Colored Petri nets (CPNs)

dr. Tamás Bartha dr. István Majzik

BME Department of Measurement and Information Systems

Motivation

- Petri net model of Dining Philosophers

Motivation

- Why not this way?

Motivation

- Distinction of tokens: colored Petri net
val $\mathrm{n}=5$;
colset PH = index ph with 1..n; colset CS = index cs with 1..n; var p : PH;
fun Chopsticks(ph(i)) = 1'cs(i) ++
1 'cs(if $i=n$ then 1 else $i+1$);

Motivation

- Meaning of colored tokens

A more complex example (see later)

Colored Petri nets

- Colored Petri net (CPN)
- Extension of uncolored Petri nets with:
- Flexible data structures
- Data manipulation language
- Colored Petri nets unite:
- Graphical representation $\quad \rightarrow$ clarity
- Well-defined semantics \rightarrow formal analysis
- CPN model $=$ net structure + declarations + net markings, expressions + initialization

Main components of CPNs (overview)

- Extensions of tokens
- Data value: colored token
- Data type: color set
- Extensions of places
- Type of place: data type of accepted tokens
- Initial marking inscription: initial tokens
- Current marking: multiset of tokens matching the place's type
- Extensions of arcs
- Arc expression: tokens moved (with variables to be bound)
- Extensions of transitions
- Guard for firing
- To fire: arc expressions shall be bound to colored tokens

Comparison of colored and uncolored Petri nets

Uncolored (P-T) Petri nets:

- Uncolored tokens
- Set of tokens (cardinality)
- Token manipulation
- Initial marking
- Inhibitor edges
- Edge weights
- Transition can be enabled
- Conflict between different enabled transitions
- ~ assembly

Colored Petri nets:

- Colored tokens
- Multiset of tokens
- Data manipulation
- Initial marking inscription
- Guards
- Arc expressions (+variables)
- Binding can be enabled
- Conflict between different bindings of the same transition
- ~ high-level programming lang.

Structure of colored Petri nets

Extensions of tokens

- Colored token
- Represents a data value
- Color set:
- Defines the data type
E.g., enumeration (with), base type (int, bool, string, ...)
- Can be complex (compound)
E.g., color $\mathrm{P}=$ product U * I
- Declaration: in formal language
- Standard ML

Extensions of PN places

- Color set inscription: type (color) of the place
- Type of tokens accepted by the place (one of the declared types)
- Visualization: written next to the place, in italic
- Initial marking inscription
- Defines the initial marking
- A multiset of the accepted color set (may be more than one token per color)
- Visualization: written next to the place, underlined
- Current marking
- Description of current tokens
- Visualization: written next to the place, number of tokens in circle and detailed description

Extensions of PN transitions

- Arc expression
- Precondition of enablement (removed tokens) and the result of firing (placed tokens)
- Type: type of the place connected to the arc (one transition have arcs with different types)
- Visualization: next to the arc
- Variable can be used in the expression
- Can be bound to data values (colored tokens)
- Shall have a type (the color set of tokens that can be bound to it)
- Guard
- Boolean expression, needs to be true to enable the transition
- Visualization: next to the transition, within []

Structure of colored Petri nets: Summary

- Net structure:
- Represents the control and data flow structure of the system
- Places, transitions, arcs
- Declarations:
- Define the data structures and used functions
- Color sets, variables, arc expressions
- Markings, naming:
- Define the syntactic and data manipulation items
- Names, color sets, in/out arc expressions, guards, current state
- Initializing expression:
- Defines the initial state of the model (constants)

```
color U = with p | q;
color I = int;
color P = product U * I;
color E = with e;
var x : U;
var i : I;
```

- Elements of CPNs:
- Places
- Name
- Color set
- Initial marking
- Current marking
- Transitions
- Name
- Guard

- Arcs
- Arc expressions (incoming, outgoing)

Example: Control structures 1

IF b THEN stat1 ELSE stat2

WHILE b DO stat

Example: Control structures 2

REPEAT stat UNTIL b
Subroutine call
Start of a process

Toolset of colored Petri nets

CPN: Definition of color sets

- Simple color sets
- Uncolored tokens: unit
- Base types:
int, bool, real,
string
- Subset:
with 1..4;
- Enumeration:
with true | false;
- Indexing (vector):
index d with 1..4;
- Can be used in the definitions of the following:
- Compound color sets
- Variables, constants
- Functions, operators

