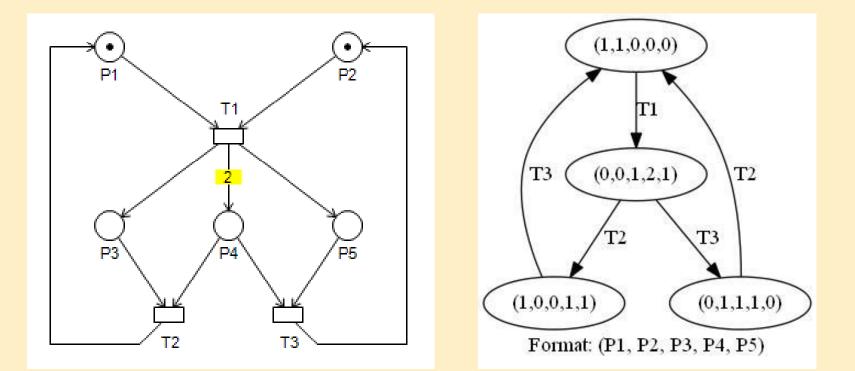
Dynamic properties of Petri nets

dr. Tamás Bartha dr. István Majzik dr. András Pataricza BME Department of Measurement and Information Systems Petri net analysis methods: An overview

Recall: Behavior of Petri nets



Simple Petri net with changing marking (reachability graph of possible states)

Analysis methods

Depth of the analysis:

- Simulation
- Full exploration of state space
 - Analysis of reachability graph:
 Dynamic (behavioral) properties
 - Model checking
- Analysis of the net structure
 - Static analysis:
 - Structural properties
 - Invariant analysis

if none of the above works

Partial decision (e.g. abstraction)

- Traverse single trajectories
- Traverse all trajectories from a given initial state (exhaustive traversal)
- Properties independent from the initial state (hold for every initial state)

Dynamic and structural properties

- Dynamic properties based on the reachability graph
 - Depend on the initial marking (not generalizable)
 - Typical properties (see later): Reachability, coverability, liveness, deadlock freedom, boundedness, fairness, reversibility
 - Property preserving reduction techniques can support the analysis
- Structural properties based on the (unmarked) net
 - Independent from the initial marking: hold for each (possible) behavior
 - Typical properties (see later): Structural liveness, structural boundedness, controllability, conservativeness, repetitiveness, consistency
 - Invariants: T-invariants (for transitions),
 P-invariants (for places)

Simulation of Petri net models

Simulation of discrete systems

- Goal: "realistic" modeling of the examined system
- Simulation for process models
 - Event oriented: Beginning and end of activities
 - Only the time moment of events is recorded
- Simulation of Petri nets
 - Examining the possible trajectories
 - State: token distribution (marking)
 - Change of state (event): firing of a transition
 - Trajectories in the state space: firing sequences
 - Petri nets are non-deterministic
 - (Pseudo) random choice is needed
 - Interactive simulation (token game): User chooses

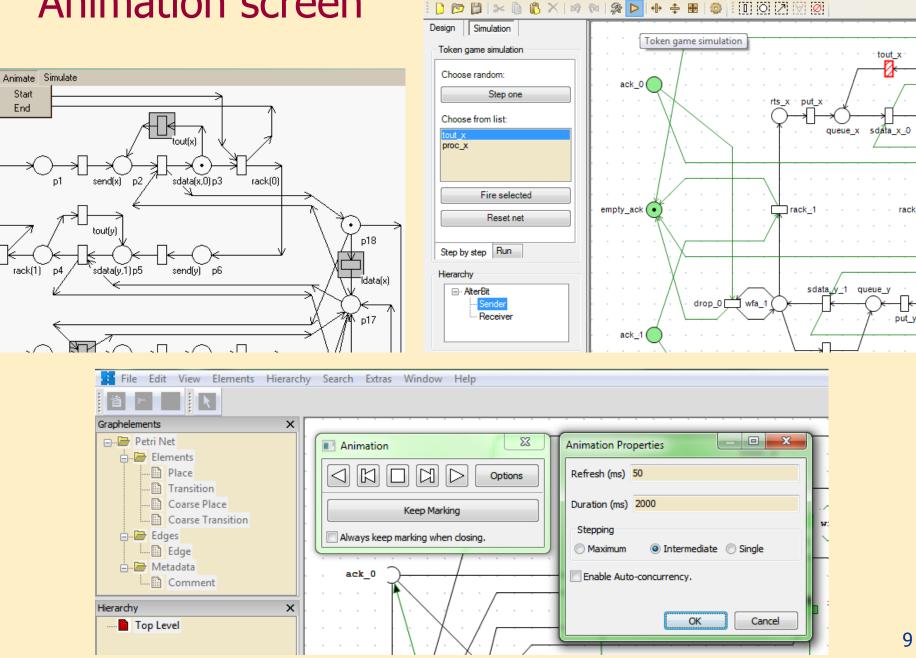
Animation (token game)

