniques for Model Checking: Bounded Model Checking

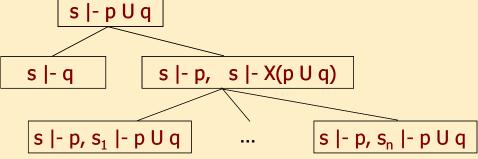
dr. István Majzik BME Department of Measurement and Information Systems

Where are we now?

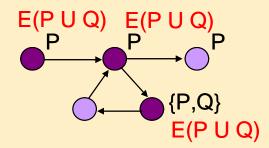


Recap: presented techniques for model checking

- LTL model checking:
 - Semantic tableaux: decomposing formulas based on the model



- Automata theoretic approach (supplementary material)
- CTL model checking:
 - Labeling: iterative labeling of states



Overview of the presented techniques

• CTL model checking: symbolic technique

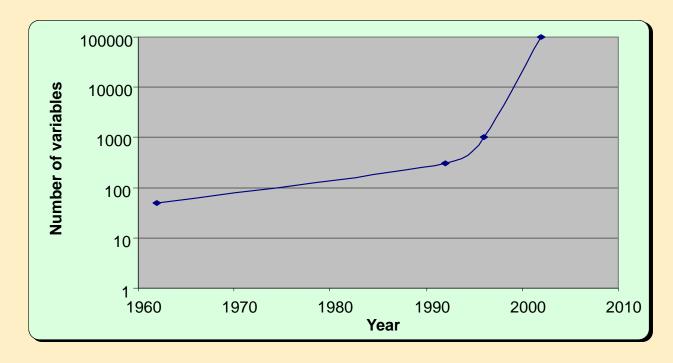
Semantics-based tehcnique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations over sets	Efficient operations over ROBDD

- Model checking invariants: Bounded model checking
 - Satisfiability checking for Boolean formulas with a SAT solver
 - Model checking up to a given bound: Searching for counterexamples within a bounded length
 - A counterexample is a valid counterexample
 - If no counterexample is found, it is only a partial result

Bounded Model Checking

SAT solvers

- SAT solver:
 - Searches for a model a variable assignment that makes the formula true Example: bitvector (1,1,0) for formula f(x₁,x₂,x₃)=x₁ ∧ x₂ ∧ ¬x₃
- NP-complete, but efficient algorithms exist
 - zChaff, MiniSAT, ...



Goal

Reducing the problem to a suitable problem in SAT

- Model and temporal logic property together
 - Typically invariant properties: condition on all reachable states
- Using a SAT solver for model checking
 - If the property holds the SAT solver finds no model for the formula
 - If the property fails the model found by the SAT solver induces a counterexample
 - The counterexample can be used for debugging
 - An efficient technique for invariant properties

The basics of bounded model checking

- We do not handle the state space all in one
- We perform checking by restricting the length of paths
 - Partial verification: checking only up to a given bound in path length
 - The bound can be iteratively increased
 - In certain cases, the state space has a diameter the length of the longest loop-free path
- The bound can be estimated:
 - Based on intuition about the problem
 - Based on worst-case execution time

Informal introduction

- How do we describe a path?
 - Starting from the initial states: characteristic function I(s)
 - "Unrolling": along potential transitions
 - Transition relation (where can we progress): characteristic function $C_R(s,s')$
 - Transition between s and s': C_R(s,s')
 - Transition between s' and s": C_R(s',s")
 - ...
 - Simpler notation: Upper index instead of primes: $C_R(s^0,s^1)$, $C_R(s^1,s^2)$...
- How do we describe the property?
 - Invariant: condition on all states a predicate p(s)
- The characterization of a counterexample (with conjunction):
 - Starting from the initial state: I(s)
 - "Stepping" along the transition relation: C_R(s,s')
 - To a counterexample (somewhere p(s) fails): ¬p(s) disjunction on states of the path

A model of this formula corresponds to a counterexample!