Compound color sets

- Ways to create compound color sets:
- Union:
union $S+T ;$
- Cross product (construction of tuples):
product P * Q * R;
- Record (labelled tuples):
record $p: P$ * $q: Q$ * $r: R ;$
- List:
list int with 2..6;

Additional CPN elements: Variables

- Variables

Symbolic names of tokens

- Variable declaration:
var proc : P;
- Constants

With fixed values

- Constant declaration:

$$
\begin{aligned}
& \text { val } n=10 ; \\
& \text { val } d 1=d(1): D ;
\end{aligned}
$$

- In the following expr.'s:
- Arc expressions
- Guards
- In the following decl.'s:
- Color sets
- Functions, operators
- Arc expressions, guards, initialization expressions

Additional CPN elements: Functions

- Functions

Side effect-free functions
in SML language

- Example:

```
fun Chopsticks(ph(i)) =
    1`cs(i) ++
    1`cs(if i=n then 1 else i+1);
```

- In the following decl.'s:
- Color sets
- Functions, operators, constants
- Arc expressions, guards, initialization expressions
- Operations, operators

Infix notation

Additional CPN elements: Expressions

- Net expressions
- Value: evaluated with a specific binding of the variables
- Type: set of all possible evaluations
- Examples:
$x=q$
2` (\(\mathrm{x}, \mathrm{i}\)) if \(x=q\) then 2`i else empty
Mes (s)
- Usage in:
- Arc expressions, guards, initialization expressions

Expressions: Operations with multisets

Addition: $\mathrm{a}_{1}+\mathrm{a}_{2}$

Comparison: $\mathrm{a}_{1} \leq \mathrm{a}_{2}, \mathrm{a}_{1} \neq \mathrm{a}_{2}$

$$
\square \Delta \Delta \square \Delta \Delta \Delta \Delta \square \Delta
$$

Size: $\left|a_{1}\right|$

Scalar multiplication: $n \cdot a_{1}$

Subtraction: $a_{1}-a_{2}$ (only if $a_{2} \leq a_{1}$)

Behavior of colored Petri nets (informal semantic)

Marking and binding

- Marking:
- Distribution of tokens (count, by color) on the places
- Binding the arc expressions of a transition:
- The variables are bound to data values (colored tokens)
- For a given transition each occurrence of a variable will be bound to the same value

- Unbound variable on outgoing arc: Can be bound to any value of its type
- The bindings of different transitions are independent

Enabling of transitions

- Transition enabled with a given marking and binding:
- Each input arc's expression evaluates to a multiset of tokens that is present on the corresponding input place
- The guard is true
- If a transition is enabled with a binding, it can fire
- Binding item for firing:

- A pair (transition, binding), e.g., (T1, <x=p>)
- Can be enabled with a marking \rightarrow can fire
- In case of one transition: many bindings, many enabled binding items may be constructed; they can fire

Firing

- Transition fires with a binding
(i.e., a binding item fires):
- Removes tokens from the input places according to the arc expressions and the firing binding
- Adds tokens from the output places according to the arc expressions and the firing binding

- Step (effect of firing on the state space):
- The marking of the CPN changes

Reachability graph

- Node:
- A marking: count and color of tokens for each place
- May have an ID, predecessor node and successor node
- Edge:
- The firing binding item: the transition and the binding
- By definition only one firing binding item is shown in the reachability graph

CPN Tools demo

- Model of dining philosophers
- Simulation
- Reachability graph

Formal definition and semantics of colored Petri nets

Multisets

- Multiset: may contain several of the same element
- Mapping: $\operatorname{Bag}(A)$, to the domain of $A, a \in[A \rightarrow \mathbf{N}]$
- Formally: $a=\sum_{x \in A} a(x) \cdot x$, alternative notation: $a=\sum_{x \in A} a(x)^{\prime} x$
- Operations on multisets:
- Comparison:

$$
\begin{array}{ll}
a_{2} \neq a_{1} & \text { if } \\
a_{2} \leq a_{1} & \text { if }
\end{array} \forall x \in A, a_{2}(x) \neq a_{1}(x)
$$

