Software and Systems Verification (VIMIMAO1)

Verifying specifications

Istvan Majzik, Zoltan Micskei

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Main topics of the course

= Qverview (1)
o V&V techniques, Critical systems
= Static techniques (2)
o Verifying specifications
o Verifying source code
= Dynamic techniques: Testing (7)
o Developer testing, Test design techniques
o Testing process and levels, Test generation, Automation
= System-level verification (3)

o Verifying architecture, Dependability analysis
o Runtime verification

Static techniques

WHAT: Documents, code or other artefact

HOW: Without execution

USING: Manual examination (reviews) OR
automated analysis (static analyses)

Incomplete or inconsistent specification is a major source of failures!

The 60-70% of IT project failures can be traced back to
insufficient requirement analysis — Meta Group (2003)

“Significantly more defects were found per page at the earlier

phases of the software life cycle. ” [inspection of 203 documents]
An analysis of defect densities found during software inspections (JSS, DOI: 10.1016/0164-1212(92)90089-3)

78% (149 from 192) of faults were due to incomplete
specifications from the faults uncovered during testing
the Voyager and Galileo probes

Requirement and specification

Requirement Specification
= Vision, request, = Request transformed for
expectation from designer and developers
o Users = Result of analysis
o Stakeholders (authority, (abstraction, structuring)

management, operator...)

= Basis for validation = Basis for verification

Types of specifications

Level Language
I' System Requirements ‘ = Natural language text
= System Architecture = Semi formal
= Software Requirements‘ o UML, SysML models
= Software Architecture o Controlled language
= Software Module " Formal
oB,Z.

o logics

RECAP: REQUIREMENTS

Learning outcomes

= Explain the properties and good practices of
textual requirements (K2)

Definition of a requirement

“A condition or capability needed by a user to solve a
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or
possessed by a system, system component, product, or
service to satisfy an agreement, standard, specification,
or other formally imposed documents” (IEEE)

Properties of good requirements

Identifiable + Unique (unique IDs)
Consistent (no contradiction)
Unambiguous (one interpretation)
Verifiable (e.g. testable to decide if met)

Captured with special statements and vocabulary

Good practices for writing textual requirements

a short description (stand-alone sentence / paragraph)

of the problem and not the solution

" English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions

o E.g.: The system shall monitor the room’s temperature
when turned on.

= Use of auxiliaries (see RFC 2119)

o Positive: shall/must > should > may
o Negative: must not > should not
o They specify priorities!

https://www.ietf.org/rfc/rfc2119.txt

The Certification Perspective: High-level vs Low-Level

HLR DR

SA) LLR

DR

N

SC

I

OC

Concepts from DO-178C standard

High Level Requirements (HLR)
o customer-oriented
o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

Derived Requirements (DR)
o Capture design decisions

Low Level Requirements (LLR)

o SC can be implemented without
further information

Software Architecture (SA)

o Interfaces, information flow of SW
components

Source Code (SC)
Executable Object Code (EOC)

The Concept of Traceability

= Traceability is a core m\ p
certification concept .
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

VALUE
" rb_ary push(VALUE ary, VALUE item)

{

rb ary modify(ary);
return rb_ary push_l(ary, item);

= Forward traceability: }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

The Concept of Traceability

" Traceability is a core
certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

VALUE
" rb_ary push(VALUE ary, VALUE item)
{

rb ary modify(ary);

:, return rb_ary push_l(ary, item);
" Forward traceability: . }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility

= Backward traceability:

o From any lines of source code
to one ore more
corresponding requirements

o No extra functionality

if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

Example requirements: ETCS

= European Rail Traffic Management System (ERTMS)
o European Train Control System (ETCS) + GSM-R

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

GSM-R antenna

Interlocking

Signal control

Eurocab

ETCS computer,
driver's console

Eurobalise

reports position, signal state Track release

reporting

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System

Example requirements: ETCS

3.4.1 Balise Configurations — Balise Group Definition

I 3411 I A balise gmupnsist of between one and eight balises.

3.4.1.2 In every balise shall at least be stored:
a) The internal number (from 1 to 8) of the balise
b) The number of balises inside the group
¢) The balise group identity.

