
1

Higher-level formalisms:
Statecharts

dr. István Majzik

BME Department of Measurement and
Information Systems

2

Formal models for verification

Base-level mathematical
formalisms

KS, LTS, KTS

Higher -level
formalisms

PN, CPN, DFN, SC

Design
models

Model
transformations

What is provided
by a higher-level

formalism?

How can it be used
for modeling and

verification?

3

Outline

• Basic elements of statecharts

• Syntax of statecharts

– UML 2 statechart diagram (state machine)

• Semantics of statecharts

– UML 2 State Machine semantics

– (Other semantics possible: e.g. Harel semantics)

• Using statecharts

4

What is the goal of statecharts?

• Suitable for modeling the behavior of state-based,
event-driven systems
– Description of the behavior of a state machine

(~automaton)

– Reactive behavior:
Describes change of state triggered by external events

• E.g. incoming messages, signals, calls, …

– Actions: operations assigned to transitions
• E.g. assignment, outgoing message, …

• Common usage:
– Embedded systems: processing incoming events

(e.g. controlling a robot, security systems, …)

– Protocols: processing messages

5

Terminology

• State, active state
– Certain conditions hold (e.g. operation can be executed)

– State variables have certain values

• State transition
– Change of state

– Trigger event can make it happen
• Transitions without trigger: “spontaneous” execution

– Guard condition can be assigned to transitions
• Transition can occur only if guard condition is true

– Actions can be executed when transitions occur
• Operation or behavior assigned to a transition

• Event
– Asynchronous occurrence, can have parameters
– Individual entity, the instance of an event class

• Inheritance: to extend event parameters

6

Additional features for convenient modeling

• Refinement of states: State hierarchy

– Superstate: for the common properties of substates

• Description of concurrent behavior

– No ordering should be enforced (processing
simultaneously or in an arbitrary order)

– In case of multi-threaded/distributed/parallel execution

• Complex transitions

– Fork, join, conditional branch

• Memory: Return to a previous state configuration

– Return from the processing of an interrupting event

– In a single level of hierarchy or even deeper

7

State machines and statecharts

• State machine:

– Flat, simple states and transitions

• E.g. UPPAAL automata

• Statechart: extension of state machines

– State hierarchy: state refinement

– Concurrent regions: to describe concurrent behavior

– Complex transitions: fork, join, branch

– Memory: “Storing” the last active state configuration

– Some syntactic sugar

– Rarely used (unintuitive) extensions

• Delayed event, synchronization state, …

8

A statechart

On

out

in

Red

Count0

Count1

Count2

CarIn

CarIn

CarIn

Yellow

Green

Red
Yellow

On

Off

Shoot

H

CarGo

M
a
n
u
a
lO

ff

M
a
n
u
a
lO

n

T1

T4

T2

T3

Camera Count

Off

do/blink

9

Syntax of statecharts
(conforming to UML)

UML State Machine metamodel

10

11

States: Actions and state refinement

• States: Basic modeling element

• Actions assigned to states:

– Entry action (entry / ...)

– Exit action (exit / ...)

– Internal actions (do / ..., <event> / ...)

• State refinement

– Simple state: no refinement

– OR-refinement: substates of a superstate

• Exactly one substate is active when superstate is active

– AND-refinement: cocurrent regions

• One substate in every region is active when superstate is active!

print_job

entry / init()
exit / reset()
do / poll()
job / print()

12

Example: State refinement

On Off

off

out

on

13

Example: State refinement

On Off

Standby

Disconnected

out in

off

out

on

OR-refinement

14

Example: State refinement

On Off

Standby

Disconnected

SoundImage

out in

off

out

on

AND-refinement OR-refinement

15

Example: State refinement

On Off

Standby

Disconnected

SoundImage

SoundOn

SoundOff

snd mute out in

off

out

on

Picture

Videotext

txt txt

AND+OR-refinement OR-refinement

16

Example: State refinement

On Off

Standby

Disconnected

SoundImage

SoundOn

SoundOff

snd mute out in

off

out

on

Picture

Videotext

txt txt

Clock

NoClock

clk clk

17

Pseudostates

• Initial state: activates when superstate is activated

– Should be one in every OR-refinement

– Should be one in every region of an AND-refinement

• Final state: statechart terminates

• History states:

– “Stores” last active state configuration

• Simple history state: only on given hierarchy level

• Deep history state: remembers lower levels as well

• In a region of an AND-refinement: Only for the region

– What is the meaning of a transition entering the history state?