- Size:

$$
|a|=\sum_{x \in A} a(x)
$$

- Addition: $\quad a_{1}+a_{2}=\sum_{x \in A}\left(a_{1}(x)+a_{2}(x)\right) \cdot x$
- Subtraction: $a_{1}-a_{2}=\sum_{x \in A}\left(a_{1}(x)-a_{2}(x)\right) \cdot x$
if $\quad a_{2} \leq a_{1}$
- Scalar multiplication: $n \cdot a=\sum_{x \in A}(n \cdot a(x)) \cdot x$

Operations with multisets

Addition: $\mathrm{a}_{1}+\mathrm{a}_{2}$

Comparison: $a_{1} \leq a_{2}, a_{1} \neq a_{2}$

$$
\square \Delta \Delta \square \Delta \Delta \Delta \Delta
$$

Size: $\left|a_{1}\right|$

Scalar multiplication: $n \cdot a_{1}$

Subtraction: $a_{1}-a_{2}$ (only if $a_{2} \leq a_{1}$)

Multisets (continued)

- Union of multisets: $a_{1} \cup a_{2} \cup \ldots \cup a_{m}$
- Domain: $A_{1} \cup A_{2} \cup \ldots \cup A_{m}$
- Item: $\quad e_{i} \in \bigcup_{1}^{m} A_{k} \quad$ if $\exists A_{j}, e_{i} \in A_{j}$
- Construction of tuples: $\left\langle A_{1}, A_{2}, \ldots, A_{n}\right\rangle$
- Domain: $\quad A_{1} \times A_{2} \times \ldots \times A_{2}$
- Item: $\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle \in \vartheta_{1}^{n} A_{j} \quad$ if $\forall e_{i} \in A_{i}$
- Generalization: $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$

Formal definition of CPNs

$$
\mathrm{CPN}=\left(\Sigma, P, T, A, C, G, E, M_{0}\right)
$$

Color sets: $\quad \Sigma=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{\kappa}\right\}$
Places: $\quad P=\left\{p_{1}, p_{2}, \ldots, p_{\pi}\right\}$
Transitions: $\quad T=\left\{t_{1}, t_{2}, \ldots, t_{\tau}\right\}$

$$
P \cap T=\varnothing
$$

Arcs: $\quad A \subseteq(P \times T) \cup(T \times P)$
Color set func.: $C: P \mapsto \Sigma$
Guards: $\quad G: \forall t \in T,[\operatorname{Type}(G(t))=\mathrm{B} \wedge \operatorname{Type}(\operatorname{Var}(G(t))) \subseteq \Sigma]$
Arc
expressions: $\quad E: \forall a \in A,\left[\operatorname{Type}(E(a))=C(p)_{\text {MS }} \wedge \operatorname{Type}(\operatorname{Var}(E(a))) \subseteq \Sigma\right]$
Initial marking: $M_{0}: \forall p \in P,\left[\operatorname{Type}\left(M_{0}(p)\right)=C(p)_{\mathrm{MS}}\right]$

Notations used in the formal definition

- The type (color set) of variable v : Type (v)
- The type of expression expr: Type(expr)
- The set of variables in expression expr: $\operatorname{Var}($ expr $)$
- A binding of variable $v: b(v) \in \operatorname{Type}(v)$
- Evaluation (value) of expression expr in binding b : expr $\langle b\rangle$ where $v \in \operatorname{Var}(\operatorname{expr})$ and $b(v) \in \operatorname{Type}(v)$

Arc expressions

- May use variables
- Variables have types (color sets): Type(v)
- Their value is an element of their types' multiset
- Closed arc expression: does not contain variables
- Open arc expression: contains variables that have to be bound to values
- Binding: a specific value assignment to each variable
- Arc expression can be evaluated with the given binding
- Has type: Type $($ expr $)=C(p)_{\text {MS }}$
- The color set (type) to which it is evaluated
- Set of variables in the expression: $\operatorname{Var}($ expr $)$