P File Edit View Insert	Mode Tools Add-in Window Help
i 🗅 🖻 🗎 🔀 🗎 🖒 X	✓ Design mode F2
Design Simulation	Token game simulation F3
Toolbox	
P File Edit View Insert	Mode Tools Add-in Window Help
🗄 🖸 📂 💾 🛛 🛪 🗎 🖍 🗙	🕼 🕅 🎊 🕨 🕂 🌩 🔀 🎆
Design Simulation	
Design Simulation	
Toolbox	Token game simulation

dit	View	Elements	Hierarchy	Search	Extras	Wir		
		Zoom 100%		Ctrl+F10				
s		Zoom In		C	H			
Ne		Zoom Out		C	trl+F12			
lem	Net Informations							
) T		Toggle Grap	helements		Alt+0			
))) (Toggle Fileb	ar		Alt+1	- (
dge		Toggle Hiera	rchy browse	r	Alt+2			
ÈE		Toggle Log v	vindow		Alt+3	l,		
∕leta }⊂		Show Attribu	ites					
		Start Anim-N	/lode		F5			
ا هر	al				mp oy_ac			

- Interactively examining the model
 - Enabled transitions are highlighted
 - Fire transition by clicking
 - New marking is shown
- Concurrent transitions
 - Manual choice
 - Automatic random choice (e.g. PetriDotNet)
- Original marking is restored in the end

Animation screen



🖓 File Edit View Insert Mode Tools Add-in Window Help

Simulation

Setting the number of steps (transitions)Collecting statistics

Large scale statistics	Q=2							
Settings Number of firings: 10 (000		irom current stat irom initial state		Keep endi Show hier		names	
Transitions				Places				
Transition	Firings	Percentage	^	Place	Avg token		Avg token in time	
put_x	137	1,37 %	E	ack_0	0,3370267933	48499		
drop_1	6	0,06 %		empty_ack	0,5856176	Simula	tion	×
lose_0	413	4,13 %		ack_1	0,2366434			
put_y	137	1,37 %		data_x	0,4503351	_ R	un Length:	
rack_0	137	1,37 %	-	empty_data	0,5066312		Number of Firings 5000	
Progress:					0			
				ОК		⊢ R₀	esults:	
							Tokens per Place 🔽 Transition Throughput	
							Produce Trace	
							<u>O</u> K <u>C</u> ancel	

Simple simulation algorithm

while (true) do

Collect fireable transitions **if** (There are fireable transitions) then Choose a fireable transition (non-deterministic) else End simulation Fire chosen transition

end while

Collecting fireable transitions

function collect_fireable_transitions(M)

// Set of fireable transitions

 $L_{fireable} \leftarrow \emptyset$
for all $t \in T$ do

if enabled(t, M) then $L_{fireable} \leftarrow L_{fireable} \cup \{t\}$

return L_{fireable}

end function

Change of state

If t fires under marking M

- New marking: $M' = M + W^T \cdot e_t$
 - where \mathbf{e}_{t} is a unit vector corresponding to transition t
- Here **W** is the weighted incidence matrix
 - $-\mathbf{W} = [w(t, p)] \leftarrow$ change in marking of p if t fires
 - Dimensions: $\tau \times \pi = |\mathcal{T}| \times |\mathcal{P}| \quad \leftarrow \text{rows} \times \text{columns}$
 - When t fires, the number of tokens in p changes:

$$w(t, p) = \begin{cases} w^+(t, p) - w^-(p, t) \text{ if } (t, p) \in E \text{ or } (p, t) \in E \\ 0 & \text{ if } (t, p) \notin E \text{ and } (p, t) \notin E \end{cases}$$