• When executed, the state configuration of the region is restored

• The history state is a “reference” to the stored state configuration

– What is the meaning of a transition leaving the history state?

• Selects the default state in case the region has not been activated
before

H

H*

18

Example: History state

Print_job

Close

Print

Process
Proc_ev

Get

Handle

ev

H

19

(State) transitions

• Specification of transitions (in addition to arrows)

• Syntax:
trigger [guard] / action

– trigger: triggering event

– guard: guard condition of the state

• Predicate over state variables and parameters of the event

• Can also refer to states: is_in(state)

– action: operation

• Action semantics: atomic operation

20

Special transitions

• Complex transitions

– Fork: to enter multiple states, each in a concurrent region

– Join: leave states in concurrent regions simultaneously

– Branching (condition): combined notation for multiple
transitions differing in guard conditions and actions
(segments)

• Transitions crossing hiearchy levels

– Permitted (although not elegant)

• Time-out as a trigger

– Occurs when the source state has been active for the
specified time

21

Example: State transitions

Prepare

Phase1

Act1

Phase2

Act2 Act3

Passed

Missed
timeout(50)

Failure

error

Work

illegal_activity [fatal] / report_status

[fatal] / report_status

[not_fatal] / recovery

22

Formal semantics of statecharts
(conforming to UML)

23

Semantics: How does it work?

• Basic elements:

– State machine: The statechart describes its behavior

– Event queue + Scheduler: „runtime environment”
(external elements)

Event queue

Scheduler

State machine

e

24

What is specified by the semantics?

Behavior of the state machine when processing an
event → a step of the state machine

• Transitions “fire”

– What’s new: a single event may trigger multiple
concurrent transitions (in active regions)

• Change of state configuration

– There may be multiple active states

• One active substate in every region of an active superstate

• One active substate in an OR-refined superstate

– Still, at most one active state in an OR-refinement or
region

– Applied recursively

25

Basic properties of the semantics

• Events are processed one by one

– The scheduler passes the new event only if the previous
event has been completely processed

• Stable state configuration: no enabled spontaneous transitions

• Complete processing of events (run to completion)

– Maximal set of transitions fire

• Every enabled transition will fire unless prevented by a conflict

– After firing all of these, the next event is passed

• The main point of the semantics is
event processing

– Based on this, the statechart can be implemented by
software (source code generation)

26

Steps of event processing 1/4

• External condition: The scheduler passes an event
to the stable state machine

• Enabled transitions:
– Source state is active

– Selected event triggers transition

– Guard condition is true

Based on the number of enabled transitions:
– If only one: Fire!

– If none: Is the event delayed?

• Yes: store it, ask a new event

• No: event may be discarded (without any actions)

– If multiple: Need to select transitions to fire

• Based on: conflicts

27

Example: Conflict

t4:

t5:
t3:t2:t1:

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

In this example, transitions t1, …, t5 are triggered by the same event e.
Active states are denoted by thicker borders.

- Cannot fire together: (t1,t2); (t4,t1); (t4,t2); (t4,t3)

- Not enabled: t5 (source state inactive)

- May fire together: (t1,t3); (t2,t3);

28

Steps of event processing 2/4

• Fireable transitions are selected:

– Maximal number of transitions without conflict

• Simultaneous firing of concurrent transitions

• Conflict between transitions:

– They leave the same state, that is, the intersection of
the sets of states inactivated is non-empty

• Resolving conflicts:

– Based on priority: the priority of a transition is higher if
its source state is lower in the refinement hierarchy

• OO concept: refinement “overrides”

– Nondeterministic choice in case of same priority

29

Example: Conflict resolution

t4:

t5:
t3:t2:t1:

a1 a2

a11 a12
a21

a22

a111

a112 a113

a121

a122

- Fireable: (t1,t3) or (t2,t3)

Transitions t1, …, t5 are triggered by the same event e.
Which may fire together?