Bound and unbound variables

- Bound variables
- Value binding is determined by the incoming arcs
- Consistency: a variable has only one value in each binding
- For all in-arcs of the transition the same variable name denotes the same value
- Unbound variables
- They can only be present in outgoing arc expressions
- Enablement did not assign (bound) any value to them
- Have to be bound at firing:
- Can take any value from its color set
- Number of possible bindings = cardinality of the color set
- Non-deterministic choice

Guards

- Each guard is assigned to a transition
- Expression over multisets
- Evaluated to Boolean value
- The transition is enabled only if the guard is evaluated to "true"
- "Filters" the enabled bindings

Enabling in colored Petri nets

- Binding of transitions
- Valid binding: $\forall v \in \operatorname{Var}(t): \mathrm{b}(v) \in \operatorname{Type}(v) \wedge \mathrm{G}(t)\langle b\rangle$

$$
\operatorname{Var}(t)=\{v \mid v \in \operatorname{Var}(\mathrm{G}(t)) \vee \exists a \in A(t): v \in \operatorname{Var}(E(a))\}
$$

- Set of all valid bindings: $\mathrm{B}(t)$
- A valid binding is enabled if
- Guard is true
- The input places contain enough colored tokens (cf. arc expressions $E^{-}(p, t)$) and the inhibitor arcs do not inhibit the firing (cf. arc expressions $\left.E^{h}(p, t)\right)$:

$$
\forall p \in \bullet t: E^{-}(p, t)\langle b\rangle \leq M(p) \wedge E^{h}(p, t)\langle b\rangle>M(p)
$$

Firing in colored Petri nets

- An enabled transition can fire if there is no enabled transition with higher priority, i.e.
- The transitions with higher priority do not have enough tokens in their input places (see arc expressions $\left.\mathrm{E}^{-}\left(\mathrm{p}, \mathrm{t}^{\prime}\right)<\mathrm{b}^{\prime}>\right)$ or their inhibitor arcs disable the firing (see arc expressions $\mathrm{E}^{\mathrm{h}}\left(\mathrm{p}, \mathrm{t}^{\prime}\right)<\mathrm{b}^{\prime}>$),

$$
\begin{aligned}
& \forall t^{\prime}, \pi\left(t^{\prime}\right)>\pi(t): \exists p \in \bullet t^{\prime}: \\
& \quad E^{-}\left(p, t^{\prime}\right)\left\langle b^{\prime}\right\rangle>M(p) \vee E^{h}\left(p, t^{\prime}\right)\left\langle b^{\prime}\right\rangle \leq M(p)
\end{aligned}
$$

- Or their guards are not satisfied (not evaluated to true)

$$
\rightarrow G\left(t^{\prime}\right)\left\langle b^{\prime}\right\rangle
$$

Firing in colored Petri nets

- Steps of firing:
- Finding enabled bindings
- Determined by incoming arc expressions and guards
- Transition enabled with a given binding \rightarrow it can fire
- Firing: removal of colored tokens from incoming places, adding colored tokens to outgoing places

$$
\forall p \in P: M^{\prime}(p)=M(p)-\sum_{p \in \bullet t} E^{-}(p, t)\langle b\rangle+\sum_{p \in \in \bullet} E^{+}(t, p)\langle b\rangle
$$

- Then M^{\prime} directly reachable from $M: M[(t, b)\rangle M^{\prime}$

Dynamic properties of colored Petri nets

Reachability graph (excerpt)

Dynamic properties of CPNs

- Extension of the uncolored Petri net properties to multisets
- Boundedness

A place is bounded if the number of tokens in any state is bounded
$-n$ is an upper integer bound for p if $\forall M \in\left[M_{0}\right\rangle:|M(p)|<n$

- m is an upper multiset bound for p if $\forall M \in\left[M_{0}\right\rangle: M(p)<m$
- Reversibility (home state)

It is always possible to get back to a home state

- M is a home state if $\forall M^{\prime} \in\left[M_{0}\right\rangle: M \in\left[M^{\prime}\right\rangle$
$-X$ is a home group if $\forall M^{\prime} \in\left[M_{0}\right\rangle: X \cap\left[M^{\prime}\right\rangle \neq \varnothing$

