Structural properties of Petri nets

dr. Tamás Bartha dr. István Majzik dr. András Pataricza BME Department of Measurement and Information Systems

Recall: Dynamic properties

- Example: Model of a workflow (tasks + activities + resources)
- Properties analyzed
 - Does the system halt?
 - Can certain activities be performed?
 - Do tasks overwhelm?
 - Can we return to the initial state?
 - Is there a processing loop?
 - Can activities be stopped?
 - Is there an activity lacking resources?
- Problem: Exploring a large state space

Deadlock Liveness Boundedness Reversibility Home state Persistence Fairness

Recall: Analysis methods

Depth of the analysis:

- Simulation
- Full exploration of the state space
 - Analysis of reachability graph:
 Dynamic (behavioral) properties
 - Model checking
- Analysis of the net structure
 - Static analysis:
 Structural properties
 - Invariant analysis

- Traverse single trajectiories
 - Traverse all trajectories
 from a given initial state
 (exhaustive traversal)

 Properties independent from the initial state (hold for every initial state)

Main idea of structural analysis

- Can we state something without traversing / exploring the state space?
 - Based only on the structure (places, transitions, arcs)
 - Analysis independent from the initial state
 - In certain cases only approximate results!
- Approximate analysis is safe if it covers the real behavior
 - If no counterexample is found for the examined property (erroneous behavior): the property holds
 - If a counterexample is found: it may be spurious:
 It has to be verified with simulation and if it is spurious a new search has to be started

Structural properties

Properties of Petri nets independent from the initial state:

- Structural boundedness
- Controllability
- Conservativeness
 - Place invariant (P-invariant)

- Structural liveness
- Repetitiveness
- Consistence
 - Transition invariant (T-invariant)

Depending on the definition, the property must hold for

- either for all bounded initial marking,
- or some existing bounded initial marking

Recall: Describing the structure

- Weighted incidence matrix: $\mathbf{W} = [w(t, p)]$
- Dimension: $\tau \times \pi = |T| \times |P|$
- w(t, p): Change in the number of tokens on p when t fires

Recall: Describing the structure

Introducing the state equation

- Dynamics of Petri nets: change in the marking
 - Changes can be described by equations
- Precondition (for unambiguousness): pure Petri net
 - No transition exists that is both the input and output transition of the same place: $\forall t \in T : \bullet t \cap t \bullet = \emptyset$
 - This subsumes: No "self-loop"
 - Marking does not change after firing (0 element in the incidence matrix)
 - But has a role in enabling the transition

Firing sequence

• Firing sequence:

$$\vec{\sigma} = \left\langle M_{i_0} t_{i_1} M_{i_1} \dots t_{i_n} M_{i_n} \right\rangle = \left\langle t_{i_1} \dots t_{i_n} \right\rangle$$

- Reachability of a state (marking): $M_{i_0} [\vec{\sigma} > M_{i_n}]$
- Enabledness of a firing sequence:
 - Transition $t_{i,j}$ has enough tokens on input places $p \in \bullet t_{i,j}$

$$\forall t_{i_j} \in \vec{\sigma}, \forall p \in \bullet t_{i_j} : M_{i_{j-1}}(p) \ge w^-(p, t_{i_j}) = \mathbf{W}^{-^{\mathrm{T}}} \vec{e}_{i_j}$$

State equation

- Change in the marking:
 - When firing an enabled transition t_j
 - w⁻(p, t_j) tokens removed from each input place $p \in \bullet t_j$
 - w⁺(p, t_j) tokens are produced in each output place $p \in t_j$ •

$$M_{j} = M_{j-1} - \mathbf{W}^{-^{\mathrm{T}}} \vec{e}_{j} + \mathbf{W}^{+^{\mathrm{T}}} \vec{e}_{j} = M_{j-1} + \mathbf{W}^{\mathrm{T}} \vec{e}_{j}$$

- When firing an enabled firing sequence $\underline{\sigma}$:
 - Marking changes by accumulating the firings:

$$M_0 \begin{bmatrix} \vec{\sigma} > M_j & \to & M_j = M_0 + \mathbf{W}^{\mathrm{T}} \vec{\sigma}_T \end{bmatrix}$$

 Firing count vector: number of occurrences for each transition in the firing sequence

