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Interpretation of formal models



Interpretation of automata models

Consider the following two automata models (constructed in the 
UPPAAL tool) that model the behavior of a traffic light and a 
pedestrian. In the initial state is_r=true and is_s=false.

• Draw the Kripke structure corresponding to the whole system, 
i.e., the reachable combinations of the states of the traffic light 
and the pedestrian, and the related transitions! 
Label each combined state with the names of the states that it 
represents (you can use the initial letters of the states).
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is_r=true

is_s=false



Interpretation of automata models – Solution

R,NS R,S

G,NS G,S

Synchronization 
(change!, change?)

Not possible; 
false condition

is_s == false
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Not possible; 
false condition

is_r == true

is_r=true

is_s=false



Formalization of properties using 
temporal logics



Theoretical questions

Argue if the following LTL equivalences are correct or not:  

1. F (Start  Stop) ≡ (F Start)  (F Stop)

2. G Stop ≡ not F (not Stop)

Argue if the following CTL equivalences are correct or not:  

1. AF (Start  Stop) ≡ (AF Start)  (AF Stop) 

2. AF (Start  Stop) ≡ (AF Start)  (AF Stop)

3. EF (Start  Stop) ≡ (EF Start)  (EF Stop)

Argue if the following formula are syntactically correct in 
CTL or not:

1. A (X Stop  F Start)

2. A (Stop U (AX Start))



Theoretical questions – Solution 1/3

Argue if the following LTL equivalences are correct or not:  

1. F (Start  Stop) ≡ (F Start)  (F Stop)
Correct: Left side of the equivalence follows from the right 
side of the equivalence and vice versa.

2. G Stop ≡ not F (not Stop)
Correct: Left side of the equivalence follows from the right 
side of the equivalence and vice versa.



Theoretical questions – Solution 2/3

Argue if the following CTL equivalences are correct or not:  

1. AF (Start  Stop) ≡ (AF Start)  (AF Stop) 

Counterexample 1:  Left side of the equivalence is true but right is not.

2. AF (Start  Stop) ≡ (AF Start)  (AF Stop)

Counterexample 2:  Right side of the equivalence is true but left is not.

3. EF (Start  Stop) ≡ (EF Start)  (EF Stop)

Counterexample 1 above: Right side is true but left is not.

{Start}

s1

s1

s1

{Stop}

{Start}

s1

s1

s1

{Stop}

s1

s1

{Stop}

{Start}



Theoretical questions – Solution 3/3

Argue if the following formula are syntactically correct in 
CTL or not:

1. A (X Stop  F Start)
Not syntactically correct in CTL: There is Boolean operator 
between two path expressions X Stop and F Start
(and this is not allowed in CTL)

2. A (Stop U (AX Start))
Correct: Here the operator AU is applied on two state 
expressions Stop and AX Start



Requirement formalization: Railway crossing

• We model the behavior of a railway crossing signal with the 
following atomic labels:

{off, white, red}

• The behavior of the car driver arriving at the crossing is 
modeled with the following atomic labels:

{arriving, looking, stopping, crossing}

• Use LTL expressions to formalize the following properties 
which apply to the behavior of the driver in every case 
(continuously):
1. If the signal is off, the driver will be looking and then in the 

next moment either stopping or crossing.

2. The driver will eventually cross the crossing.

3. If upon arrival, the signal is red, the driver will not cross until 
the signal is white.



Railway crossing – Solution

• Labels for the signal: 
{off, white, red}

• Labels for the driver: 
{arriving, looking, stopping, crossing}

• LTL expressions formalizing the properties:
Note: “apply … in every case (continuously)”: initial G operator

1. If the signal is off, the driver will be looking and then in the 
next moment either stopping or crossing.

G (off → (looking  X (stopping  crossing)))

2. The driver will eventually cross the crossing.
G F crossing

3. If upon arrival, the signal is red, the driver will not cross until 
the signal is white.

G ((arrival  red) → (( crossing) U white))



Requirement formalization: Server room

• We model the states of a server performing complex 
simulation with the following atomic labels: 

{off, waiting, warm-up, simulation}

• The air-conditioning system is modeled with the following 
atomic labels: 

{stand-by, normal, maximal}

• Use LTL expressions to formalize the following properties 
which apply to the behavior of the server continuously:
1. If in any moment the simulation is performed with the air-

conditioning system being in the stand-by state, then in the 
next moment, the server will move to the waiting state.

2. Eventually, the simulation will be started.

3. The simulation can be performed only if it was preceded by 
a warm-up phase with the air-conditioning in the normal
state.



Server room – Solution

• Labels for the server: 
{off, waiting, warm-up, simulation}

• Labels for the air-conditioning system: 
{stand-by, normal, maximal}

• LTL expressions formalizing the properties:

Note: “apply … continuously”: initial G operator

1. If in any moment the simulation is performed with the air-
conditioning system being in the stand-by state, then in the next 
moment, the server will move to the waiting state.