Simulation algorithm

// Initialization $M \leftarrow M_0$ $L_{fireable} \leftarrow collect_fireable_transitions(M)$ while $L_{fireable} \neq \emptyset$ do // Firing $t \leftarrow rnd(L_{fireable})$ $M' \leftarrow M + \mathbf{W}^{\mathrm{T}} \cdot \underline{\mathbf{e}}_{t}$ $L_{fireable} \leftarrow collect_fireable_transitions(M')$ $M \leftarrow M'$ end while

Idea for improving efficiency

- Why check all transitions (|*T*| steps), if only the surroundings of the previously fired transition
 (●*t* ∪ *t*●) changes?
 - Some transitions will be disabled
 - Some transitions will be enabled

Possibly disabled transitions

- After firing *t*, a transition *t*' can become disabled
 - By having an input in $\bullet t$, i.e., t "consumes its tokens"
 - By being in conflict with *t*: •*t* ' \cap •*t* $\neq \emptyset$
- Calculating numerically
 - Number of consumed tokens: $\mathbf{M}^{-} = \mathbf{W}^{-T} \cdot \underline{\mathbf{e}}_{t}$
 - Input places of t: •t, i.e., $\{p \in P: M^{-}(p) > 0\}$
 - Possibly disabled by t: T' = $\{(\bullet t) \bullet\}$

Possibly enabled transitions

- After firing *t*, a transition *t*' can become enabled
 - By having an input in t●, i.e., t "produces tokens"
 - *t* enables *t*': •*t*'∩ *t* ≠ Ø
- Calculating numerically
 - Tokens produced: $M^+ = \mathbf{W}^{+T} \cdot \underline{\mathbf{e}}_t$
 - Output places of *t*: $t \bullet$, i.e., $\{p \in P: M^+(p) > 0\}$
 - Possibly enabled by *t*: $T'' = \{(t \bullet) \bullet\}$
- It is sufficient to check these transitions only (that can become disabled or enabled)!

Efficient algorithm: Initialization

- Initialization is the same
- // Initialization
- $M \leftarrow M_0$

 $L_{fireable} \leftarrow \emptyset$ // Set of initially fireable transitions
for all $t \in T$ do
if enabled(t, M₀) then $L_{fireable} \leftarrow L_{fireable} \cup \{t\}$

Efficient algorithm: Firing loop

while $L_{fireable} \neq \emptyset$ do // Firing $t \leftarrow rnd(L_{fireable})$ $M' \leftarrow M + \mathbf{W}^{\mathrm{T}} \cdot \underline{\mathbf{e}}_{t}$ // Remove newly disabled transitions for all $t' \in \{(\bullet t) \bullet\}$ do if not(enabled(t', M') then $L_{fireable} \leftarrow L_{fireable} \setminus \{t'\}$ // Add newly enabled transitions for all $t'' \in \{(t \bullet) \bullet\}$ do if enabled(t", M') then $L_{fireable} \leftarrow L_{fireable} \cup \{t"\}$ $M \leftarrow M'$ end while

Priority

- Extended firing rule: a transition *t* can fire iff
 - It is enabled and
 - No transition is enabled with higher priority than $\pi(t)$
- Consequence:
 - $L_{fireable}$ is not a set, but a vector $L_{fireable} [\pi]$ of sets ordered by priority levels $\pi \in \Pi$
 - A transition is chosen non-deterministically from the highest priority non-empty set of $L_{fireable}[\pi]$

Algorithm with priorities: Initialization

- // Initialization
- $M \leftarrow M_0$
- for all $\pi \in \Pi$ do

 $L_{fireable}[\pi] \leftarrow \emptyset$

- // Set of initially fireable transitions
- for all $t \in T$ do

 $if enabled(t, M_0) \text{ then } L_{fireable}[\pi(t)] \leftarrow L_{fireable}[\pi(t)] \cup \{t\}$