Deriving the state equation

$$M_{1} = M_{0} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}}$$
substituting M_{t}

$$M_{2} = M_{1} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}} = M_{0} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}}$$

$$\dots$$

$$M_{n+1} = M_{n} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{n+1}} = M_{0} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}} + \dots + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{n+1}}$$

$$\dots$$

$$M_{m} = M_{0} + \underbrace{\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}} + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}} + \dots + \mathbf{W}^{\mathrm{T}} \vec{e}_{t_{m}}}_{\text{joined}} = M_{0} + \mathbf{W}^{\mathrm{T}} \sum_{i=1}^{m} \vec{e}_{t_{i}}$$

$$M_{m} = M_{0} + \mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T} \Longrightarrow \boxed{M_{m} - M_{0} = \mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T}}$$

State equation and reachability

- The firing count vector contains less information, than the firing sequence
 - The order of firing is lost by only giving $(0,2,2)^{T}$!
 - A non fireable sequence can be obtained from the state equation for a given M₀ 12

Example: State equation and reachability

State equation:

$$M_0 \left[\vec{\sigma} > M_j \Longrightarrow M_j - M_0 = W^T \vec{\sigma}_T \right]$$

$$\mathbf{N}^{\mathsf{T}} = \begin{array}{ccc} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \\ \mathbf{p}_{3} \\ \mathbf{p}_{4} \\ \mathbf{p}_{3} \\$$

Firing count vector can be calculated to reach $(1,1,0)^{T}$ from $(0,1,0)^{T}$:

$$(1,1,0)^{\mathrm{T}} - (0,1,0)^{\mathrm{T}} = \mathbf{W}^{\mathrm{T}} \cdot (1,0,1)^{\mathrm{T}}$$

- Firing count vector: (1,0,1)[⊤]
- But neither t₁, nor t₃ is enabled under the initial marking (0,1,0)!

Transition and place invariants

Definition: Transition invariant (T-invariant)

The firing count vector σ_T is a T-invariant, if its firing does not change the marking:

$$\mathbf{W}^{\mathrm{T}}\vec{\sigma}_{T}=\mathbf{0}$$

- Cycle in the state space: $M_i [\vec{\sigma}_T > M_i]$

– The firing sequence σ_T can be fired from state M_i if

$$\forall t_{i_j} \in \vec{\sigma}, \forall p \in \left\{ \bullet t_{i_j} \right\} : m_{i_{j-1}} \left(p \right) \ge w^{-} \left(p, t_{i_j} \right) = \mathbf{W}^{-\mathrm{T}} \cdot \vec{e}_{i_j}$$

- Note: for each firing sequence σ an initial marking M_0 exists, from which σ can be fired
 - E.g. $M_0 \ge \mathbf{W}^{-^{\mathsf{T}}} \vec{\sigma}$, the marking can have initially "as many" tokens, that the tokens produced by σ are not needed

Example T-invariant

T-invariant: marking does not change after firing $t_1 - t_2$

Not a T-invariant: firing sequence $t_3 - t_1 - t_2$ cannot be repeated

Set of T-invariants

$$\mathbf{W}^{\mathrm{T}}\vec{\sigma}_{T}=0$$

Solutions of the homogeneous, linear system of equations

- Multiples of a solution are also solutions
 - If fireable, the loop can be traversed multiple times
- Sum of solutions is also a solution
 - If fireable, multiple loops can be combined
- Linear combination of solutions is also a solution
- A basis can be found for the solutions
 - Minimal set that can produce each solution

Minimal T-invariant

- Notation: basis of a firing sequence σ is sup(σ):
 - Set of transitions $T' = \{t_i | \sigma_i > 0\}$ occurring in the sequence σ
- T-invariant σ_T is minimal
 - If no T-invariant exists having a basis that is a proper subset of the basis of σ_T or
 - if the subsets are equal, its firing counts are lower

$$\forall \sigma_T^1 : \mathbf{W}^T \sigma_T^1 = 0 \Longrightarrow \left(\sigma_T^1 \ge \sigma_T \right) \lor \left(\sup(\sigma_T) \not\subseteq \sup(\sigma_T^1) \right)$$

Definition: Place invariant (P-invariant)

