Structural properties of Petri nets

dr. Tamás Bartha

dr. István Majzik

dr. András Pataricza
BME Department of Measurement and Information Systems

Recall: Dynamic properties

- Example: Model of a workflow (tasks + activities + resources)
- Properties analyzed
- Does the system halt?
- Can certain activities be performed?
- Do tasks overwhelm?
- Can we return to the initial state?
- Is there a processing loop?
- Can activities be stopped?
- Is there an activity lacking resources?

Deadlock
Liveness
Boundedness
Reversibility Home state
Persistence
Fairness

- Problem: Exploring a large state space

Recall: Analysis methods

Depth of the analysis:

- Simulation
\Leftarrow Traverse single trajectiories
- Full exploration of the state space Traverse all trajectories from a given initial state (exhaustive traversal)
Dynamic (behavioral) properties
- Model checking
- Analysis of the net structure
- Static analysis:

Structural properties

- Invariant analysis
\longleftarrow Properties independent from the initial state (hold for every initial state)

Main idea of structural analysis

- Can we state something without traversing / exploring the state space?
- Based only on the structure (places, transitions, arcs)
- Analysis independent from the initial state
- In certain cases only approximate results!
- Approximate analysis is safe if it covers the real behavior
- If no counterexample is found for the examined property (erroneous behavior): the property holds
- If a counterexample is found: it may be spurious: It has to be verified with simulation and if it is spurious a new search has to be started

Structural properties

Properties of Petri nets independent from the initial state:

- Structural boundedness
- Controllability
- Conservativeness
- Place invariant (P-invariant)
- Structural liveness
- Repetitiveness
- Consistence
- Transition invariant
(T-invariant)

Depending on the definition, the property must hold for

- either for all bounded initial marking,
- or some existing bounded initial marking

Recall: Describing the structure

- Weighted incidence matrix: $\mathbf{W}=[\mathrm{w}(t, p)]$
- Dimension: $\tau \times \pi=|T| \times|P|$
- $\mathrm{w}(t, p)$: Change in the number of tokens on p when t fires

$\boldsymbol{W}=W^{+}-W^{-}$
$W^{+}=\left[\begin{array}{llllll}0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0\end{array}\right]$
$\begin{array}{llllll}p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6}\end{array}$
$W=\left[\begin{array}{rrrrrr}-2 & 0 & 0 & 1 & 0 & 0 \\ -1 & -3 & -1 & 1 & 4 & 1 \\ 0 & 0 & 1 & 0 & 0 & -1\end{array}\right] \begin{aligned} & t_{1} \\ & t_{2} \\ & t_{3}\end{aligned}$
$W^{-}=\left[\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

Recall: Describing the structure

$$
\begin{aligned}
& \begin{array}{lll}
p_{1} & P_{2} & p_{3}
\end{array} \\
& \left.W=\begin{array}{l}
t_{1} \\
t_{2}
\end{array} \begin{array}{rrr}
2 & 1 & -1 \\
0 & 1 & -1 \\
t_{3} & -1 & -1 \\
\hline
\end{array}\right] \\
& \left.W^{\top}=\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array} \begin{array}{rrr}
t_{1} & t_{2} & t_{3} \\
2 & 0 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Introducing the state equation

- Dynamics of Petri nets: change in the marking
- Changes can be described by equations
- Precondition (for unambiguousness): pure Petri net
- No transition exists that is both the input and output transition of the same place: $\forall t \in T: \bullet t \cap t \bullet \varnothing$
- This subsumes: No "self-loop"
- Marking does not change after firing
(0 element in the incidence matrix)
- But has a role in enabling the transition

Firing sequence

- Firing sequence:

$$
\vec{\sigma}=\left\langle M_{i_{0}} t_{i 1} M_{i_{1}} \ldots t_{i_{n}} M_{i_{n}}\right\rangle=\left\langle t_{i_{1}} \ldots t_{i_{n}}\right\rangle
$$

- Reachability of a state (marking):

$$
M_{i_{0}}\left[\vec{\sigma}>M_{i_{n}}\right.
$$

- Enabledness of a firing sequence:
- Transition $t_{i j}$ has enough tokens on input places $p \in \bullet t_{i j}$

$$
\forall t_{i_{j}} \in \vec{\sigma}, \forall p \in \bullet{\stackrel{t}{i_{j}}}: M_{i_{j-1}}(p) \geq w^{-}\left(p, t_{i_{j}}\right)=\mathbf{W}^{-\mathrm{T}} \vec{e}_{i_{j}}
$$

State equation

- Change in the marking:
- When firing an enabled transition t_{j}
- $\mathrm{w}^{-}\left(p, t_{j}\right)$ tokens removed from each input place $p \in \bullet t_{j}$
- $\mathrm{w}^{+}\left(p, t_{j}\right)$ tokens are produced in each output place $p \in t_{j} \bullet$

$$
M_{j}=M_{j-1}-\mathbf{W}^{-^{\mathrm{T}}} \vec{e}_{j}+\mathbf{W}^{+^{\mathrm{T}}} \vec{e}_{j}=M_{j-1}+\mathbf{W}^{\mathrm{T}} \vec{e}_{j}
$$

- When firing an enabled firing sequence $\underline{\underline{\sigma}}$:
- Marking changes by accumulating the firings:

$$
M_{0}\left[\vec{\sigma}>M_{j} \quad \rightarrow \quad M_{j}=M_{0}+\mathbf{W}^{\top}\left(\hat{\sigma}_{T}\right.\right.
$$

- Firing count vector: number of occurrences for each transition in the firing sequence

Deriving the state equation

$$
\begin{aligned}
& M_{1}=M_{0}+\mathbf{W}^{\mathrm{T}} \vec{e}_{e_{1}} \\
& M_{2}=M_{1}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}}=\overbrace{M_{0}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}}}^{\text {subsituing } M_{1}} \\
& \ldots \\
& M_{n+1}=M_{n}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{t+1}}=M_{0}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{1}}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}}+\ldots+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{t+1}} \\
& \ldots \\
& \ldots \\
& M_{m}=M_{0}+\mathbf{W}^{\mathrm{T}} \vec{e}_{e_{1}}+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{2}}+\ldots+\mathbf{W}^{\mathrm{T}} \vec{e}_{t_{m}}=M_{0}+\mathbf{W}^{\mathrm{T}} \sum_{i=1}^{m} \vec{e}_{t_{1}} \\
& M_{m}=M_{0}+\mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T} \Rightarrow M_{m}-M_{0}=\mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T}
\end{aligned}
$$

State equation and reachability

- The firing count vector contains less information, than the firing sequence
- The order of firing is lost by only giving $(0,2,2)^{\top}$!
- A non fireable sequence can be obtained from the state equation for a given M_{0}

Example: State equation and reachability

- State equation:

$$
M_{0}\left[\vec{\sigma}>M_{j} \Rightarrow M_{j}-M_{0}=W^{T} \vec{\sigma}_{T}\right.
$$

$$
\left.\mathbf{W}^{\top}=\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array} \begin{array}{rrr}
t_{1} & t_{2} & t_{3} \\
2 & 0 & -1 \\
1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

- Firing count vector can be calculated to reach $(1,1,0)^{\top}$ from $(0,1,0)^{\top}$:

$$
(1,1,0)^{\mathrm{T}}-(0,1,0)^{\mathrm{T}}=\mathbf{W}^{\mathrm{T}} \cdot(1,0,1)^{\mathrm{T}}
$$

- Firing count vector: $(1,0,1)^{\top}$
- But neither t_{1}, nor t_{3} is enabled under the initial marking $(0,1,0)$!

Transition and place invariants

Definition: Transition invariant (T-invariant)

The firing count vector σ_{T} is a T-invariant, if its firing does not change the marking:

$$
\mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T}=0
$$

- Cycle in the state space: $M_{i}\left[\vec{\sigma}_{T}>M_{i}\right.$
- The firing sequence σ_{T} can be fired from state M_{j} if

$$
\forall t_{i_{j}} \in \vec{\sigma}, \forall p \in\left\{\bullet \bullet_{i_{j}}\right\}: m_{i_{j-1}}(p) \geq w^{-}\left(p, t_{i_{j}}\right)=\mathbf{W}^{-\mathrm{T}} \cdot \vec{e}_{i_{j}}
$$

- Note: for each firing sequence σ an initial marking M_{0} exists, from which σ can be fired
- E.g. $M_{0} \geq \mathbf{W}^{-\mathrm{T}} \vec{\sigma}$, the marking can have initially "as many" tokens, that the tokens produced by σ are not needed

Example T-invariant

T-invariant: marking does not change after firing $t_{1}-t_{2}$

Not a T-invariant:
firing sequence $t_{3}-t_{1}-t_{2}$ cannot be repeated

Set of T-invariants

$$
\mathbf{W}^{\mathrm{T}} \vec{\sigma}_{T}=0
$$

Solutions of the homogeneous, linear system of equations

- Multiples of a solution are also solutions
- If fireable, the loop can be traversed multiple times
- Sum of solutions is also a solution
- If fireable, multiple loops can be combined
- Linear combination of solutions is also a solution

A basis can be found for the solutions

- Minimal set that can produce each solution

Minimal T-invariant

- Notation: basis of a firing sequence σ is $\sup (\sigma)$:
- Set of transitions $T^{\prime}=\left\{t_{i} \mid \sigma_{i}>0\right\}$ occurring in the sequence σ
- T-invariant σ_{T} is minimal
- If no T-invariant exists having a basis that is a proper subset of the basis of σ_{T} or
- if the subsets are equal, its firing counts are lower

$$
\forall \sigma_{T}^{1}: \mathbf{W}^{\mathrm{T}} \sigma_{T}^{1}=0 \Rightarrow\left(\sigma_{T}^{1} \geq \sigma_{T}\right) \vee\left(\sup \left(\sigma_{T}\right) \nsubseteq \sup \left(\sigma_{T}^{1}\right)\right)
$$

Definition: Place invariant (P-invariant)

- A set of places marked by the non-negative weight vector μ_{p}, where the weighted sum of tokens is constant:

$$
\vec{\mu}_{P}^{\mathrm{T}} M=\text { constant }
$$

- Number of tokens in a subset of places is constant (e.g. resources are not lost or introduced)

$$
\begin{aligned}
& \left.\begin{array}{l}
M=M_{0}+\mathbf{W}^{\mathrm{T}} \vec{\sigma} \\
\underbrace{\vec{\mu}_{P}^{\mathrm{T}} M=\vec{\mu}_{\mathrm{T}}^{\mathrm{T}} M_{0}}_{\vec{\mu}_{P}^{\mathrm{T}} M=\vec{\mu}_{P}^{\mathrm{T}} M_{0}=\text { constant }}+\vec{\mu}_{P}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \vec{\sigma} \\
\vec{\mu}_{P}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \vec{\sigma}=0 \Rightarrow \vec{\mu}_{P}^{\mathrm{T}} \mathbf{W}^{\mathrm{T}} \equiv 0 \\
\nabla \vec{\sigma} \vec{\sigma}
\end{array}\right\} \quad \mathbf{W} \vec{\mu}_{P}=0 \\
& \hline
\end{aligned}
$$

Example P-invariant

P-invariant for p_{1}, p_{2}, p_{3} :
Not a P-invariant:

Applications of invariants

- Applications of T-invariants
- For a process model: cyclical behavior
- Dynamic properties
- Cyclically fireable \rightarrow reversibility, home state
- Can be fired later \rightarrow liveness, deadlock freedom
- Applications of P-invariants
- For a process model: constant resources
- Dynamic properties
- Tokens are not lost \rightarrow liveness, deadlock freedom
- Tokens are not produced \rightarrow boundedness

Calculating invariants

Does the example have invariants?

- For a P-invariant: $\mathbf{W} \cdot \mu_{P}=0$
- For a T-invariant: $\mathbf{W}^{\mathrm{T}} \cdot \sigma_{T}=0$

$$
\begin{aligned}
& \mathbf{W}^{\top}=\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\left[\begin{array}{r|r|r}
t_{1} & t_{2} & t_{3} \\
2 & 0 & -1 \\
1 & 1 & -1 \\
-1 & 1 \\
\hline
\end{array}\right] \\
& \mathbf{W}^{\mathrm{T}} \cdot(1,1,2)^{\mathrm{T}}=0
\end{aligned}
$$

Example: Processor data transmission

- Processor
- waiting (idle)
- asking for bus grant
- placing address to bus
- placing data to bus
- Bus(es)
- Idle (not used)
- busy (processor/periphery)
- Petri net
- $n=4$ transitions
- $m=6$ places

P-invariants: Calculate by hand!

Four P-invariants can be found

Example: Incidence matrices

$$
\mathbf{W}^{-}=\left[\begin{array}{ccccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & \\
1 & 0 & 0 & 0 & 0 & 0 & t_{1} \\
0 & 1 & 0 & 0 & 1 & 0 & t_{2} \\
0 & 0 & 1 & 0 & 0 & 0 & t_{3} \\
0 & 0 & 0 & 1 & 0 & 1 & t_{4}
\end{array}\right]
$$

$$
\mathbf{W}^{+}=\left[\begin{array}{ccccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & \\
0 & 1 & 0 & 0 & 0 & 0 & t_{1} \\
0 & 0 & 1 & 0 & 0 & 1 & t_{2} \\
0 & 0 & 0 & 1 & 0 & 0 & t_{3} \\
1 & 0 & 0 & 0 & 1 & 0 & t_{4}
\end{array}\right]
$$

Example: Incidence matrices

$$
W=W^{+}-W^{-}=\left[\begin{array}{ccccccc}
p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & \\
-1 & 1 & 0 & 0 & 0 & 0 & t_{1} \\
0 & -1 & 1 & 0 & -1 & 1 & t_{2} \\
0 & 0 & -1 & 1 & 0 & 0 & t_{3} \\
1 & 0 & 0 & -1 & 1 & -1 & t_{4}
\end{array}\right]
$$

Example: Incidence matrices

$$
\mathbf{W}^{\top}=\left[\begin{array}{rrrrr}
t_{1} & t_{2} & t_{3} & t_{4} & \\
-1 & 0 & 0 & 1 & p_{1} \\
1 & -1 & 0 & 0 & p_{2} \\
0 & 1 & -1 & 0 & p_{3} \\
0 & 0 & 1 & -1 & p_{4} \\
0 & -1 & 0 & 1 & p_{5} \\
0 & 1 & 0 & -1 & p_{6}
\end{array}\right]
$$

Martinez-Silva algorithm: Initialization

$i \leftarrow 1$
$T_{i} \leftarrow\{t \in T\}$
$\mathbf{A} \leftarrow \mathbf{W}^{\top}, \mathbf{D} \leftarrow \mathbf{1}_{n} / / n=|P|$
$\mathbf{Q}_{i} \leftarrow[\mathbf{D} \mid \mathbf{A}] / /$ identity matrix and incidence matrix
$L_{p} \leftarrow$ the p th row of \mathbf{Q}_{i}

$$
\mathbf{Q}_{\mathbf{1}}=\left[\begin{array}{ccccc:c:ccccc}
\mathbf{e}_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & t_{1} & t_{2} & t_{3} & t_{4} \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1 & p_{1} \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & \mathbf{p}_{2} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & \mathbf{p}_{3} \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & \mathbf{p}_{4} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 & p_{5} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 & p_{6}
\end{array}\right]
$$

Martinez-Silva algorithm: Loop

while $\mathbf{A}_{\mathbf{i}} \neq 0$

if $t_{j} \in T_{i} / /$ choose a column not yet examined
$T_{i+1} \leftarrow T_{i} \backslash\left\{t_{j}\right\}$
$\mathrm{L}_{\text {delete }} \leftarrow \varnothing$
Find pairs of nonzero values in the jth column, whose weighted sum with given positive weights equals to 0
$\mathbf{Q}_{i+1} \leftarrow \mathbf{Q}_{i}$
for all $u, v: \mathrm{A}_{\mathrm{i}}(u, j) \neq 0 \wedge \mathrm{~A}_{\mathrm{i}}(v, j) \neq 0 \wedge$ $\exists \lambda_{u}, \lambda_{v} \in \infty^{+}: \lambda_{u} \mathrm{~A}_{\mathrm{i}}(u, j)+\lambda_{v} \mathrm{~A}_{\mathrm{i}}(v, j)=0$
add row $\lambda_{u} L_{u}+\lambda_{v} L_{\nu}$ to \mathbf{Q}_{i+1}
$\mathrm{L}_{\text {delete }} \leftarrow \mathrm{L}_{\text {delete }} \cup\left\{L_{l \prime \prime} L_{\nu}\right\}$
end for
delete rows in $\mathrm{L}_{\text {delete }}$ from $\mathbf{Q}_{\boldsymbol{i + 1}}$ $i \leftarrow i+1$
end while

Martinez-Silva algorithm: Step 1/1

$$
\mathbf{Q}_{1}=\left[\begin{array}{rrrrrr:rrrr}
\mathbf{e}_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & t_{1} & t_{2} & t_{3} & t_{4} \\
1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 1
\end{array} p_{1}\right)
$$

Martinez-Silva algorithm: Step 1/2

Martinez-Silva algorithm: Subresult 1

$$
\mathbf{Q}_{\mathbf{1}}{ }^{\prime \prime}=\left[\begin{array}{cccccc:cccc}
\mathrm{e}_{1} & e_{2} & e_{3} & e_{4} & e_{5} & e_{6} & \mathbf{t}_{1} & t_{2} & \mathbf{t}_{3} & \mathbf{t}_{4} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 \\
p_{3} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
\mathbf{p}_{4} \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & -1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 1 \\
p_{6}
\end{array}\right]
$$

Martinez-Silva algorithm: Step 2/1, 2/2

Martinez-Silva algorithm: Subresult 2

Martinez-Silva algorithm: Step 3/1, 3/2

Martinez-Silva algorithm: Final results

- Invariants:
- Coefficients in the rows of matrix D_{m} in the final matrix $\mathrm{Q}_{\mathrm{m}}=\left[\mathrm{D}_{\mathrm{m}} \mid 0\right]$
- Resulting P-invariants:

$$
\begin{aligned}
& \text { 1. } m\left(p_{1}\right)+m\left(p_{2}\right)+m\left(p_{6}\right)=1 \\
& \text { 2. } m\left(p_{5}\right)+m\left(p_{6}\right)=1 \\
& \text { 3. } m\left(p_{1}\right)+m\left(p_{2}\right)+m\left(p_{3}\right)+m\left(p_{4}\right)=1 \\
& \text { 4. } m\left(p_{3}\right)+m\left(p_{4}\right)+m\left(p_{5}\right)=1
\end{aligned}
$$

- Sum of tokens can be determined from the initial marking

Example: Calculating T-invariants

Start

(delete and reorder)
Before step 2

$$
\left\lvert\, \begin{array}{rrrrr:rrrrr|l}
0 & 0 & 0 & 1 & 0 & -2 & 1 & 2 & 1 & 0 & s_{21} \\
1 & 1 & 0 & 0 & 0 & 2 & -1 & -2 & -1 & 0 & s_{22} \\
0 & 1 & 1 & 0 & 0 & 4 & -2 & -1 & -2 & 0 & s_{23} \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & s_{24} \\
0 & 0 & 1 & 0 & 1 & 2 & -1 & 0 & -1 & 0 & s_{25}
\end{array}\right.
$$

Step 2
(work with 4th column)

$$
\left|\begin{array}{lllll:lllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 0 \\
0 & 1 & 1 & 2 & 0 & 0 & 0 & 3 & 0 & 0
\end{array}\right| \quad \begin{aligned}
& (21+22) \\
& (21+25) \\
& (2 * 21+23)
\end{aligned}
$$

(delete and reorder)
Before step 3

$$
\left\lvert\, \begin{array}{rrrrr:ccccc|c}
1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & s_{31} \\
1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & s_{32} \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & s_{33} \\
0 & 1 & 1 & 2 & 0 & 0 & 0 & 3 & 0 & 0 & s_{34}
\end{array}\right.
$$

Step 3
$\left\lvert\, \begin{array}{lllll}2 & 0 & 1 & 1 & 3 \\ 3 & 1 & 1 & 2 & 3\end{array}\right.$
(work with 3rd column)
0
($3 * 31+34$)

Structural properties of Petri nets

Structural liveness, structural boundedness

- A Petri net N is structurally live, if there exists a live initial marking M_{0} for N
- A Petri net is live, if it is L4-live, i.e., each transition $t \in T$ is L4-live
- A transition is L4-live: can be fired at least once in some firing sequence from any reachable state
- A Petri net N is structurally bounded, if it is bounded for all bounded initial markings M_{0}

Controllability

- A Petri net N is completely controllable, if for all bounded initial marking M_{0} any marking is reachable from any other marking, i.e.,
$\forall M_{i}, M_{j}: M_{i}, M_{j} \in R\left(N, M_{0}\right) \Rightarrow M_{i} \in R\left(N, M_{j}\right) \wedge M_{j} \in R\left(N, M_{i}\right)$

Conservativeness

- A Petri net N is conservative, if there exists a positive integer weight μ_{p} for every place $p \in P$ in every bounded M_{0} and $M \in R\left(N, M_{0}\right)$ such that:

$$
M \vec{\mu}=M_{0} \vec{\mu}=\text { constant }
$$

- Example: For each initial marking, each place in each reachable marking is part of a P -invariant
- Partially conservative, if the above only holds for some places.
- Example: For each initial marking, some places in each reachable marking is part of a P-invariants

Repetitiveness

- A Petri net N is repetitive, if an initial marking M_{0} and a firing sequence σ from M_{0} exists, such that every transition $t \in T$ occurs infinitely often in σ.
- Example: An initial marking exists with a returning firing sequence (loop) containing every transition
- Partially repetitive, if the above only holds for some transitions.
- Example: An initial marking exists with a returning firing sequence (loop) containing some transitions

Consistency

- A Petri net N is consistent, if an initial marking M_{0} and a firing sequence σ from M_{0} to M_{0} exists, such that every transition $t \in T$ occurs at least once in σ.
- Partially consistent, if the above only holds for some transitions.

Structural B-fairness

- Two transitions are structurally B-fair, if for all initial markings M_{0} the two transitions are B -fair
- Two transitions are B-fair: One of them can fire only a bounded number of times without firing the other
- A Petri net N is structurally B -fair, if for all initial markings M_{0} the net is B -fair
- A Petri net $\left(N, M_{0}\right)$ is B-fair, if any two transitions are in a B-fair relationship
- Structural B-fair relation \Longleftrightarrow B-fair relation

B-fair, but not structurally B-fair net

Conditions for the properties*

	Property	Necessary and sufficient condition
SB	Structurally bounded	$\exists \vec{\mu}>0, \mathbf{W} \vec{\mu} \leq 0\left(\right.$ or $\nexists \vec{\sigma}>0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \underset{\neq}{\geq}$)
CN	Conservative	$\exists \vec{\mu}>0, \mathbf{W} \vec{\mu}=0 \quad\left(\right.$ or $\left.\nexists \vec{\sigma}, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \underset{\neq 0}{\geq}\right)$
PCN	Partially conservative	$\exists \vec{\mu} \underset{\neq 0, \mathbf{W}}{\boldsymbol{\mu}}=0$
RP	Repetitive	$\exists \vec{\sigma}>0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0$
PRP	Partially repetitive	$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0$
CS	Consistent	$\exists \vec{\sigma}>0, \mathbf{W}^{\mathrm{T}} \vec{\sigma}=0 \quad($ or $\nexists \vec{\mu}, \mathbf{W} \vec{\mu} \underset{\neq 0}{ }$)
PCS	Partially consistent	$\exists \underset{\sigma}{\underset{F}{\geq}} \underset{\sim}{\geq}, \mathbf{W}^{\mathrm{T}} \vec{\sigma}=0$

Other properties*

If ...	Then ...
N structurally bounded and structurally live	N is conservative and consistent.
$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} \leq 0$	A non-live M_{0} exists for N. N is not consistent.
$\exists \vec{\mu} \geq 0, \mathbf{W} \vec{\mu} \geq 0$	$\left(N_{1} M_{0}\right)$ is not bounded with live M_{0}. N is not consistent.
$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \leq 0$	A non-live M_{0} exists for structurally bounded $N . N$ is not consistent.
$\exists \vec{\sigma} \geq 0, \mathbf{W}^{\mathrm{T}} \vec{\sigma} \geq 0$	N is not structurally bounded. N not conservative.