Algorithm with priorities: Firing loop

while
$$\bigcup_{\pi \in \Pi} L_{fireable}[\pi] \neq \emptyset$$
 do
for $\pi = \pi_{max}$ to π_{min} step -1 do // Firing (with priority)
if $L_{fireable}[\pi] \neq \emptyset$ then
 $t \leftarrow rnd(L_{fireable}[\pi])$
 $M' \leftarrow M + \mathbf{W}^{T} \cdot \mathbf{e}_{t}$
exit for
end if

 $M \leftarrow M'$ end while

Reachability analysis

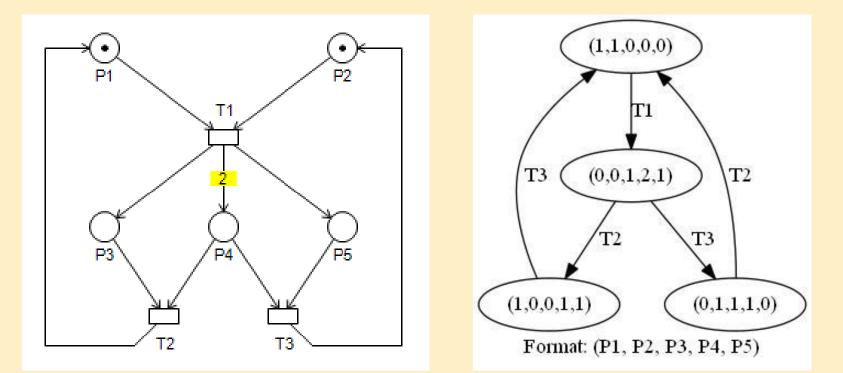
Reachability

- Reachability analysis
 - Dynamic behavior depending on the initial marking
 - Marking = state

Token distribution = value of state variable

- Firing = transition
- Sequence of states M_0 , M_1 , ..., M_n for a firing sequence
- State sequence: trajectory in the state space
- A state M_n is *reachable* from initial state M_0 if $\exists \vec{\sigma} : M_0 [\sigma > M_n]$
- Reachability graph: graphical representation of the state space

Example: Reachability graph



A simple Petri net with its reachability graph (exported from PetriDotNet tool)

Reachability analysis

- From the initial state M_0 of a Petri net N
 - Reachable states are:

 $R(N, M_0) = \{ M \mid \exists \vec{\sigma} : M_0 \ [\vec{\sigma} > M \} \}$

Can answer state-based queries

- Executable firing sequences are: $L(N, M_0) = \{ \vec{\sigma} \mid \exists M : M_0 \ [\vec{\sigma} > M \}$

Can answer transition-based (event-based) queries

Reachability problem

- Reachability problem of Petri nets:
 - Is the marking M_n reachable from an initial marking M_0 ? $M_n \in R(N, M_0)$
- Submarking reachability problem:
 - Restricting the question to a subset $P' \subset P$ of the places, i.e., whether M_n with a token distribution for the given subset of places is reachable:
 - $\exists M \in R(N, M_0) : \forall p \in P' : M(p) = M_n(p)$

Decidability of the reachability problem

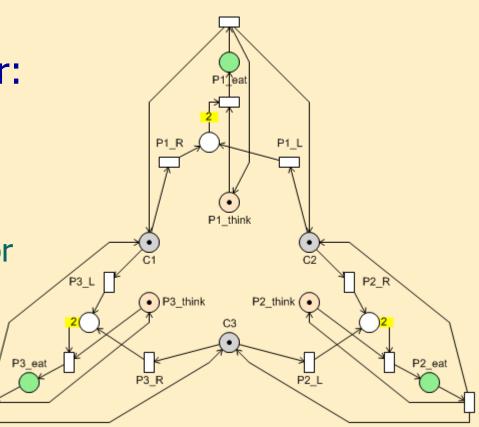
- The reachability problem is decidable
 But has exponential (space) complexity in general
- In contrast the equality problem is not decidable in general
 - Task: checking the equivalence of the possible firing sequences of two Petri nets (N, N')

$$L(N, M_0) \stackrel{?}{=} L(N', M'_0)$$

- Exponential algorithm for 1-bounded (safe) Petri nets
 - Bisimulation: can simulate each other

Model checking Petri nets

- Dining philosophers • For a single philosopher: – Can eat at least once? Will eat at least once in any case? Will always eat sooner or later? • For the whole model:
 - Deadlock freedom?