- A set of places marked by the non-negative weight vector μ_P , where the weighted sum of tokens is constant: $\vec{\mu}_P^T M = \text{constant}$
- Number of tokens in a subset of places is constant (e.g. resources are not lost or introduced)

$$M = M_{0} + \mathbf{W}^{\mathrm{T}} \vec{\sigma}$$

$$\underbrace{\vec{\mu}_{P}^{\mathrm{T}} M = \vec{\mu}_{P}^{\mathrm{T}} M_{0}}_{\vec{\mu}_{P}^{\mathrm{T}} M = \vec{\mu}_{P}^{\mathrm{T}} M_{0} = \text{ constant}} \vec{\mu}_{P}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \vec{\sigma}$$

$$\underbrace{\vec{\mu}_{P}^{\mathrm{T}} M = \vec{\mu}_{P}^{\mathrm{T}} M_{0} = \text{ constant}}_{\forall \vec{\rho}} \mathbf{W}^{\mathrm{T}} \vec{\sigma} = 0 \Rightarrow \vec{\mu}_{P}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \equiv 0$$

Example P-invariant

P-invariant for p_1 , p_2 , p_3 :

Not a P-invariant:

Applications of invariants

- Applications of T-invariants
 - For a process model: cyclical behavior
 - Dynamic properties
 - Cyclically fireable \rightarrow reversibility, home state
 - Can be fired later \rightarrow liveness, deadlock freedom
- Applications of P-invariants
 - For a process model: constant resources
 - Dynamic properties
 - Tokens are not lost \rightarrow liveness, deadlock freedom
 - Tokens are not produced \rightarrow boundedness

Calculating invariants

Does the example have invariants?

• For a P-invariant: $\mathbf{W} \cdot \mu_P = \mathbf{0}$

• For a T-invariant: $\mathbf{W}^{\mathrm{T}} \cdot \sigma_{T} = \mathbf{0}$

 $\mathbf{W}^{\mathsf{T}} = \begin{array}{ccc} \mathbf{p}_{1} \\ \mathbf{p}_{2} \\ \mathbf{p}_{3} \\ \mathbf{W}^{\mathsf{T}} = \begin{array}{ccc} \mathbf{p}_{2} \\ \mathbf{p}_{3} \\ \mathbf{p}_{3} \\ \mathbf{W}^{\mathsf{T}} \cdot (1, 1, 2)^{\mathsf{T}} = 0 \end{array}$

Example: Processor data transmission

- Processor
 - waiting (idle)
 - asking for bus grant
 - placing address to bus
 - placing data to bus
- Bus(es)
 - Idle (not used)
 - busy (processor/periphery)
- Petri net
 - n = 4 transitions
 - -m = 6 places

P-invariants: Calculate by hand!

Four P-invariants can be found

Example: Incidence matrices

Example: Incidence matrices

$$W = W^{+}-W^{-} =$$

p ₁	p ₂	p ₃	p ₄	p ₅	p ₆	·
-1	1	0	0	0	0	t ₁
0	-1	1	0	-1	1	t ₂
0	0	-1	1	0	0	t ₃
1	0	0	-1	1	-1	t ₄

Example: Incidence matrices

t1	t ₂	t ₃	t ₄	-
-1	0	0	1	p ₁
1	-1	0	0	p ₂
0	1	-1	0	p ₃
0	0	1	-1	p ₄
0	-1	0	1	p ₅
0	1	0	-1	p ₆

Martinez-Silva algorithm: Initialization

 $i \leftarrow 1$ $T_i \leftarrow \{ t \in T \}$ $\mathbf{A} \leftarrow \mathbf{W}^\mathsf{T}, \mathbf{D} \leftarrow \mathbf{1}_n // n = |P|$ $\mathbf{Q}_i \leftarrow [\mathbf{D} \mid \mathbf{A}] // \text{ identity matrix and incidence matrix}$ $L_p \leftarrow \text{the } p\text{th row of } \mathbf{Q}_i$

$$T_{1} = \{ t_{1}, t_{2}, t_{3}, t_{4} \} \qquad \mathbf{Q_{1}} = \begin{bmatrix} \mathbf{e_{1}} \ \mathbf{e_{2}} \ \mathbf{e_{3}} \ \mathbf{e_{4}} \ \mathbf{e_{5}} \ \mathbf{e_{6}} \ \mathbf{t_{1}} \ \mathbf{t_{2}} \ \mathbf{t_{3}} \ \mathbf{t_{4}} \\ \mathbf{1} \ \mathbf{0} \ \mathbf{1} \ \mathbf{-1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{p_{2}} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{-1} \ \mathbf{0} \ \mathbf{p_{3}} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{-1} \ \mathbf{0} \ \mathbf{p_{3}} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{-1} \ \mathbf{0} \ \mathbf{p_{3}} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{-1} \ \mathbf{0} \ \mathbf{p_{5}} \end{bmatrix}$$