G ((simulation  stand-by) → X waiting)

2. Eventually, the simulation will be started.
G F simulation

3. The simulation can be performed only if it was preceded by a 
warm-up phase with the air-conditioning in the normal state.

G ((X simulation) → (warm-up  normal))



Model checking algorithms



Checking CTL using iterative labeling

Consider the Kripke structure given below.

• Check if the following CTL expression holds from the initial 
state using the iterative labeling algorithm presented in the 
lectures: 

A(p U (EX ¬q))

For each iteration give the expression that is currently used 
for labeling and enumerate the states that are labeled!

 

00 

10 11 

01 {p, q} 

{p} 

{q} 

{q} 

A B

DC



Checking CTL using iterative labeling – Solution 1/4

Check if the following CTL expression holds from the initial 
state using the iterative labeling algorithm:

A(p U (EX ¬q))

1. Labeling D with ¬q

 

00 

10 11 

01 {p, q} 

{p} 

{q} 

{q} 

A B

DC
¬q



Checking CTL using iterative labeling – Solution 2/4

Check if the following CTL expression holds from the initial 
state using the iterative labeling algorithm:

A(p U (EX ¬q))

1. Labeling D with ¬q

2. Labeling B and C with EX ¬q

 

00 

10 11 

01 {p, q} 

{p} 

{q} 

{q} 

A B

DC
¬q

EX ¬q

EX ¬q



Checking CTL using iterative labeling – Solution 3/4

Check if the following CTL expression holds from the initial 
state using the iterative labeling algorithm:

A(p U (EX ¬q))

1. Labeling D with ¬q

2. Labeling B and C with EX ¬q

3. Labeling B and C with A(p U (EX ¬q))

 

00 

10 11 

01 {p, q} 

{p} 

{q} 

{q} 

A B

DC
¬q

EX ¬q

A(p U (EX ¬q))

EX ¬q

A(p U (EX ¬q))



Checking CTL using iterative labeling – Solution 4/4

Check if the following CTL expression holds from the initial 
state using the iterative labeling algorithm:

A(p U (EX ¬q))

1. Labeling D with ¬q

2. Labeling B and C with EX ¬q

3. Labeling B and C with A(p U (EX ¬q))

4. Labeling A with A(p U (EX ¬q)) End of the iteration.
 

00 

10 11 

01 {p, q} 

{p} 

{q} 

{q} 

A B

DCEX ¬q

A(p U (EX ¬q))

A(p U (EX ¬q))

¬q

EX ¬q

A(p U (EX ¬q))

The property
holds for the
initial state.



21

Model checking with the tableau method

Consider the Kripke structure on the right. 

Perform the model checking of the following 
formula with the tableau method:

 (P U Q)

s1s
0

s1s1

s1s2

{P}

{P}

{Q}
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Model checking with the tableau method

Consider the Kripke structure on the right. 

Perform the model checking of the following 
formula with the tableau method:

 (P U Q)

Things to know:

• Negation (to look for counterexamples): (P U Q)

• Tableau rule: (P U Q) = Q  (P  X(P U Q))

s1 s2 sn

s

…s1 s2 sn

s

…

s |- p,   s 1 |- p U q … s |- p,   s n |- p U q

s |- p U q

s |- q s |- p,   s | - X(p U q)

s1s
0

s1s1

s1s2

{P}

{P}

{Q}
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Model checking with the tableau method

Consider the Kripke structure on the right. 

Perform the model checking of the following 
formula with the tableau method:

 (P U Q)

Things to know:

• Negation (to look for counterexamples): (P U Q)

• Tableau rule: (P U Q) = Q  (P  X(P U Q))
• Contradicting branch if:

– Atomic proposition does not hold in a state

– X operator but no outgoing transition from a state

– Loop in the tableau with P, but without Q

• Satisfying branch (here: giving counterexamples) if:

– Only atomic propositions, and all of them hold in the state

– Loop in the table without contradiction

s1s
0

s1s1

s1s2

{P}

{P}

{Q}



Model checking with the tableau method

Tableau construction:

s0 |- P U Q

s0 |- P, s0 |- X(P U Q)s0 |- Q

s1 |- P U Q s2 |- P U Q

s1 |- Q s1 |- P, s1 |- X(P U Q)

s0 |- P U Q s2 |- P U Q

s2 |- Q s2 |- P, s2 |- X(P U Q)

Contradicting
branch

Contradicting 
branch

Contradicting branch:
Existing tableau node,
loop back with P only

Existing tableau 
node

(but not a loop!)

Satisfying
branch

Contradicting 
branch

Counterexamples for (P U Q):
s0, s2 and   s0, s1, s2

s1s
0

s1s1

s1s2

{P}

{P}

{Q}



Model checking: Servers

• An IT system has two servers, a database server (DB) and an 
application server (AS), both of which can be turned on or off. 