Dynamic properties of CPNs

- Liveness

Liveness guarantees that some of the binding items remain active

- Dead state (deadlock): no binding item is enabled

$$
\forall b \in B E: \quad \neg M[b\rangle
$$

- Dead transition: none of its bindings may become enabled

$$
\forall M^{\prime} \in[M\rangle, b \in B(t): \quad \neg M^{\prime}[b\rangle
$$

- Live transition: from each reachable state there is at least one trajectory starting where the transition is not dead (at least one binding will become active)

$$
\forall M^{\prime} \in\left[M_{0}\right\rangle, \quad \exists M^{\prime \prime} \in\left[M^{\prime}\right\rangle, \exists b \in B(t): \quad M^{\prime \prime}[b\rangle
$$

Dynamic properties of CPNs

- Fairness

Fairness represents how often can a binding item fire

- Impartial transition: fires infinitely often

$$
\forall b \in B(t),|\sigma|=\infty: \quad \mathrm{OC}_{b}(\sigma)=\infty
$$

- Fair transition: infinitely many enabling \Rightarrow infinitely many firing

$$
\forall b \in B(t),|\sigma|=\infty: \quad \mathrm{EN}_{b}(\sigma)=\infty \Rightarrow \mathrm{OC}_{b}(\sigma)=\infty
$$

- Just transition: persistent enabling \Rightarrow firing
(there is no persistent enabling without firing)

$$
\begin{aligned}
& \forall b \in B(t), \forall i \geq 1 \text { : } \\
& \qquad\left[\operatorname{EN}_{b, i}(\sigma) \neq 0 \Rightarrow \exists k \geq i:\left[\operatorname{EN}_{b, k}(\sigma)=0 \vee \mathrm{OC}_{b, k}(\sigma) \neq 0\right]\right]
\end{aligned}
$$

Structural properties of colored Petri nets

T invariant in CPNs

- Transition invariant

A firing sequence σ that does not affect the state:

$$
M^{\prime}(p)=M(p)-\sum_{p \in \bullet t, b \in \sigma} E^{-}(p, t)\langle b\rangle+\sum_{p \in \bullet \bullet, b \in \sigma} E^{+}(t, p)\langle b\rangle
$$

where $M^{\prime}(p)-M(p)=0$ for all p

$$
\text { then } \sum_{p \in \bullet, b \in \sigma} E^{-}(p, t)\langle b\rangle=\sum_{p \in \bullet \bullet b \in \sigma} E^{+}(t, p)\langle b\rangle
$$

P invariant in CPNs

- Place invariant

Idea: Equation that is satisfied in every reachable state

- Weighted token sum is constant:

$$
\mathrm{W}_{p_{1}}\left(M\left(p_{1}\right)\right)+\mathrm{W}_{p_{2}}\left(M\left(p_{2}\right)\right)+\ldots \mathrm{W}_{p_{n}}\left(M\left(p_{n}\right)\right)=\mathrm{m}_{\mathrm{inv}}
$$

- Weight function: maps the color sets of the places to a common multiset
- W_{P} is a P invariant:

$$
\forall M \in\left[M_{0}\right\rangle: \quad \sum_{p \in P} W_{p}(M(p))=\sum_{p \in P} W_{p}\left(M_{0}(p)\right)
$$

Unfolding colored Petri nets

Possibilities to construct a CPN

- CPNs: information in both structure and data
- Extremities
- Pure structural information, no data:
- Uncolored (P/T) net (can be build as a CPN)
- No structure, only data (data and control information):
- 1 place +1 transition, complex color sets and arc expressions
- We need the golden mean
- To have a clean, readable CPN

Example: Modeling possibilities

Control flow expressed by the structure

The same in code ("folded")

Unfolding

- Expressivity of CPNs (with priorities) equals to the expressivity of uncoloured PNs with inhibitor edges (and with priorities)
- Each CPN has a corresponding uncolored PN with equivalent behavior (in the automaton theoretical sense \rightarrow bisimulation for the steps)
- Equivalent uncolored net: unfolded net
- Unfolding:
- Information of colored tokens is represented by the structure
- Each event of the CPN has exactly one corresponding event in the unfolded net

Simple colored net

Unfolded, uncolored net

Example: A simple commit protocol

Problem description:

- The system consists of three components: $\mathrm{c}_{1}, \mathrm{c}_{2}$ és c_{3}
- One of them randomly becomes the coordinator which sends a request to the other two
- The response of another component is either an abort or commit vote
- Based on the vote of the two components the coordinator decides: the decision is commit if the two other components voted for commit, abort otherwise.