Dynamic (behavioral) properties of Petri nets

Dynamic properties

- Reachability-based properties
 - Depend on the initial marking (state)
 - (Cf.: structural properties are independent from the initial marking!)
 - Can be determined not only with reachability analysis
- Dynamic properties (overview):
 - 1. Boundedness
 - 2. Liveness
 - Deadlock freedom
 - 3. Reversibility
 - 4. Home state

- 5. Coverability
- 6. Persistency
- 7. Fairness
 - Bounded fairness
 - Global fairness

1. Boundedness

- *k*-boundedness (boundedness)
 - In each state each place contains maximum k tokens (depends from the initial marking M_0 !)
 - Safe Petri net: special case of boundedness (k = 1)
 - Modeling "finiteness"
 - Boundedness \Leftrightarrow finite state space
- Practical queries that can be answered
 - Do tasks accumulate in a system?
 - Are messages processed periodically?

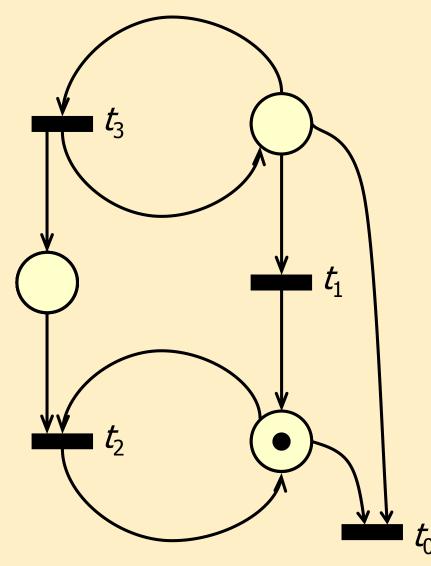
2. Liveness for transitions

- Deadlock freedom of a net
 - There is at least one enabled transition in each state
- Liveness property: More general
 - Can a transition fire once/many times/infinite times?
 - Weak liveness properties for a transition *t*:
 - L0-live (dead): t can never fire in a
 - L1-live: *t* can fire at least once in some
 - L2-live: for each finite integer k >1, t
 can fire at least k times in some
 - L3-live: *t* can fire infinitely many times in some

– L4-live: *t* is L1-live in each $M_n \in R(N, M_0)$ marking

trajectory $\vec{\sigma} \in L(N, M_0)$

Liveness: Example



- Transition *t*₀: L0-live (dead)
- Transition *t*₁: L1-live
- Transition *t*₂: L2-live
- Transition *t*₃: L3-live

Liveness for Petri nets

- A Petri net (PN, M_o) is Lx-live
 - If every transition $t \in T$ is Lx-live
 - Liveness properties contain each other from L4 to L1
- A Petri net (PN, M_o) is live
 - If it is L4-live, i.e., every transition $t \in T$ is L4-live
 - L4-live: L1-live (can fire at least once in some trajectory) in every reachable state
 - Deadlock freedom guaranteed independently from trajectory
 - Each transition can be fired again, independently from the intermediate states
 - Deadlock freedom \Leftarrow liveness
 - Can be proven expensively
 - In lucky cases it is not expensive (see invariants later!)