0 0 0 0 0 1 0 1 0 -1 p₆

Martinez-Silva algorithm: Loop

Martinez-Silva algorithm: Step 1/1

Martinez-Silva algorithm: Step 1/2

Martinez-Silva algorithm: Subresult 1

$$\mathbf{Q_1}'' = \begin{bmatrix} \mathbf{e_1} \ \mathbf{e_2} \ \mathbf{e_3} \ \mathbf{e_4} \ \mathbf{e_5} \ \mathbf{e_6} \ \mathbf{t_1} \ \mathbf{t_2} \ \mathbf{t_3} \ \mathbf{t_4} \\ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ -1 \ 0 \ \mathbf{p_3} \\ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \ -1 \ \mathbf{p_4} \\ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ \mathbf{0} \ 1 \ \mathbf{p_5} \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ \mathbf{p_{1+2}} \end{bmatrix}$$

Martinez-Silva algorithm: Step 2/1, 2/2

Martinez-Silva algorithm: Subresult 2

$$I'' = \begin{bmatrix} e_1 & e_2 & e_3 & e_4 & e_5 & e_6 & t_1 & t_2 & t_3 & t_4 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & p_4 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & p_{1+2+3} \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & p_{3+5} \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & p_{1+2+6} \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & p_{5+6} \end{bmatrix}$$

Т

Martinez-Silva algorithm: Step 3/1, 3/2

Martinez-Silva algorithm: Final results

$$\mathbf{Q_3}'' = \begin{bmatrix} \mathbf{e_1} \ \mathbf{e_2} \ \mathbf{e_3} \ \mathbf{e_4} \ \mathbf{e_5} \ \mathbf{e_6} & \mathbf{t_1} \ \mathbf{t_2} \ \mathbf{t_3} \ \mathbf{t_4} \\ \mathbf{1} \ \mathbf{1} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} & \mathbf{1} & \mathbf{0} \ \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{1} \ \mathbf{1} \ \mathbf{1} \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{1} \ \mathbf{1} \ \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} & \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{0} \\ \mathbf{0} \ \mathbf{$$

• Invariants:

- Coefficients in the rows of matrix D_m in the final matrix $Q_m = [D_m|0]$
- Resulting P-invariants:
 - 1. $m(p_1)+m(p_2)+m(p_6) = 1$
 - 2. $m(p_5)+m(p_6) = 1$
 - 3. $m(p_1)+m(p_2)+m(p_3)+m(p_4) = 1$
 - 4. $m(p_3)+m(p_4)+m(p_5) = 1$
- Sum of tokens can be determined from the initial marking

Example: Calculating T-invariants

Star	rt										
p ₁ p ₂ p ₃ p ₄ p ₅											
t ₁	1	0	0	0	0	-1	1	-2	0	-1	s ₁₁ X (delete)
t ₂	0	1	0	0	0	3	-2	0	-1	1	s ₁₂
t ₃	0	0	1	0	0	1	0	-1	-1	-1	s ₁₃ X
t ₄	0	0	0	1	0	-2	1	2	1	0	s ₁₄
t ₅	0	0	0	0	1	1	-1	1	0	1	s ₁₅ X
Step 1 (work with 5th column)											
	1	1	0	0	0	2	-1	-2	-1	0	(11+12)
	0	1	1	0	0	4	-2	-1	-2	0	(12+13)
	1	0	0	0	1	0	0	-1	0	0	(11+15)
	0	0	1	0	1	2	-1	0	-1	0	(13+15)
(dele	ete a	nd r	eor	der)						-	
Befo	re st	ep 2	2								
	0	0	0	1	0	-2	1	2	1	0	s ₂₁ X
	1	1	0	0	0	2	-1	-2	-1	0	s ₂₂ X
	0	1	1	0	0	4	-2	-1	-2	0	s ₂₃ X
	1	0	0	0	1	0	0	-1	0	0	s ₂₄
	0	0	1	0	1	2	-1	0	-1	0	s ₂₅ X
Step	o 2				-				(wo	rk w	vith 4th column)
	1	1	0	1	0	0	0	0	0	0	(21+22)
	0	0	1	1	1	0	0	2	0	0	(21+25)
	0	1	1	2	0	0	0	3	0	0	(2*21+23)
(dele	ete a	nd r	eoro	der)	-						
Befo	re st	ep :	3								
	1	0	0	0	1	0	0	-1	0	0	s ₃₁ X
	1	1	0	1	0	0	0	0	0	0	s ₃₂
	0	0	1	1	1	0	0	2	0	0	s ₃₃ X
	0	1	1	2	0	0	0	3	0	0	s ₃₄ X
Step	Step 3 (work with								vith	3rd column)	
ĺ	2	0	1	1	3			Δ			(2*31+33)
	3	1	1	2	3			U			(3*31+34) 39
					÷						