Notations

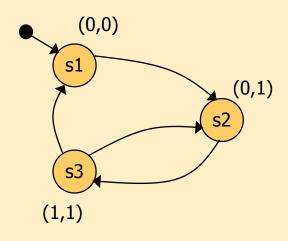
- Kripke structure M=(S,R,L)
- Logical formulas:
 - I(s): the characteristic formula of initial states in n variables
 - Background: Encoding states with a bit vector of length n
 - C_R(s,s'): the characteristic formula of transitions in 2n variables
 - The individual transitions are combined with disjunction
 - path(): characteristic function of paths of length k in (k+1)n variables

path(
$$s^0, s^1, ..., s^k$$
) = $\bigwedge_{0 \le i < k} C_R(s^i, s^{i+1})$

Upper indices instead of primes

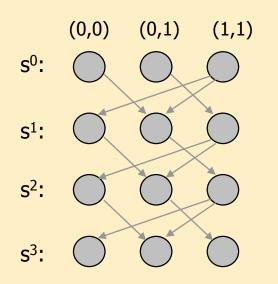
- p(s): characteristic function of the property
 - Based on the labeling L
 - In general: can be constructed based on the state variables

Examples: encoding a model



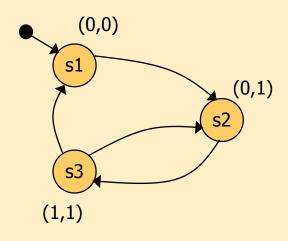
Initial states: $I(x,y) = (\neg x \land \neg y)$

Transition relation: $C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \gamma')$



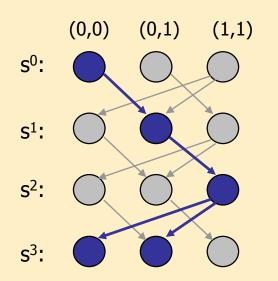
Unrolling for 3 steps from the initial states: $I(x^{0},y^{0}) \land path(s^{0},s^{1},s^{2},s^{3}) =$ $= I(x^{0},y^{0}) \land$ $C_{R}(x^{0},y^{0},x^{1},y^{1}) \land$ $C_{R}(x^{1},y^{1},x^{2},y^{2}) \land$ $C_{R}(x^{2},y^{2},x^{3},y^{3})$

Examples: encoding a model



Initial states: $I(x,y) = (\neg x \land \neg y)$

Transition relation: $C_{R}(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \gamma')$



Unrolling for 3 steps from the initial states: $I(x^{0},y^{0}) \land path(s^{0},s^{1},s^{2},s^{3}) =$ $= I(x^{0},y^{0}) \land$ $C_{R}(x^{0},y^{0},x^{1},y^{1}) \land$ $C_{R}(x^{1},y^{1},x^{2},y^{2}) \land$ $C_{R}(x^{2},y^{2},x^{3},y^{3})$

Formalizing the problem

 Invariant p(s) to prove: Each path from the initial states ends in a state where p(s) holds

 $\forall i: \forall s^0, s^1, \dots, s^i: (I(s^0) \land path(s^0, s^1, \dots, s^i) \Rightarrow p(s^i))$

• If p(s) fails at some point then there exists an i such that the followng formula is satisfiable:

$$I(s^{\circ}) \wedge \operatorname{path}(s^{\circ}, s^{1}, ..., s^{i}) \wedge \neg p(s^{i})$$

The model can be found by the SAT solver!

- That is, values for the (i+1)-n variables that define the path (s⁰,s¹,...,sⁱ)
- First idea: for i=0,1,2,..., check whether for a path of length i the following formula can hold:

$$I(s^{\circ}) \wedge \operatorname{path}(s^{\circ}, s^{1}, ..., s^{i}) \wedge \neg p(s^{i})$$

Elements of the algorithm

- Iteration: i=0,1,2,... on the length of paths
- We are investigating loop free paths: Ifpath

 $lfpath(s^0, s^1, ..., s^k) = path(s^0, s^1, ..., s^k) \land \bigwedge s^i \neq s^j$

