Property preserving transformations: State space and structure reduction

dr. Tamás Bartha

dr. István Majzik

dr. András Pataricza
BME Department of Measurement and Information Systems

State space reduction: Partial order reduction

Simplification of the reachability problem

- Reduction while preserving the selected properties
- Expressive power of the model decreases (non-selected properties may become modified or lost!)
- Functionality changes, but the changes are controlled
- The new model represents ("covers") the original one regarding the selected properties
- Many kinds of property preserving transformations exist

Ideas for simplifying the reachability problem

- Exploiting symmetries
- Examine identical network parts only once
- E.g. resource groups: components with the same behavior
- Invariance for cyclic permutation
- Colored Petri nets \rightarrow Well-formed colored Petri nets (WFN) (see later!)
- Increasing the efficiency of state space traversal
- Traverse only states "of interest"
- Property preserving reduction
- Traverse only necessary transitions
- Omit alternative paths

A possible reduction: Partial order

- Reachable states form a partially ordered set
- Asynchronous behavior: overlapping \rightarrow alternative paths with the same results
- Alternative paths are redundant regarding the final state (reachability); traversal of a single representative path may be sufficient

Example: Execution of alternative paths

- Local variables: x and y
- Global variable:
g
- 6 possible executions:

1. $x=1 ; g=g+2 ; y=1 ; g=g * 2$
2. $x=1 ; y=1 ; g=g+2 ; g=g * 2$
3. $x=1 ; y=1 ; g=g * 2 ; g=g+2$
4. $y=1 ; g=g * 2 ; x=1 ; g=g+2$
5. $y=1 ; x=1 ; g=g * 2 ; g=g+2$
6. $y=1 ; x=1 ; g=g+2 ; g=g * 2$

Example: Alternative states and paths

Example: Dependencies

(using common variables: different order \rightarrow different result)

Example: Possible swappings based on data dependency

Example: Representative paths based on data dependency

Example: Applying partial order reduction

- Reduction
- "Removing" redundant paths (i.e., only examine remaining, representative paths)
- Reduced graph
- Remaining paths: Contains possible orderings of noninterchangeable statements due to dependencies
- Correctness of the reduction depends on the goal!
- Previous reduction: for data dependency
- Dependency on different property may yield different reduction
- E.g. $G(x \geq y)$ holds in the previous, reduced graph but not in the original one

Example: $G(x \geq y)$ property-based dependency (P)

Example: $\mathrm{G}(\mathrm{x} \geq \mathrm{y})$ property preserving reduction

Example: $G(x \geq y)$ property preserving reduction

Basis of partial order reduction

- Two transitions are independent in a state s, if
- Both are enabled in state s
- None of their execution disables the other: no control dependency (see persistence)
- The combined effect of the two transitions is independent from their order:
no data or property dependency
- Strong independence
- Two transitions are strongly independent, if they are independent in every state, where both are enabled

Structure reduction: Property preserving model transformations

Property preserving transformations

- Structure reduction
- Goal: reduced model should preserve selected properties
- A clear model can become compact (hard to understand)
- Simple property preserving transformations:
- Fusion of series places
- Fusion of series transitions
- Fusion of parallel places
- Fusion of parallel transitions
- Elimination of self-loop places
- Elimination of self-loop transitions
- Preserving liveness, boundedness and safeness properties

Rules: Series fusions

Fusion of series places

Fusion of series transitions

Rules: Parallel fusions

Rules: Elimination of self-loops

Elimination of self-loop places

Elimination of self-loop transitions

Example: Step 1

- Fusion of t_{2} and t_{1} (series transitions) $\rightarrow t_{12}$
- Fusion of t_{3} and t_{4} (series transitions) $\rightarrow t_{34}$

Example: Step 2

- Elimination of t_{12} (self-loop transition)
- Elimination of p_{3} (self-loop place)

Example: Result

Bounded, but not live net (and not reversible)

