
Dynamic properties of Petri nets

dr. Tamás Bartha

dr. István Majzik

dr. András Pataricza

BME Department of Measurement and Information Systems

Petri net analysis methods:
An overview

Recall: Behavior of Petri nets

Simple Petri net with changing marking
(reachability graph of possible states)

3

Analysis methods

Depth of the analysis:

• Simulation

• Full exploration of state space

– Analysis of reachability graph:

Dynamic (behavioral) properties

– Model checking

• Analysis of the net structure

– Static analysis:

Structural properties

– Invariant analysis

• Partial decision (e.g. abstraction)

Traverse single trajectories

Traverse all trajectories
from a given initial state
(exhaustive traversal)

Properties independent
from the initial state
(hold for every initial state)

if none of the above works

4

Dynamic and structural properties

• Dynamic properties based on the reachability graph
– Depend on the initial marking (not generalizable)

– Typical properties (see later): Reachability, coverability,
liveness, deadlock freedom, boundedness, fairness,
reversibility

– Property preserving reduction techniques can support the
analysis

• Structural properties based on the (unmarked) net
– Independent from the initial marking: hold for each (possible)

behavior

– Typical properties (see later): Structural liveness, structural
boundedness, controllability, conservativeness, repetitiveness,
consistency

– Invariants: T-invariants (for transitions),
P-invariants (for places)

5

Simulation of Petri net models

Simulation of discrete systems

• Goal: “realistic” modeling of the examined system

• Simulation for process models
– Event oriented: Beginning and end of activities

– Only the time moment of events is recorded

• Simulation of Petri nets

– Examining the possible trajectories
• State: token distribution (marking)

• Change of state (event): firing of a transition

• Trajectories in the state space: firing sequences

– Petri nets are non-deterministic
• (Pseudo) random choice is needed

• Interactive simulation (token game): User chooses

7

Animation (token game)

• Interactively examining the model

– Enabled transitions are highlighted

– Fire transition by clicking

– New marking is shown

• Concurrent transitions

– Manual choice

– Automatic random choice

(e.g. PetriDotNet)

• Original marking is restored in the end

8

Animation screen

9

Simulation

• Setting the number of steps (transitions)

• Collecting statistics

10

Simple simulation algorithm

while (true) do

Collect fireable transitions

if (There are fireable transitions)

then Choose a fireable transition (non-deterministic)

else End simulation

Fire chosen transition

end while

11

Collecting fireable transitions

function collect_fireable_transitions(M)

// Set of fireable transitions

Lfireable

for all t T do

if enabled(t, M) then Lfireable Lfireable {t}

return Lfireable

end function

12

Change of state

If t fires under marking M

• New marking: M’ = M + WTet

– where et is a unit vector corresponding to transition t

• Here W is the weighted incidence matrix

– W = [w(t, p)] change in marking of p if t fires

– Dimensions: t p = |T | |P | rows columns

– When t fires, the number of tokens in p changes:

w(t, p) =
w+(t, p) – w-(p, t) if (t, p) E or (p, t) E

if (t, p) E and (p, t) E0

13

Simulation algorithm

// Initialization

M M0

Lfireable collect_fireable_transitions(M)

while Lfireable do

// Firing

t rnd(Lfireable)

M’ M + WTet

Lfireable collect_fireable_transitions(M’)

M M’

end while

14

Idea for improving efficiency

• Why check all transitions (|T | steps), if only the

surroundings of the previously fired transition

(t t) changes?

– Some transitions will be disabled

– Some transitions will be enabled

15

Possibly disabled transitions

• After firing t, a transition t’ can become disabled

– By having an input in t, i.e., t “consumes its tokens”

– By being in conflict with t: t’ t

• Calculating numerically

– Number of consumed tokens: M- = W-Tet

– Input places of t: t, i.e., {p P: M-(p) > 0}

– Possibly disabled by t: T’ = {(t)}

16

Possibly enabled transitions

• After firing t, a transition t’ can become enabled

– By having an input in t, i.e., t “produces tokens”

– t enables t’: t’ t

• Calculating numerically

– Tokens produced: M+ = W+Tet

– Output places of t: t, i.e., {p P: M+(p) > 0}

– Possibly enabled by t: T” = {(t)}

• It is sufficient to check these transitions only (that

can become disabled or enabled)!