Structural properties of Petri nets

Structural liveness, structural boundedness

- A Petri net *N* is structurally live, if there exists a live initial marking *M*₀ for *N*
 - A Petri net is live, if it is L4-live,
 i.e., each transition *t*∈*T* is L4-live
 - A transition is L4-live: can be fired at least once in some firing sequence from any reachable state
- A Petri net *N* is structurally bounded, if it is bounded for all bounded initial markings *M*₀

Controllability

 A Petri net *N* is completely controllable, if for all bounded initial marking *M*₀ any marking is reachable from any other marking, i.e.,

 $\forall M_i, M_j : M_i, M_j \in R(N, M_0) \Longrightarrow M_i \in R(N, M_j) \land M_j \in R(N, M_i)$

Conservativeness

• A Petri net *N* is conservative, if there exists a positive integer weight μ_p for every place $p \in P$ in every bounded M_0 and $M \in R(N, M_0)$ such that:

$$M \,\vec{\mu} = M_0 \,\vec{\mu} = \text{constant}$$

- Example: For each initial marking, each place in each reachable marking is part of a P-invariant
- Partially conservative, if the above only holds for some places.
 - Example: For each initial marking, some places in each reachable marking is part of a P-invariants

Repetitiveness

- A Petri net *N* is repetitive, if an initial marking M_0 and a firing sequence σ from M_0 exists, such that every transition $t \in T$ occurs infinitely often in σ .
 - Example: An initial marking exists with a returning firing sequence (loop) containing every transition
- Partially repetitive, if the above only holds for some transitions.
 - Example: An initial marking exists with a returning firing sequence (loop) containing some transitions

Consistency

- A Petri net *N* is consistent, if an initial marking M_0 and a firing sequence σ from M_0 to M_0 exists, such that every transition $t \in T$ occurs at least once in σ .
- Partially consistent, if the above only holds for some transitions.

Structural B-fairness

- Two transitions are structurally B-fair, if for all initial markings *M*₀ the two transitions are B-fair
 - Two transitions are B-fair: One of them can fire only a bounded number of times without firing the other
- A Petri net *N* is structurally B-fair, if for all initial markings *M*₀ the net is B-fair
 - A Petri net (*N*, *M*₀) is B-fair, if any two transitions are in a B-fair relationship
 - Structural B-fair relation \rightleftharpoons B-fair relation

B-fair, but not structurally B-fair net

B-fair M₀

Not B-fair M_0

Conditions for the properties*

	Property	Necessary and sufficient condition				
SB	Structurally bounded	$\exists \vec{\mu} > 0, \mathbf{W} \vec{\mu} \le 0 (\text{ or } \vec{z} \vec{\sigma} > 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \ge 0)$				
CN	Conservative	$\exists \vec{\mu} > 0, \mathbf{W} \vec{\mu} = 0 (\text{or } \vec{A} \vec{\sigma}, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0)$				
PCN	Partially conservative	$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} = 0$				
RP	Repetitive	$\exists \vec{\sigma} > 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \ge 0$				
PRP	Partially repetitive	$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0$				
CS	Consistent	$\exists \vec{\sigma} > 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} = 0 (\text{or } \not\exists \vec{\mu}, \mathbf{W} \vec{\mu} \geq 0)$				
PCS	Partially consistent	$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} = 0$				

Other properties*

If	Then				
<i>N</i> structurally bounded and structurally live	<i>N</i> is conservative and consistent.				
$\exists \vec{\mu} \ge 0, \mathbf{W} \vec{\mu} \le 0_{\neq} 0$	A non-live <i>M</i> ₀ exists for <i>N</i> . <i>N</i> is not consistent.				
$\exists \vec{\mu} \ge 0, \mathbf{W} \vec{\mu} \ge 0_{\neq} 0$	(N, M_0) is not bounded with live M_0 . N is not consistent.				
$\exists \vec{\sigma} \ge 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \le 0$	A non-live <i>M</i> ₀ exists for structurally bounded <i>N</i> . <i>N</i> is not consistent.				
$\exists \vec{\sigma} \ge 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \ge 0$	<i>N</i> is not structurally bounded. <i>N</i> not conservative.				