Example: Model of the simple commit protocol

- Three color sets are defined in the CPN model.

Two of them are simple color sets:
$C=\left\{0, C_{1}, C_{2}, C_{3}\right\}$ representing components,
$D=\{$ commit, abort $\}$ representing votes/decisions.
One compound color set:
$\mathrm{M}=\mathrm{C} \times \mathrm{C}$ for requests (originator and target);
the $(0, x)$-like token represents that
the coordinator does not receive a request

- Five variables are used, their types: $x, y, z \in C$; and $\mathrm{d} 1, \mathrm{~d} 2 \in \mathrm{D}$
- The if in the arc expression has the common intuitive meaning (as in programming languages)
- In the initial state the place p_{1} has 3 tokens: $M\left(p_{1}\right)=c_{1}+c_{2}+c_{3}$, the other places are empty
- Empty set is denoted by \varnothing

Example: Model of the simple commit protocol

- Colored Petri net model:
$-p_{1}$: Participants (tokens c_{1}, c_{2}, c_{3} in initial state)
$-p_{2}$: Requests
- p_{3} : Votes
- p_{4} : Decision

Example: Model of the simple commit protocol

- Partially unfolded (uncolored PN) model: c_{1} is the coordinator
- Simple optimizations were done in the structure and events (firings)

Example: Model of the simple commit protocol

Hierarchical colored Petri nets

Hierarchical colored Petri nets

- Integration of subnets into a complex CPN hierarchically
- Pages: Colored Petri net models (subnets)
- Page number, page name: alternatives to refer to the subnet
- The pages can be instantiated (on any level of the hierarchy)
- The marking (token distribution) is unique for each instance
- Hierarchy: Structure of the pages
- Main (prime) page: topmost level
- Secondary page instances (subpages)
- Identification: page-instance ID number
- Page-hierarchy graph

Tools of hierarchical composition

1. Coarse (substitute) transition

- Representation of a subpage
- Interfaces between pages: places

1. On main page: "Socket" places \rightarrow insertion point of subnets
2. On subpage: "Port" places \rightarrow connection points of the subnet, port type: input, output, input-output (bidirectional), general

2. Fusion places

- Places with same name, multiple instances, denoting the same place at different locations
- Tokens are added / removed simultaneously to / from each instance

Example: hierarchical version of the simple protocol

Example CPN: Distributed database manager

Specification of the distributed database manager

- n different servers; local copy on each server, managed by a local database manager

$$
\text { DBM }=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}\right\}, n \geq 3
$$

- Database operations:
- Modification of local data
- Change notification of the other database managers which will update
- State of the system:
- Active: handling the update is in progress
- Passive: handling the update is finished
- States of database managers:

Inactive, Performing (updating), Waiting (for acknowledgement)

- Notification about changes: with messages
- Message header: sender and receiver database manager

$$
\text { MES }=\{(\mathrm{s}, \mathrm{r}) \mid \mathrm{s}, \mathrm{r} \in \mathrm{DBM} \wedge \mathrm{~s} \neq \mathrm{r}\}, \quad \operatorname{Mes}(\mathrm{s})=\Sigma_{r \in \operatorname{DBM}-\{s\}} 1^{`}(\mathrm{~s}, \mathrm{r})
$$

- Message states: Unused, Sent, Received, Acknowledged

Distributed database: Declarations

Declaration field

```
val n = 4;
color DBM = index d with 1..n;
color PR = product DBM * DBM;
fun diff(x,y) = (x<>y);
color MES = subset PR by diff;
color E = with e;
fun Mes(s) = mult'PR(1`s, DBM--1`s)
var s, r: DBM;
```