17

Efficient algorithm: Initialization

• Initialization is the same

// Initialization

M M0

Lfireable

// Set of initially fireable transitions

for all t T do

if enabled(t, M0) then Lfireable Lfireable {t}

18

Efficient algorithm: Firing loop

while Lfireable do

// Firing

t rnd(Lfireable)

M’ M + WTet

// Remove newly disabled transitions

for all t’ {(t)} do

if not(enabled(t’, M’) then Lfireable Lfireable \ {t’}

// Add newly enabled transitions

for all t” {(t)} do

if enabled(t”, M’) then Lfireable Lfireable {t”}

M M’

end while

19

Priority

• Extended firing rule: a transition t can fire iff

– It is enabled and

– No transition is enabled with higher priority than p(t)

• Consequence:

– Lfireable is not a set, but a vector Lfireable [p] of sets ordered

by priority levels p

– A transition is chosen non-deterministically from the

highest priority non-empty set of Lfireable [p]

20

Algorithm with priorities: Initialization

// Initialization

M M0

for all p do

Lfireable[p]

// Set of initially fireable transitions

for all t T do

if enabled(t, M0) then Lfireable[p(t)] Lfireable[p(t)] {t}

21

Algorithm with priorities: Firing loop

while do

for p = pmax to pmin step -1 do // Firing (with priority)

if Lfireable[p] then

t rnd(Lfireable[p])

M’ M + WTet

exit for

end if

for all p do // Enabled/disabled transitions

for all t’ {(t)} do

if not(enabled(t’, M’) then Lfireable[p(t’)] Lfireable[p(t’)] \ {t’}

for all t” {(t)} do

if enabled(t”, M’) then Lfireable[p(t”)] Lfireable[p(t”)] {t”}

end for

M M’

end while

p

p][fireableL

22

Reachability analysis

Reachability

• Reachability analysis

– Dynamic behavior depending on the initial marking

• Marking = state

Token distribution = value of state variable

• Firing = transition

• Sequence of states M0, M1, …, Mn for a firing sequence

– State sequence: trajectory in the state space

– A state Mn is reachable from initial state M0 if

∃ 𝜎 ∶ 𝑀0[𝜎 > 𝑀𝑛

– Reachability graph: graphical representation

of the state space

24

Example: Reachability graph

A simple Petri net with its reachability graph
(exported from PetriDotNet tool)

25

Reachability analysis

• From the initial state M0 of a Petri net N
– Reachable states are:

𝑅 𝑁,𝑀0 = 𝑀 ∃ 𝜎 ∶ 𝑀0 [𝜎 > 𝑀 }

Can answer state-based queries

– Executable firing sequences are:

𝐿 𝑁,𝑀0 = 𝜎 ∃𝑀 ∶ 𝑀0 [𝜎 > 𝑀 }

Can answer transition-based (event-based) queries

26

Reachability problem

• Reachability problem of Petri nets:

– Is the marking Mn reachable from an initial marking M0

𝑀𝑛 ∈
?

𝑅(𝑁,𝑀0)

• Submarking reachability problem:

– Restricting the question to a subset of the places,

i.e., whether Mn with a token distribution for the given

subset of places is reachable:

∃
?
𝑀 ∈ 𝑅 𝑁,𝑀0 ∶ ∀𝑝 ∈ 𝑃′:𝑀 𝑝 = 𝑀𝑛(𝑝)

P P

27

Decidability of the reachability problem

• The reachability problem is decidable

– But has exponential (space) complexity in general

• In contrast the equality problem is not decidable in

general

– Task: checking the equivalence of the possible firing

sequences of two Petri nets (N, N’)

– Exponential algorithm for 1-bounded (safe) Petri nets

• Bisimulation: can simulate each other

?