- Termination condition during the iteration:
 - There is no loop free path with length i from the initial state, that is, the following is not satisfied

$$I(s^{0}) \wedge \text{lfpath}(s^{0}, s^{1}, ..., s^{i})$$

 There is no loop free path with length i (from anywhere) to a bad state (where p(s) fails), that is, the following is not satisfied

lfpath
$$(s^0, s^1, ..., s^i) \land \neg p(s^i)$$

• If the iteration stops, then p(s) holds invariably

Expressed in terms

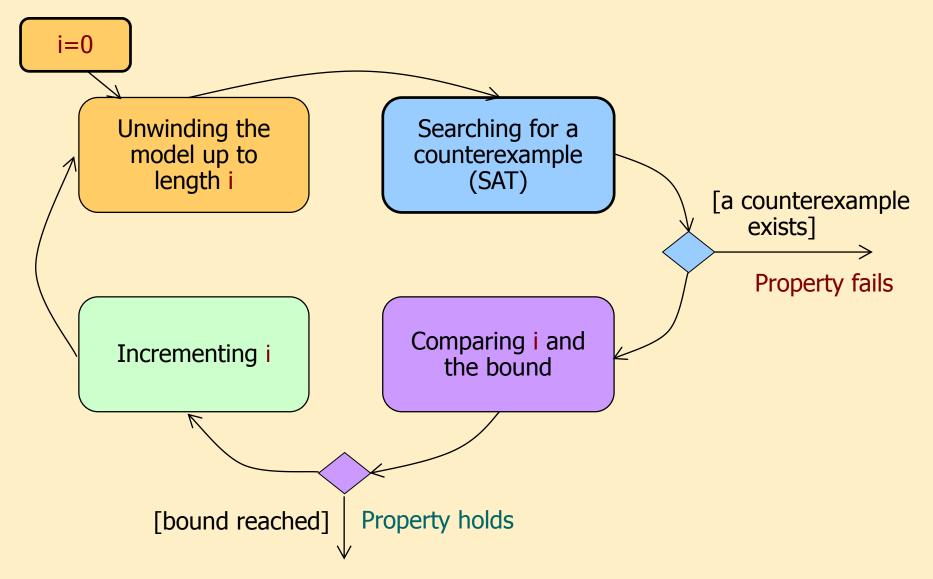
of the state variables

 $0 \le i < j \le k$

The algorithm No more loop free i=0paths from the initial while True do states if not SAT($I(s^0) \wedge \text{lfpath}(s^0, s^1, ..., s^i)$) or not SAT((lfpath($s^0, s^1, ..., s^i$) $\land \neg p(s^i)$) then return True No more loop if SAT($I(s^0) \wedge path(s^0, s^1, ..., s^i) \wedge \neg p(s^i)$) free paths to a then return (s^0, s^1, \dots, s^i) bad state i = i + 1There is a path end from an initial state iteration to an error state

- If the result is True: the invariant holds.
- If the result is a model inducing a path (s⁰,s¹,...,sⁱ): it is a counterexample for the property p(s)