Meaning:
$\operatorname{DBM}=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{n}\right\}$
$\operatorname{MES}=\{(s, r) \mid s, r \in \mathrm{DBM} \wedge s \neq r\}$
$\operatorname{Mes}(\mathrm{s})=\sum_{r \in \mathrm{DBM}-\mathrm{ss}\}} 1^{\prime}(s, r)$

- DBM: database managers
- PR: DBM pairs
- MES: possible messages (headers)
- Mes(s): messages that can be sent by the DBM s
- E: simple token (uncolored)

Distributed database: System component

- System states denoted by a single token, initially 'Passive’

Distributed database: Database managers

- DBMs are grouped by states, each group is represented by one place
- Initially each DBM is inactive; later it can change or update

Distributed database: Messages

- Places: message buffers
- A DBM sends notifications to the others; one from the set of possible messages

Distributed database: Complete CPN model

- Active and Passive places: only one DBM performs change at the same time, then waits

Particularities of the model

- Causality
- Update and Send \rightarrow Receive \rightarrow Send Ack \rightarrow Receive Ack
- Conflict
- Update and Send enabled for each binding item s, but only one can fire
- Concurrency
- Receive a Message for binding items (s, r) that are concurrent with themselves

Reachability graph for $\mathrm{n}=3$

- Occurrence graph
- Abbreviated transition names:
- SM: Update and Send Messages
- RM: Receive a Message
- SA: Send an Acknowledgment
- RA: Receive all

Acknowledgments

Dynamic properties: boundedness

- Inactive
- Waiting
- Performing
- Unused
- Sent, Received, Acknowledged MES
- Passive, Active

Integer

Multiset	Integer
DBM	\mathbf{n}
DBM	$\mathbf{1}$
DBM	$\mathbf{n - 1}$
MES	$\mathbf{n * (n - 1)}$
MES	$\mathbf{n - 1}$
E	$\mathbf{1}$

Dynamic properties: Liveness, fairness

- Liveness Properties
- Dead markings: None
- Dead transition instances: None
- Live transition instances: All
- Fairness Properties
- Impartial transition instances:
- Update and Send Messages
- Receive a Message
- Send an Acknowledgment
- Receive all Acknowledgments
- Fair transition instances:
- None
- Just transition instances:
- None
- Impartial transition: Fires infinitely often
- Fair transition: Infinitely many enabling \rightarrow infinitely many firing
- Just transition: Persistent enabling \rightarrow firing

Structural properties: P invariants

- $M($ Active $)+M($ Passive $)=1^{`} e$
- M(Inactive) $+\mathrm{M}($ Waiting $)+\mathrm{M}$ (Performing) $=$ DBM
- M(Unused) $+M($ Sent $)+M($ Received $)+M($ Acknowledged $)=M E S$
- $\mathrm{M}($ Performing $)-\operatorname{Rec}(\mathrm{M}($ Received $))=\varnothing$
- Function $\operatorname{Rec}()$ for token mapping: $\operatorname{Rec}(s, r)=r$
- $M($ Sent $)+M($ Received $)+M($ Acknowledged $)-M e s(M($ Waiting $))=\varnothing$
- Function Mes() for token mapping : Mes(s): the messages can be sent by DBM s
- $\mathrm{M}($ Active $)-\operatorname{lgn}(\mathrm{M}($ Waiting $))=\varnothing$
- Function $\operatorname{lgn}()$ turns tokens with any color into token with color $\mathrm{e} \in \mathrm{E}$

P invariant: the state of the system

$M($ Active $)+M($ Passive $)=1 ` e$

P invariant: database managers

$M($ Inactive $)+M($ Waiting $)+M($ Performing $)=$ DBM

P invariants: messaging subsystem

M(Unused) + M(Sent) + M(Received) + M(Acknowledged) $=$ MES

P invariants of the model

One of the P invariants

$M($ Sent $)+M($ Received $)+M($ Acknowledged $)-M e s(M($ Waiting $))=\varnothing$

The complete CPN model (reminder)

Messaging unfolded for $\mathrm{n}=3$