0 0(,) (,)L N M L N M

28

Model checking Petri nets

• Dining philosophers

• For a single philosopher:

– Can eat at least once?

– Will eat at least once in
any case?

– Will always eat sooner or
later?

• For the whole model:

– Deadlock freedom?

29

Dynamic (behavioral) properties
of Petri nets

Dynamic properties

• Reachability-based properties

– Depend on the initial marking (state)

(Cf.: structural properties are independent from the initial marking!)

– Can be determined not only with reachability analysis

• Dynamic properties (overview):

1. Boundedness

2. Liveness

 Deadlock freedom

3. Reversibility

4. Home state

5. Coverability

6. Persistency

7. Fairness

 Bounded fairness

 Global fairness

1. Boundedness

• k –boundedness (boundedness)

– In each state each place contains maximum k tokens

(depends from the initial marking M0!)

– Safe Petri net: special case of boundedness (k = 1)

– Modeling “finiteness”

• Boundedness finite state space

• Practical queries that can be answered

– Do tasks accumulate in a system?

– Are messages processed periodically?

2. Liveness for transitions

• Deadlock freedom of a net

– There is at least one enabled transition in each state

• Liveness property: More general

– Can a transition fire once/many times/infinite times?

– Weak liveness properties for a transition t:

• L0-live (dead): t can never fire in a

• L1-live: t can fire at least once in some

• L2-live: for each finite integer k >1, t

can fire at least k times in some

• L3-live: t can fire infinitely many times in some

– L4-live: t is L1-live in each marking

trajectory
 𝜎 ∈ 𝐿(𝑁,𝑀0)

0(,)nM R N M

Liveness: Example

• Transition t0: L0-live (dead)

• Transition t1: L1-live

• Transition t2: L2-live

• Transition t3: L3-live
t1

t0

t2

t3

34

Liveness for Petri nets

• A Petri net (PN, Mo) is Lx-live

– If every transition t T is Lx-live

– Liveness properties contain each other from L4 to L1

• A Petri net (PN, Mo) is live

– If it is L4-live, i.e., every transition t T is L4-live

• L4-live: L1-live (can fire at least once in some trajectory) in every

reachable state

– Deadlock freedom guaranteed independently from trajectory

• Each transition can be fired again, independently from the

intermediate states

• Deadlock freedom liveness

– Can be proven expensively

• In lucky cases it is not expensive (see invariants later!)

3. Reversibility

• Reversibility

– Initial state can be reached from every reachable state

• Practical examples:

– Cyclical behavior of network through initial state

– The system can be “resetted” to initial state

– The safe initial state can be reached from anywhere

0 0(,) : (,)M R N M M R N M

4. Home state

• Home state

– A reachable state that can be reached from every state

reachable from it

• Practical examples:

– Cyclical behavior after initialization period

– A safe state can be reached anytime after initialization

0(,) : (,) : (,)n n nM R N M M R N M M R N M

5. Coverability

• Coverability

– Can a state covering previous behavior occur?

– State M’ covers state M if:

• Reverse: State M can be covered with state M’

• Meaning of M’ M :

– Weak coverability: cover identical states

– Strong coverability:

• Relationship with liveness

– If is the minimal marking enabling transition t

• t is not L1-live if and only if, cannot be covered

• reverse: coverability of guarantees t to be L1-live (can fire)

0(,)M R N M M M

: m'() m()p P p p

: m"() m()p P p p

6. Persistence

• Persistence for transitions

– A transition is persistent if after becoming enabled it remains

enabled until it fires

– I.e., no other transition can disable the transition by firing

• Persistence for Petri nets

– A Petri net (PN, Mo) is persistent, if any two transitions t1, t2 T are

persistent in every possible firing sequence

• Practical examples:

– Is the functional decomposition of a system working properly?

– Do parallel behaviors interfere?