• Initially, both servers are off. During normal operation, the servers are 
turned on and off simultaneously.

• The system is functional if both servers are on.

• If – in the functional state – the database server is turned off due to an 
error, then the system becomes nonfunctional. After this, the 
application server is also turned off, then the system is restarted by 
turning both servers on again.

• Tasks:

1. Create a Kripke structure modeling the behavior of the system described 
above with regard to the states of the servers! Label the states with the 
following atomic propositions (based on the informal description): 

{initial, functional, nonfunctional}

2. Check if the following CTL formula holds for the functional state of the 
Kripke structure:

E(nonfunctional U initial)



Model checking: Servers – Solution 1/2

• An IT system has two servers, a database server (DB) and an application server (AS), 
both of which can be turned on or off. 

• Initially, both servers are off. During normal operation, the servers are turned on and 
off simultaneously.

• The system is functional if both servers are on.
• If – in the functional state – the database server is turned off due to an error, then the 

system becomes nonfunctional. After this, the application server is also turned off, 
then the system is restarted by turning both servers on again.

Kripke structure of the system:

s
1

DB: off

AS: off

s
1

DB: on

AS: on

s
1

DB: off

AS: on

{functional}{initial}

{nonfunctional}



Model checking: Servers – Solution 2/2

• An IT system has two servers, a database server (DB) and an application server (AS), 
both of which can be turned on or off. 

• Initially, both servers are off. During normal operation, the servers are turned on and 
off simultaneously.

• The system is functional if both servers are on.
• If – in the functional state – the database server is turned off due to an error, then the 

system becomes nonfunctional. After this, the application server is also turned off, 
then the system is restarted by turning both servers on again.

Labeling the Kripke structure with the properties:

s
1

DB: off

AS: off

s
1

DB: on

AS: on

s
1

DB: off

AS: on

{functional}{initial}

{nonfunctional}

nonfunctionalnonfunctional

E(nonfunctional 
U initial)

E(nonfunctional 
U initial)

The CTL formula 
holds for the 

functional state 



ROBDD: Building ROBDD

Consider the following Boolean function g:

1. Construct the decision tree representing g! Use the variable 
ordering used in the table: x, y, z.

2. Based on this, construct the reduced ordered binary decision 
diagram (ROBDD) representation of g!

3. Give the algebraic form of the function!

x y z f(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 



ROBDD: Building ROBDD – Solution 1/3

Constructing the decision tree for function g:
x y z f(x,y,z) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

0 0 1 1 0 1 1 1

z z z z

y y

x



ROBDD: Building ROBDD – Solution 2/3

Constructing the ROBDD for function g:

0 0 1 1 0 1 1 1

z z z z

y y

x

0 1

z

y y

x



ROBDD: Building ROBDD – Solution 3/3

Constructing the ROBDD for function g:

Algebraic function: Following the paths to 1:

g = (x  y)  (x  y  z)  (x  y)

0 0 1 1 0 1 1 1

z z z z

y y

x

0 1

z

y y

x



ROBDD: Operations on functions

Consider the following functions f and g given in ROBDD 
form. Construct the ROBDD representing fg!

x

z

0 1

x

y y

z

0 1

f: g:



ROBDD: Operations on functions

Consider the following functions f and g given in ROBDD 
form. Construct the ROBDD representing fg!

x

z

0 1

x

y y

z

0 1

f: g:

y y

z z z

Missing (reduced) nodes:



ROBDD: Operations on functions

Consider the following functions f and g given in ROBDD 
form. Construct the ROBDD representing fg!

x1

z1

0 1

x2

y21 y22

z2

0 1

f: g:

y y

z z z

Identifying the existing nodes:



ROBDD: Operations on functions – Solution

Constructing the ROBDD representing fg!

x1

z1

0 1

x2

y21 y22

z2

0 1

f: g:

y y

z z z

x1, x2

z1, y21 1, y22

z1, z2 1, z2z1, 0

1, 0 0, 1 1, 0 1, 1

1, 1

fg:
“Combining” the nodes:



ROBDD: Operations on functions – Solution

Constructing the ROBDD representing fg!

x1

z1

0 1

x2

y21 y22

z2

0 1

f: g:

y y

z z z

x

y y

z z0

0 0 0 1

1

fg:
Reducing some nodes:



ROBDD: Operations on functions – Solution

Constructing the ROBDD representing fg!

x1

z1

0 1

x2

y21 y22

z2

0 1

f: g:

y y

z z z

x

y

z

0 1

fg:
Reducing some nodes:



ROBDD: Operations on functions – Solution

Constructing the ROBDD representing fg!

x1

z1

0 1

x2

y21 y22

z2

0 1

f: g:

y y

z z z

x

y

z

0 1

fg:
The resulting ROBDD:


