
Petri nets:
Basic elements and extensions

dr. Tamás Bartha

dr. András Pataricza

dr. István Majzik

BME Department of Measurement and Information Systems

2

Formal models for verification

Base-level mathematical
formalisms

KS, LTS, KTS

Higher -level
formalisms

PN, CPN, DFN, SC

Design
models

Model
transformations

What is provided
by a higher-level

formalism?

How can it be used
for modeling and

verification?

Petri nets: Origins

• Carl Adam Petri: German mathematician, 1926-2010

• Invented the notation in 1939 (as a 13 years old)

• Originally for describing chemical processes

• Mathematical foundations were developed later in his
PhD dissertation (in two weeks in 1962)

– C. A. Petri: Kommunikation mit Automaten. Schriften des
Rheinisch-Westfälischen Institutes für Instrumentelle
Mathematik an der Universität Bonn Nr. 2, 1962

3

Petri nets: Applications

Typical applications of Petri nets: modeling of

• concurrent,

• asynchronous,

• distributed,

• parallel,

• non-deterministic

systems

There are other formalisms for this
purpose, e.g., network of automata
Why are Petri nets special?
• More compact representation of the state

• Clear expression of synchronization

 Compact, clear models

4

Basic properties of Petri nets

• Provides both:

– Graphical representation

– Mathematical formalism

• Structure expresses:

– Control flow

– Data structure

• Other advantages:

– Easily extensible

• E.g. timed, stochastic, colored, hierarchical Petri nets

– Other formalisms can be translated to Petri nets

• Some of its extensions is Turing-complete

 Understandable (+hierarchy)

 Precise, unambiguous

5

Structure and semantics of Petri nets

Structure of Petri nets

Structure: Directed, weighted, bipartite graph

• Two types of nodes:

– Place: p P

– Transition: t T

• Directed arcs:

– Place transition

– Transition place

– e E, E (P T) (T P)

bipartite graph!

Denoted by a circle

Denoted by a rectangle

7

State of a Petri net
Places: Modeling of possible situations, conditions

A local situation or condition holds: The place is “marked”

• Marking a state: token Denoted by a black dot

– E.g. marking place “Ready to start” if a process is ready to start

• “Marking” (state) of a place: number of its tokens

– E.g. multiple tokens in place “Ready to start” means multiple

processes are ready

• State of the net: marking of its places

– Marking: token distribution vector M, one element for each place

– Each mi in M denotes the number of tokens in place pi

8
p1

p2

p3

1

2

3

1

0

3

p

p

p

M

Semantics of Petri nets (dynamics)

Transitions: Modeling possible changes

Change occurs: If a transition “fires”

• A transition can only fire if it is enabled

– For each incoming arc of the transition:

The place connected to the arc (input place) has a token

• Firing the transition

– Removing a token from each input place

– Putting a token to each output place

• Tokens are not “moved”, they are removed and put!

– It is possible to “consume” and “generate” tokens

• Token distribution vector (marking) changes: New state

9

A simple example

10

A simple example

11

A simple example

12

A simple example

13

A simple example

14

Multiple arcs

Arc weights:

• Each edge e E can be associated with weight w*(e) N+

• Edge e with weight w*(e) is equivalent to we parallel edges

• Parallel edges are not drawn, arc weight is used

• A weight of one is usually not denoted

3

15

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

16

Beginning
of composite

task

End of
composite

task

Composite
task is

ongoing

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

asynchronous
firings

concurrent /
independent

events

17

water

heating

water

boiled

making

slides

slides

uploaded

Simultaneousness, synchronization

18

gun

fired

race

ongoing

1st runner

ready

1st runner

running

nth runner

ready

nth runner

running

gun

fired

race

ongoing

1st runner

ready

nth runner

ready

1st runner

running

nth runner

running

Simultaneousness, synchronization

19

gun

fired

race

ongoing

1st runner

ready

1st runner

running

nth runner

ready

nth runner

running

gun

fired

race

ongoing

1st runner

ready

nth runner

running

nth runner

ready

nth runner

running

n+1

Example: Pedestrian light with button

R,NP R,P

G,NP G,P

Synchronization
(press!, press?)

Constraint condition
(is_r == true)

20

Presses
when
red

Change
with button

Example: Pedestrian light with button

Pedestrian crossing

with light and button

21

Crossing with traffic
and pedestrian light

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

asynchronous
firings

concurrent /
independent

events

non-determinism random events

22

pen

drawing

paper

origami

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

asynchronous
firings

concurrent /
independent

events

non-determinism random events

conflicting
transitions

excluding events

23

whiskey

Irish coffee

espresso

cappuccino

milk

Simple models: Conflicts

Model of a food lift:

• Can be called from
three levels, stops
at desired level

• Model is incorrect

Conflict

24

Simple models: Conflicts

25

Correction:

• Condition for
moving up and
adding weights

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

asynchronous
firings

concurrent /
independent

events

non-determinism random events

conflicting
transitions

excluding events

uninterpreted
elements

abstract events

26

worksleep

correct incorrect

Properties of Petri nets

Petri Net
Property

Modeling
Property

„instant” firings
basic (atomic)

events

asynchronous
firings

concurrent /
independent

events

non-determinism random events

conflicting
transitions

excluding events

uninterpreted
elements

abstract events

abstraction and
refinement

hierarchical
modeling

27

dressing breakfast traveling

late

worksleep

Summary of basic definitions

Petri net:

• Nondeterministic finite automaton

• State: token distribution vector

• Transition relation: transitions

Structure:

• Each place is a logical condition

• Structure of the net follows the decomposition of

the modeled task

28

Topology and notations

• Input and output elements of places and transitions:

– Input places of t T :

– Output places of t T :

– Input transitions of p P :

– Output transitions of p P :

• For subsets of places P’ P and transitions T’ T :

t = {p |(p,t) E }

t = {p |(t,p) E }

p = {t |(t,p) E }

p = {t |(p,t) E }

'

'

'

'

p P

p P

P p

P p

'

'

'

'

t T

t T

T t

T t

29

Topology example

2

3 4

p1

p2

p3

p4

p5

p6

t1

t2

t3

p2 = p2 = {t2}

p3 = {t3} p3 = {t2}

p4 = {t1, t2} p4 =

p5 = {t2} p5 =

p6 = {t2} p6 = {t3}

p1 = p1 = {t1, t2}

t2 = {p1, p2, p3}

t2 = {p4, p5, p6}

t3 = {p6}

t3 = {p3}

t1 = {p1}

t1 = {p4}

30

Special nodes and nets

Source and sink transitions:

• A transition t T is a source transition:

– Has no input place, i.e., t =

– Source transitions can always fire

• A transition t T is a sink transition:

– Has no output place, i.e., t =

Pure Petri nets:

• A PN is pure, if it has no self-loops,

i.e., t T : t t =

31

State vector: Token distribution vector (marking)

• Initial state: M0 initial token distribution (marking)

• Example:

m

m

M
1

2

3

1

2

3

1

0

3

p

p

p

M

p1

p2

p3

32

Summary of structure

Petri net (PN):

• Places

• Transitions (firings)

• Arcs

• Weight function

• Initial state

PN structure:

PN with initial state:

PN = P, T, E, W, M0

P = {p1, p2, …, p}

T = {t1, t2, …, t}

P T =

E (P T) (T P)

W : E N+

M0 : P N

N = P, T, E, W

PN = N, M0

33

Dynamic behavior:
Enabling, firing,
firing sequence

Dynamic behavior

A step in Petri nets (change of state):

“Firing” of a transition

• Original state: original token distribution

• Firing

1. Transition is enabled

2. Remove tokens from input places

3. Put tokens to output places

• New state: new token distribution

35

Conditions for enabling a transition

• A transition t T is enabled, if each input place is marked

with at least as many tokens as the weight of the arc

outgoing from the place

– I.e., a transition t T is enabled, if each input place is marked with

at least w-(p, t) tokens

– Here w-(p, t) is the weight w*(e) of the arc e = (p, t) from p to t

• Formally:

– Firing of a transition t is enabled, if

),(: tpwmtp p

36

Occurrence of a firing

• An enabled transition can fire

– I.e., it may fire or not (“fire at will”)

• A single transition can fire at once

• If multiple transitions are enabled:

– One enabled transition has to be picked that can fire

– Random choice Non-deterministic behavior

37

Non-determinism and timing

• Semantics of “fire at will”:

– Implicit concept of time

– No time scale

– Firing can occur at any time in the time interval [0,)

• Assigning concrete timestamps to firings:

– A non-deterministic non-timed Petri net with the same

structure and initial state covers all possible firing

sequences of a timed Petri net

38

Change of state

Firing of a transition:

• Removes w-(p, t) tokens from input places p t

– w-(p, t) is the weight of arc p t

• Puts w+(t, p) tokens to output places p t

– w+(t, p) is the weight of arc t p

If transition t fires under marking M

• New marking: M’ = M + WTet

– where et is the unit vector for transition t

– where WT is the transposed weighted incidence matrix

39

Weighted incidence matrix

• Weighted incidence matrix: W = [w(t, p)]

• Dimensions: = |T | |P |

• w(t, p) denotes the change in the number of
tokens in p if t fires:

w(t, p) =
w+(t, p) – w-(p, t) if (t, p)E or (p, t)E

if (t, p) E and (p, t) E0

40

2

3

p1

p2

p3

t1 w(t1, p1) =
w+(t1, p1) - w-(p1, t1) =
1 - 2 = -1

Weighted incidence matrix example

2

3 4

p1

p2

p3

p4

p5

p6

t1

t2

t3

100100

141131

001002

W

41

p1 p2 p3 p4 p5 p6

t1

t2

t3

Weighted incidence matrix example

2

3 4

p1

p2

p3

p4

p5

p6

t1

t2

t3

100000

000131

000002

W

000100

141000

001000

W

100100

141131

001002

W

42

p1 p2 p3 p4 p5 p6

t1

t2

t3

W = W + - W –

Firing sequence

• State trajectory

– States during a sequence of firings

• Firing sequence

 = Mi0 ti1 Mi1 … tin Min or = ti1 … tin

• If all transitions satisfy the firing rules:

State Min is reachable from Mi0 with firing sequence :

Mi0 [> Min

43

Extensions of Petri nets:
Modified firing semantics

Extensions of Petri nets

Goals:

• Increase modeling power

• Restrict non-deterministic behavior

Extensions to the formalism of Petri nets:

• Finite capacity places

• Inhibitor arcs

• Transitions with priority

45

Finite capacity places

• Until now places had infinite capacity

– Number of tokens in each place is unbounded

– Modeling infinite capacity and resources

• E.g. unbounded place “running” means that any number of
processes can be running at the same time

• Finite capacity Petri net

– A capacity K(p) can be assigned to each place p:
Maximal number of tokens on that place

– Modeling finite capacities

• E.g. place “running” with finite capacity:
maximal number of processes running at the same time

46

Firing rule in finite capacity Petri nets

• Firing a transition t T is enabled, if

1. There are enough tokens on input places:

p t : mp w (p, t)

2. Capacity constraint holds after firing:

p t : m’p = mp + w(t, p) K(p)

i.e., firing the transition results in no more than K(p)

tokens on each outgoing place p

• An enabled transition can fire at will

• After firing: pP : m’p = mp + w + (t, p) - w (p, t)

47

Place with finite capacity

48

Can we avoid
introducing a
finite capacity

for place p?

Equivalent infinite capacity net (pure PN)

49

Administrative
place:

Counting the
free capacity

Only as many
tokens can be

put on p as the
difference of

the capacity and
the initial
marking

(i.e., the free
capacity).

Can only put
tokens on p if
there is free

capacity.

Tokens put on p
reduce the free

capacity.

Tokens removed
increase the free

capacity.

Complementary place transformation 1/2

Complementary place transformation:

• Constructing an equivalent infinite capacity net

from a finite capacity Petri net

Transformation process for pure Petri nets:

• For each finite capacity place p

– Assign a complementary administrative place p’

– The initial marking of p’ is

M0(p’) = K(p) - M0(p)

i.e., the initial free capacity of p

50

Complementary place transformation 2/2

• Complementary arcs are drawn between place p’
and transitions t p p

• Direction of the arcs depends on whether firing t
increases or decreases the number of tokens on p:

– If w(t, p) < 0, i.e., firing removes tokens from place p,
then an arc (t, p’) with weight |w(t, p)| is drawn
between transition t and place p’

– If w(t, p) > 0, i.e., firing puts tokens on place p,
then an arc (p', t) with weight w(t, p) is drawn
between place p’ and transition t

51

Equivalence of the transformed net

• It can be shown that the complementary place

transformation has the following properties:

– If applying the strict firing rule (with capacity constraint)

for a pure, finite capacity Petri net (N, M0),

– and applying the normal (weak) firing rule for the

transformed net (N’, M’0),

– then the firing sequences of the two nets will be

identical.

52

Prohibiting firing with inhibitor arcs

• Classic PN:

– “Ponated” firing conditions: firing can occur if certain

conditions hold for input places

• Expressing prohibition:

– “Negated” firing conditions: Firing cannot occur under

certain condition

– Negated condition is checked on input places

– Extension of the formalism: inhibitor arc

53

Firing rule with inhibitor arcs

• Extending the firing rule:

If an input place p connected to a transition t with an

inhibitor arc (p, t) is marked with at least w (p, t)

tokens, then the transition is not enabled

2

54

Using inhibitor arcs

• Advantage: Petri nets with inhibitor arcs are as

expressive as Turing machines (Turing-complete)

• Disadvantage: many analysis methods cannot be

applied to Petri nets with inhibitor arcs

55

critical section

Example: Mutual exclusion with inhibitor arcs

t11 t12 t13
p11 p12

p3

t21 t22 t23
p21 p22

56

Example: Mutual exclusion with inhibitor arcs, improved

critical section

t11 t12 t13
p11 p12

p3

t21 t22 t23
p21 p22

57

Example: Mutual exclusion without inhibitor arcs

critical section

t11 t12 t13
p11 p12

p3

t21 t22 t23
p21 p22

58

Bypassing inhibitor arcs in a simple case (non-general)

t1
p1

p4

t3

p5
t2

p1

p2

p3

p1

p4

t3

p5

p2

p3

59

Priority

• Multiple enabled transitions: which one to fire?

– Priority instead of non-determinism

• Extension: priority assigned to transitions

• Modified firing rule:

– An enabled transition with lower priority cannot fire, until

there is a transition enabled AND having higher priority

– Non-determinism still applies for transitions with the same

priority!

60

Formal definition with priority

Petri net (PN):

• Places

• Transitions (firings)

• Priority

• Arcs

• Weight function

• Initial marking

PN = P, T, , E, W, M0

P = {p1, p2, …, p}

T = {t1, t2, …, t}

P T =

 : T N

E (P T) (T P)

W: E N+

M0 : P N

61

Inhibitor arcs instead of priority?

t1 t2 t3

1 > 2 > 3

p1 p2 p3

t1 t2 t3

p1 p2 p3

62

Idea: “Draw inhibitor arcs from input
places of transition with higher priority

to transitions with lower priority.”

Can this idea be generalized?

Previous idea cannot be generalized

t1 t2 t3

1 > 2 > 3

p1 p2 p3

t1 t2 t3

p1 p2 p3

63

???

Priority instead of inhibitor arcs?

t1 t2

1 < 2

p1 p2

t1 t2

p1 p2

64

Idea: A transition disabled by an inhibitor
arc gets lower priority.

Can this idea be generalized?

Previous idea cannot be generalized

t1 t2 t3

p1 p2 p3

t1 t2 t3

p1 p2 p3

1 < 3

3 < 1
???

65

Expressive power of inhibitor arcs

• Inhibitor arcs can be used for “zero testing”

p=0? (Marking places with tokens if m(p)=0 or m(p)!=0

holds for place p.)

p

66

start_test m(p)=0

m(p)!=0

p_zero

p_nonzero

Expressive power with priority

• Priority can be used for “zero testing”

m(p)=0

m(p)!=0

t1

t2

2 < 1

67

p=0? (Marking places with tokens if m(p)=0 or m(p)!=0
holds for place p.)

p

start_test
p_zero

p_nonzero

Summary of expressive power[P81]

• “Zero testing” enables Petri nets to simulate every
Turing machine

– Consequence: undecidable problems…

• Finite capacity is just a syntactical construct

Turing machine = Inhibitor arc + PN = Priority + PN

PN = Capacity + PN

J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

68

Expressive power of PNs without extensions

• Are there systems that cannot be modeled with
Petri nets, if none of the extensions is used?

– YES!

• The key for “non-modelability”:

– It cannot be checked if an infinite capacity place p is
marked with k number of tokens or not

– As a special case k=0, which is known as the “zero
testing” problem

• It can be shown that a solution for the “zero testing” problem
yields a solution for the general case with an arbitrary k

69

Simple examples for building Petri nets

Simple example: Tossing a coin

71

Modeling constructions:

• Random choice

• Exclusions (alternatives)

• Counting (for the decision)

Simple example: Traffic light with failures

Modeling constructs:

• Random event

• Synchronization

• State variable

Incorrect model: failure
is only an alternative

72

Correction:
Event-driven

approach

Simple example: Dining philosophers

73

Modeling constructs:

• Atomic event: taking two
forks

Modeling constructs:

• Atomic event: taking a
single fork

• Possible deadlock

Typical modeling constructs

Fork-Join
Parallel

execution

Rendezvous
synchronization

Semaphore
synchronization

Mutual
exclusion

Reading state
variable

Modeling finite
capacity resource

74

Typical modeling constructs

Fork-Join

Mutual exclusion Finite capacityReading state

Rendezvous sync. Semaphore sync.

75