3. Reversibility

• Reversibility

- Initial state can be reached from every reachable state

 $\forall M \in R(N, M_0) : M_0 \in R(N, M)$

- Practical examples:
 - Cyclical behavior of network through initial state
 - The system can be "resetted" to initial state
 - The safe initial state can be reached from anywhere

4. Home state

- Home state
 - A reachable state that can be reached from every state reachable from it

 $\exists M_n \in R(N, M_0) \colon \forall M \in R(N, M_n) \colon M_n \in R(N, M)$

- Practical examples:
 - Cyclical behavior after initialization period
 - A safe state can be reached anytime after initialization

5. Coverability

• Coverability

- Can a state covering previous behavior occur?
- State M' covers state M if: $M' \in R(N, M_0) \land M' \ge M$
 - Reverse: State *M* can be covered with state *M'*
 - Meaning of $M' \ge M$: $\forall p \in P$: $m'(p) \ge m(p)$
 - Weak coverability: cover identical states
 - Strong coverability: $\exists p \in P : m''(p) > m(p)$
- Relationship with liveness
 - If μ is the minimal marking enabling transition t
 - *t* is not L1-live if and only if, μ cannot be covered
 - reverse: coverability of μ guarantees t to be L1-live (can fire)

6. Persistence

- Persistence for transitions
 - A transition is persistent if after becoming enabled it remains enabled until it fires
 - I.e., no other transition can disable the transition by firing
- Persistence for Petri nets
 - − A Petri net (*PN*, M_0) is persistent, if any two transitions t_1 , $t_2 \in T$ are persistent in every possible firing sequence
- Practical examples:
 - Is the functional decomposition of a system working properly?
 - Do parallel behaviors interfere?

7. Fairness: Bounded fairness

- Two definitions for fairness
 - Bounded fairness (B-fairness)
 - Global fairness (unbounded fairness)
- Bounded fairness
 - A firing sequence is a bounded fair (B-fair) sequence
 - if any transition can fire only a bounded number of times without a different enabled transition being fired
 - A Petri net is a bounded fair (B-fair) net
 - if every possible firing sequence is bounded fair

Fairness: Global fairness

- Global fairness
 - A firing sequence is globally (unbounded) fair, if
 - it is finite, or
 - Contains every transition infinitely many times
 - A Petri net is a globally (unbounded) fair net
 - If all possible firing sequences of the net are globally fair
- Practical examples:
 - Do parallel processes block each other?
 - Do all processes (eventually) proceed?
 - Will a request eventually be served?

Dynamic properties (summary)

- Boundedness
- Deadlock freedom
- Liveness
 - L0 live (dead)
 - L1 live (can fire once)
 - L2 live (can fire k times)
 - L3 live (can fire ∞ times)
 - L4 live (L1 in every state)

- Reversibility
- Home state
- Coverability
 - Weak coverability
 - Strong coverability
- Persistence
- Fairness
 - Bounded fairness
 - Global fairness

State space representations: Reachability and coverability graphs State space representations: Reachability graph

- Reachability graph
 - State graph starting from initial marking M_0
 - Nodes: markings; labels: token distributions
 - Transitions: directed arcs; labels: firings
 - A node has as many successors (outgoing arcs) as the number of enabled transitions
 - Or less, if the net has priorities
 - Node with no outgoing arcs: deadlock
 - Unbounded Petri net \rightarrow infinitely many states
 - Boundedness \Leftrightarrow finite state space
 - Analysis: Breadth-first search from a state through transitions
 - Depth-first search is a bad idea in an infinite state space...

State space representations: Coverability graph

- Infinite state graph: token "overgrowth"
 - Where and "how" it becomes infinite?
 - What are the analysis possibilities?
- Coverability graph: works for infinite state space
 - Similar structure: initial marking M_0 , arcs: firings
 - Trajectory: *M*₀ ... *M*"... *M*"

when $M'' \leq M'$, i.e., M'' is covered, i.e.,

 $p \in P: m'(p) > m''(p)$ are covered places (strong cov.)