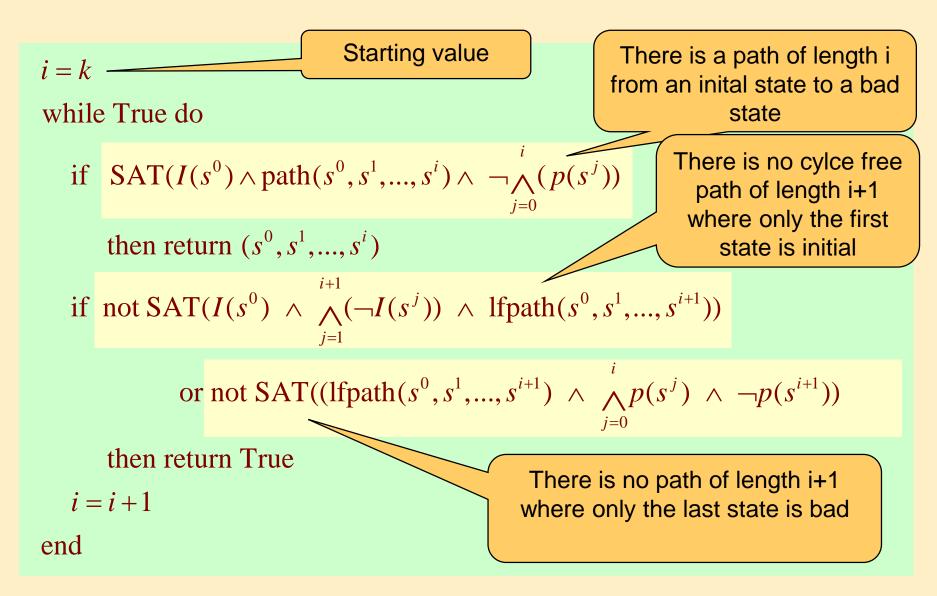
Bounded model checking with iteration



Refining the algorithm

- We do not start iterating from 0
 - We start with a given k, and try to generate the counterexample first:
 - If such a counterexample exists, we find it quickly (without iteration)!
 - We then examine whether for k+1 the iteration terminates, and then increase the bound
- It is not guaranteed that the length of the counterexample is minimal
 - We need some heuristic for estimating k if we aim to find a short counterexample
- Further restrictions on the input of SAT:
 - No initial states after the first (not necessarily a loop there might be many initial states)
 - No bad states before the last state

The refined algorithm



Summary: BMC

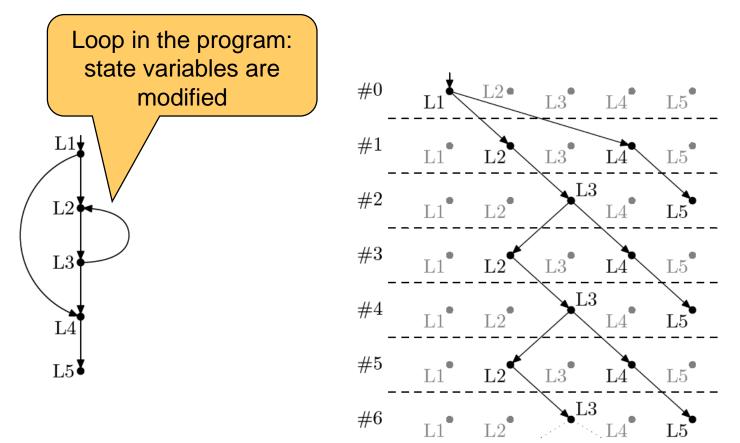
- Efficient for checking invariant poperties
- Sound method using loop free paths
 - If there is a counterexample up to a certain bound, it will be found
 - A counterexample found is a valid counterexample
- Handling the state space
 - SAT solver: symbolic technique using formulas
 - For up to a given unrolling a partial result is obtained
- Finding the shortest counterexampe
 - Can be used for test generation
- Automatic method
 - The bound can be determined heuristically (the diameter of the state space)
- Tools:
 - E.g. Symbolic Analysis Laboratory (SAL): sal-bmc, sal-atg

The results of Intel (hardware models)

Model	k	Forecast (BDD)	Thunder (SAT)
Circuit 1	5	114	2.4
Circuit 2	7	2	0.8
Circuit 3	7	106	2
Circuit 4	11	6189	1.9
Circuit 5	11	4196	10
Circuit 6	10	2354	5.5
Circuit 7	20	2795	236
Circuit 8	28		45.6
Circuit 9	28		39.9
Circuit 10	8	2487	5
Circuit 11	8	2940	5
Circuit 12	10	5524	378
Circuit 13	37		195.1
Circuit 14	41		
Circuit 15	12		1070

Auxiliary material Use for software: the problem of loops

Traversing cycles might lead to new states

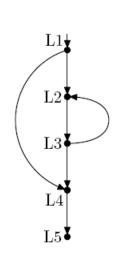


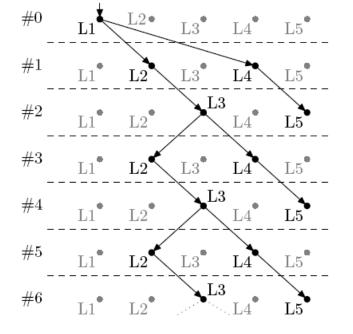
Control flow graph (CFG)