- Larger priority than t4: t1, t2 and t3

- Cannot fire together: (t1,t2); (t4,t1); (t4,t2); (t4,t3)

30

Steps of event processing 3/4

• Selected transitions fire:

– In a nondeterministic order (no conflict)

– Therefore the order of actions is also nondeterministic

• Firing a single transition:

1. Source states are exited

• On lower hierarchies first

• Execution of exit actions

2. Actions of transitions are executed

3. Target states are entered → new configuration

• On higher hierarchies first

• Execution of entry actions

31

Example: Ordering of actions

entry / e1
exit / x1

S1

S11

entry / e11
exit / x11

entry / e2
exit / x2

S2

S21

entry / e21
exit / x21

t: ev / a1; a2

Order of actions: x11; x1; a1; a2; e2; e21

32

Steps of event processing 4/4

• Entering new configurations in the case of different
target states:
– If target state is simple (not refined):

• Will be part of the new configuration

• Its superstates (in which it is a substate) also activate

• Activated superstates will activate a substate in each of their
regions (determined by initial state)

– If target state has OR-refinement:
• A substate is activated as an initial state

– If target state has AND-refinement:
• A substate is activated in every region as an initial state

– If history state:
• The most recent state configuration is reactivated

• If this is the first activation: default state

– If state is not stable: proceed immediately

33

Example: Entering a concurrent state

S1
S2

S24

S25

S21

S23

H
S31 S32

S22

t:

What will be the new state configuration after firing transition t?

34

Modeling example

• Traffic light controller in the intersection with a
prioritized road

– Off: blinking yellow

– When turned on: green for prioritized road

– Green, yellow, red cycle: with timer events

– If at least 3 cars waiting on prioritized road: switch to
green regardless of timers

– Automatically take photos of vehicles crossing the
priority road on red light

• Manual on/off for this feature

35

1. Main cycle (for prioritized road)

on

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

off

off

off

off

Off

do/blink

36

2. With hierarchy

On

off

on

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Off

do/blink

37

3. Concurrent regions

On

off

on

Red

Yellow

Green

Red
Yellow

T1

T4

T2

T3

Camera Count

Off

do/blink

38

4. Complete controller

On

off

on

Red

Count0

Count1

Count2

CarIn

CarIn

CarIn

Yellow

Green

Red
Yellow

On

Off

Shoot

H

CarGo

M
a
n
u
a
lO

ff

M
a
n
u
a
lO

n

T1

T4

T2

T3

Camera Count

Off

do/blink

39

Role of statecharts in UML 2

• Description of state-based, event-driven behavior

– To model the behavior of an active object

• To formalize actions: UML 2 Action Semantics

– Method call

– Read/write attributes

– … (many possible operations)

– Ideas similar to Colored Petri nets (see later)

• To describe actions: There are other alternatives
(e.g. Alf)

40

Basics of statecharts (summary)

• Extensions

• Statechart syntax
– State hierarchy, concurrent regions, history states

– Complex transitions

• Statechart (informal) semantics
– Enabledness of transitions

– Selection of fireable transitions

– Firing transitions

– Forming a new state configuration

• Statechart tools
– UML 2 toolsets

– Yakindu Statechart Tools (statecharts.org)

– Quantum Programming (state-machine.com)

41

What can we do with statecharts?

• Generate source code

– Multiple templates

• Model checking

– PLTL algorithm can be “customized” for statecharts

– May verify by transforming into low-level model

• Generate tests

– Can be realized with a model checker

• Runtime verification: Generate monitor code

– Statechart as a reference
(specify valid behavior to compare to implementation)