- Special symbol for covered places:
 - ω , expressing infinity

Coverability tree generating algorithm

Building with graph nodes: $L_{\text{to be examined}} \leftarrow \{ M_0 \}$ MAIN: **if** $L_{to be examined} \neq \emptyset$ Remove the next node $M \in L_{to_be_examined}$ if *M* already occurred on the path from the root node then mark *M* as "old node" goto MAIN // loop if no transition is enabled under Mthen mark *M* as "final node" goto MAIN // loop

(continued on next page)

Coverability tree generating algorithm (cont.)

else // (there are enabled transitions under M) for all enabled transition *t*:

Determine successor node M': $M [\vec{e}_t > M']$

if an M'' exists on path from M_0 to M, which is covered by M'

 $M' \neq M'' \land \forall p \in P : \mathbf{m}'(p) \ge \mathbf{m}''(p) \land \exists p \in P : \mathbf{m}'(p) > \mathbf{m}''(p)$

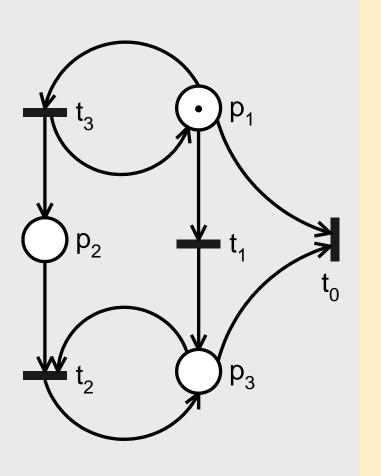
then M'' is a covered node:

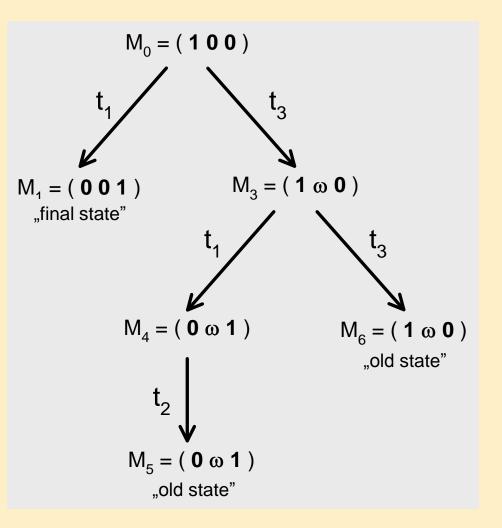
markings of strongly covered places are replaced with ω in the token distribution of node *M*'

 $\forall p \in P : \mathbf{m}'(p) > \mathbf{m}''(p) \to \mathbf{m}'(p) = \omega$

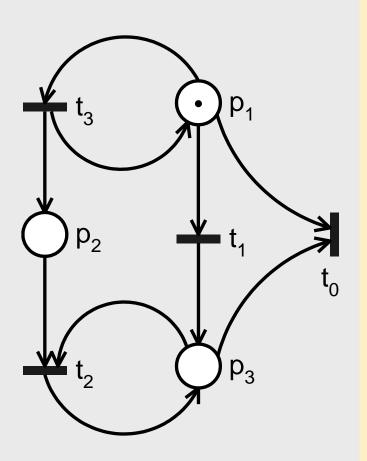
Add *M'*, to be examined: $L_{to_be_examined} \leftarrow L_{to_be_examined} \cup M'$ Draw an arc from *M* to *M'* marked with *t* goto MAIN // loop Coverability graph: join nodes denoting the same marking

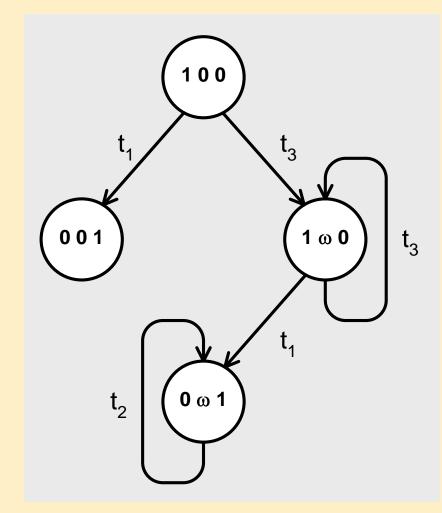
An example with coverability tree





An example with coverability graph





Analysis of the coverability graph

Observable properties:

- Bounded Petri net \Leftrightarrow Reachability graph $R(N, M_0)$ is finite $\Leftrightarrow \omega$ does not appear as a label in the coverability graph
- Safe Petri net ⇔ Only 0 and 1 appears as a label in the coverability graph
- A transition is dead ⇔ firing of the transition does not appear as an arc label in the coverability tree