Property preserving transformations: State space and structure reduction

dr. Tamás Bartha dr. István Majzik dr. András Pataricza BME Department of Measurement and Information Systems State space reduction: Partial order reduction

Simplification of the reachability problem

- Reduction while preserving the selected properties
 - Expressive power of the model decreases (non-selected properties may become modified or lost!)
 - Functionality changes, but the changes are controlled
 - The new model represents ("covers") the original one regarding the selected properties
 - Many kinds of property preserving transformations exist

Ideas for simplifying the reachability problem

- Exploiting symmetries
 - Examine identical network parts only once
 - E.g. resource groups: components with the same behavior
 - Invariance for cyclic permutation
 - Colored Petri nets → Well-formed colored Petri nets (WFN) (see later!)
- Increasing the efficiency of state space traversal
 - Traverse only states "of interest"
 - Property preserving reduction
 - Traverse only necessary transitions
 - Omit alternative paths

A possible reduction: Partial order

- Reachable states form a partially ordered set
- Asynchronous behavior: overlapping → alternative paths with the same results
- Alternative paths are redundant regarding the final state (reachability); traversal of a single representative path may be sufficient

Example: Execution of alternative paths

- Local variables:
 - x and y
- Global variable:

g

- 6 possible executions:
 - 1. x=1; g=g+2; y=1; g=g*2
 - 2. x=1; y=1; g=g+2; g=g*2
 - 3. x=1; y=1; g=g*2; g=g+2
 - 4. y=1; g=g*2; x=1; g=g+2
 - 5. y=1; x=1; g=g*2; g=g+2
 - 6. y=1; x=1; g=g+2; g=g*2

Example: Dependencies

- I: Independent
- C: Control dependency **g=g**
- D: Data dependency (using common variables: different order \rightarrow different result)

Example: Possible swappings based on data dependency

Example: Representative paths based on data dependency

Example: Applying partial order reduction

• Reduction

- "Removing" redundant paths (i.e., only examine remaining, representative paths)
- Reduced graph
 - Remaining paths: Contains possible orderings of noninterchangeable statements due to dependencies
- Correctness of the reduction depends on the goal!
 - Previous reduction: for data dependency
 - Dependency on different property may yield different reduction
 - E.g. G(x ≥ y) holds in the previous, reduced graph but not in the original one

Example: G ($x \ge y$) property preserving reduction

Example: G ($x \ge y$) property preserving reduction (x,y,g) This state cannot be **T2 T1** eliminated (0,0,0)x=1y=1 y=1x=1(1,0,0)(0,1,0)y=1x=1 g=g*2g=g+2 (0,1,0) (1,0,2)(1,1,0)g=g*2 g=g+2g=g*2 g=g+2y=1x=1 (1,1,2)(1,1,0)g=g*2 g=g+2(1,1,4)(1,1,2)14

Basis of partial order reduction

- Two transitions are independent in a state s, if
 - Both are enabled in state s
 - None of their execution disables the other:
 no control dependency (see persistence)
 - The combined effect of the two transitions is independent from their order: no data or property dependency
- Strong independence
 - Two transitions are strongly independent, if they are independent in every state, where both are enabled

Structure reduction: Property preserving model transformations

Property preserving transformations

- Structure reduction
 - Goal: reduced model should preserve selected properties
 - A clear model can become compact (hard to understand)
- Simple property preserving transformations:
 - Fusion of series places
 - Fusion of series transitions
 - Fusion of parallel places
 - Fusion of parallel transitions
 - Elimination of self-loop places
 - Elimination of self-loop transitions
- Preserving liveness, boundedness and safeness properties

Rules: Series fusions

Fusion of series places

Fusion of series transitions

Rules: Parallel fusions

Fusion of parallel places

Fusion of parallel transitions

Rules: Elimination of self-loops

Elimination of self-loop places

Elimination of self-loop transitions

Example: Step 1

• Fusion of t_2 and t_1 (series transitions) $\rightarrow t_{12}$

• Fusion of t_3 and t_4 (series transitions) $\rightarrow t_{34}$

Example: Step 2

- Elimination of t_{12} (self-loop transition)
- Elimination of p_3 (self-loop place)

Example: Result

Bounded, but not live net (and not reversible)