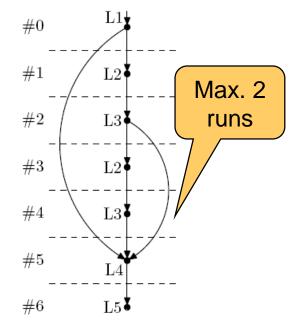
Auxiliary material

Loop unrolling

- Possibilities for unrolling the model:
 - Path enumeration:
 - Systematicall along all possible paths
 - Loop unrolling:
 - Unrolling loops for a given bound







Auxiliary material

Software model checking

• F-SOFT (NEC):

- Path enumeration
- Used for unix system tuilities (e.g. pppd)
- CBMC (CMU, Oxford University):
 - Supports C, SystemC
 - Loop unrolling
 - Support for certain system libraries in Linux, Windows, MacOS
 - Handling integer arithmetic:
 - Bit level ("bit-flattening", "bit-blasting")
 - CBMC with SMT solving:
 - Satisfiability Modulo Theories: extension to first order theories (e.g. integer arithmetic)
- SATURN:
 - Loop unrolling: at most 2 runs
 - Full Linux kernel verifiable: for Null pointer dereferences

Summary: efficient techniques for model checking

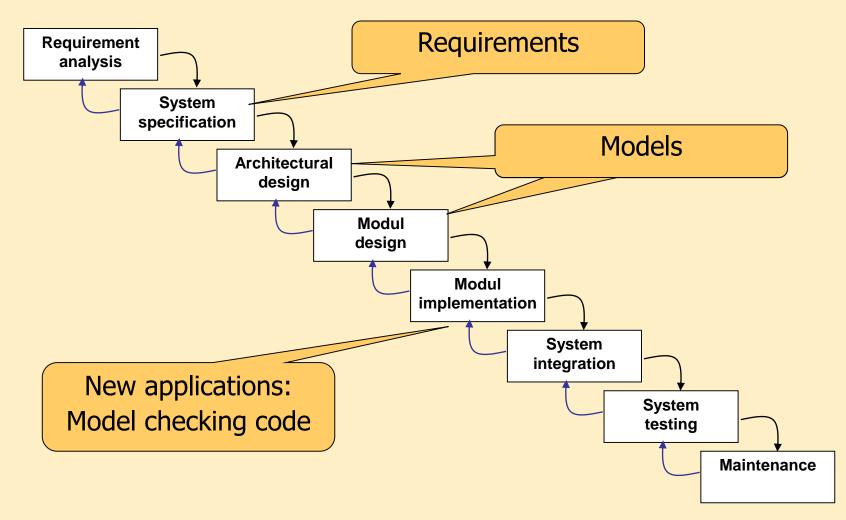
- Symbolic model checking
 - Charactereistic fomrulas represented as ROBDD
 - Efficient for "well structured" problems
 - E.g. identical processses in a protocol
 - Size depends on variable ordering

• Bounded model checking for invariant properties

- Based on satisfiability solving (SAT solver)
- Searching for counterexamples of bounded length
 - A counterexample found is a valid counterexample
 - If no counterexample found, it is only a partial result (longer counterexamples might exist)
- Good for test generation

Properties of model checking

Model checking during the design phase



Strengths of model checking

- Possible to handle large state spaces
 - State spaces of size 10²⁰, but examples even for size 10¹⁰⁰
 - This is the state space of the system (e.g. network of automata)
 - Efficient techniques: symbolic, SAT based (bounded)
- General method
 - Software, hardware, protocols, ...
- Fully automatic tool, no intuition or strong mathematical background is needed
 - Theorem proving is much harder!
- Generates a counterexample that can be used for debugging

Turing Award in 2007 for establishing model checking: E. M. Clarke, E. A. Emerson, J. Sifakis (1981)

Weaknesses of model checking

- Scalability
 - Uses explicit state space traversal
 - Efficient techniques exist, but good scalability can not be guaranteed
- Mainly for control driven applications
 - Complex data structures induce a large state space
- Hard to generalize result
 - If the protocol is correct for 2 processes, is it correct for N processes?
- Formalizing requirements is hard
 - "Dialects" in temporal logic for different domains
 - E.g.: PSL (Property Specification Language, IEEE standard)