7. Fairness: Bounded fairness

• Two definitions for fairness

– Bounded fairness (B-fairness)

– Global fairness (unbounded fairness)

• Bounded fairness

– A firing sequence is a bounded fair (B-fair) sequence

• if any transition can fire only a bounded number of times

without a different enabled transition being fired

– A Petri net is a bounded fair (B-fair) net

• if every possible firing sequence is bounded fair

Fairness: Global fairness

• Global fairness

– A firing sequence is globally (unbounded) fair, if

• it is finite, or

• Contains every transition infinitely many times

– A Petri net is a globally (unbounded) fair net

• If all possible firing sequences of the net are globally fair

• Practical examples:

– Do parallel processes block each other?

– Do all processes (eventually) proceed?

– Will a request eventually be served?

Dynamic properties (summary)

• Boundedness

• Deadlock freedom

• Liveness

– L0 live (dead)

– L1 live (can fire once)

– L2 live (can fire k times)

– L3 live (can fire ∞ times)

– L4 live (L1 in every state)

• Reversibility

• Home state

• Coverability

– Weak coverability

– Strong coverability

• Persistence

• Fairness

– Bounded fairness

– Global fairness

42

State space representations:
Reachability and coverability graphs

State space representations: Reachability graph

• Reachability graph

– State graph starting from initial marking M0

• Nodes: markings; labels: token distributions

• Transitions: directed arcs; labels: firings

• A node has as many successors (outgoing arcs) as the number

of enabled transitions

– Or less, if the net has priorities

• Node with no outgoing arcs: deadlock

– Unbounded Petri net infinitely many states

• Boundedness finite state space

– Analysis: Breadth-first search from a state through

transitions

• Depth-first search is a bad idea in an infinite state space…

State space representations: Coverability graph

• Infinite state graph: token “overgrowth”

– Where and “how” it becomes infinite?

– What are the analysis possibilities?

• Coverability graph: works for infinite state space

– Similar structure: initial marking M0, arcs: firings

– Trajectory: M0 … M”… M’

when M” M’ , i.e., M” is covered, i.e.,

are covered places (strong cov.)

– Special symbol for covered places:

, expressing infinity

: m () m ()p P p p

Coverability tree generating algorithm

Building with graph nodes:

Lto_be_examined { M0 }

MAIN: if Lto_be_examined

Remove the next node M Lto_be_examined

if M already occurred on the path from the root node

then mark M as “old node”

goto MAIN // loop

if no transition is enabled under M

then mark M as “final node”

goto MAIN // loop

(continued on next page)

Coverability tree generating algorithm (cont.)

else // (there are enabled transitions under M)

for all enabled transition t:

Determine successor node M’ : 𝑀 [𝑒𝑡 > 𝑀′

if an M” exists on path from M0 to M , which is covered by M’

then M” is a covered node:

markings of strongly covered places are replaced with

in the token distribution of node M’

Add M’, to be examined: Lto_be_examined Lto_be_examined M’

Draw an arc from M to M’ marked with t

goto MAIN // loop

Coverability graph: join nodes denoting the same marking

: m () m () : m () m ()M M p P p p p P p p

: m () m () m ()p P p p p

An example with coverability tree

p
1

p
2 t

1

t
3

t
2

p
3

t
0

t
1

t
3

t
3

t
1

t
2

M
3
 = (1 0)

M
4
 = (0 1)

M
0
 = (1 0 0)

M
1
 = (0 0 1)

”végállapot”

M
5
 = (0 1)

”régi állapot”

M
6
 = (1 0)

”régi állapot”

48

„final state”

„old state”

„old state”

An example with coverability graph

p
1

p
2 t

1

t
3

t
2

p
3

t
0

1 0 0

1 00 0 1

0 1

t
1

t
3

t
3

t
1

t
2

49

Analysis of the coverability graph

Observable properties:

– Bounded Petri net Reachability graph R (N, M0) is finite

 does not appear as a label in the coverability graph

– Safe Petri net Only 0 and 1 appears as a label in the

coverability graph

– A transition is dead firing of the transition does not

appear as an arc label in the coverability tree

50