3.4.3.2 A balise may contain directional information, i.e. valid either for nominal or for reverse
direction, or may contain information valid for both directions. In level 1, this
information can be of the following type (please refer to section 3.8.5):

a) Mon-infill

II::} Intentionally deleted I

c) Infill,

Example requirements: AUTOSAR

AUTomotive Open System Architecture

AUTOSAR Interface AUTOSAR Interface AUTOSAR Interface

AUTOSAR Interface

Operatin: :) = Complex
gemysﬁam / Services Communication , C°. Device
: Drivers

Microcontroller
Abstraction

Interfaces
SiSSface ‘Standard = RTE ‘ VFB&RTE BSW
mn “_~ relevant relevant relevant

https://www.autosar.org/specifications/

UEGYETEM

https://www.autosar.org/specifications/

Example requirements: AUTOSAR

31 [RS_PO_00001] AUTOSAR shall support the transferability of

software.
. T High-level
Description: AUTOSAR shall enable OEMs and suppliers to transfer software across .
the vehicle network and o reuse software,
Rationale: Transferring software across the vehicle network allows overall systam re q u I re m e nt
scaling and optimization,
Redevelopment of software is expansive and error prone.
Use Case: Application software is reusable across different product lines and OEMs.
Scaling and optimizing of vehicle networks by transferring application
software.
Basic software is reusable across different ECUs and domains.,
Dependencies: RS PO 00003, RS PO 00004, RS PO 00007, RS PO 00008
Supporting Material: -

3 Requirements Tracing

The following table references the requirements specified in [RS_ProjectObjectives]
and links to the fulfilments of these.

Traceability

Requirement Description Satisfied by

RS_PO_00001 |AUTOSAR shall support the |RS_Main_00060, RS_Main_00100, RS_Main_00130,
transferability of software, RS_Main_00140, RS_Main_00150, RS_Main_00270,
RS Main_00310, RS_Main_00400, RS_Main_00410,
RS_Main_00440, RS_Main_00450, RS_Main_004860,
RS_Main_00480

[SWS_EcuM_03022][The SHUTDOWN phase handles the controlled shutdown of LOW—Ievel
basic software modules and finally results in the selected shutdown target OFF or

RESET.|(SRS_ModeMgm_09072) requirement

UEGYETEM 1782

Requirement management tools

B ‘ImplementationRequest’ current 0.0 in /Change_Basic (Formal module) - DOORS

Ele Edt View [nsert Lk Analysis Table Toolk Discussions User Change Management Help

IBM Rational DOORS

Next Generation

https://www.youtube.com/watch?v=

qYK7 g4Fy44

| @B ||oa= || 7P Ed ||[esaeg
(view [1R Atis View Il |[arievets =] || iy s | P87 < @ 7 # AL 4
& ImplementalionRlequest D | Implementatiorfequest 8] csint_ir_dcterms:desciiptior] csin_i_dctems:tile | csint_ir_d csint_ir_osle_crstatus =
=-1User o
1.1 Extract requitemnents 1 1 User requirements User requrements User requirements 4 ir_assigned
:gg“"-"w"““"’""-"‘“‘ 2 | 1.1 Extract requirements ¥ User requrements User requirements 4 ir_assigned
rganise requiements B
1.4 Review uset requiremen 3 1.2 Develop requirements ¥ User requirements User requirements 4 ir_assigned
1.5 Accept user tequitement structure
1.6 Organise requrements 7] T v
B2 Sk eqiksions 1.3 Organise requirements
211 Develop logical model 5 | 1.4 Review user requirements
22 Define consiaints 6 1.5 Accel r requirements
2.3 Define software requeen p',: e CN N
2.4 Review soltware requiis 7 | 1,6 Organise requirements
25 Accepl solmase tegirel 8 | 2 Software requirements
[3 Aschitectural design .
- 4 Detailed design 9 2.1 Develop logical model
-8 Tiansler 10 | 2.2 Define constraints
5.1 Integrate units -
52Test systom 11 2.3 Define software
5.3 Accept software _ Il V[eqqlremernrts
12 2.4 Review software
requirements
13 2,5 Accept software
requirements
14 3 Architectural design
15 3.1 Outline major design =
Ty Y 2
[Usetmame: arsieswa [Exclusive edk mode 4
Y 4R <ProR=
[Project Explorer 1 l =0 *Trafficlight.reqif

-

=&

> 1= 2012-01_ProR_Rodin_Integ
> = EMF Compare
v 1= ReConf
[R) Trafficlight reqif
> =2 Sandbox

IE

Format

Requirements Interchange I

https://www.youtube.com/w

1.1

1.2

13

1.4

15

1.5.1

1.6

1.6.1

1.6.2

1.7

1.7.1

|
Hﬁ) :Given Domains

@ sys
@ street
@ cars
@ peds
@ tl_cars
@ Ww-1.1
L=

@ W-1.2

[=
@ tl_peds
® Ww-1.3
[=

@ W-1.4

>
@ button

@ W-1.5
[=

Rl 2 o= Outline 33 =5
Description | Link || A Specifications
> [R] Iteration 0
System v [R] Iteration 1
Street v @ Given Domains
Cars @ sys
Pedestrians @ street
Traffic Light Cars © cars
tl_cars have three lights: red, yellow, green Of=@=1 @ peds
R-0.2
v @ tl_cars
Two synchronized t|_cars are located on the opor1 o -
street according to Fig. 5.1 @wll
RO.2 @ w1z
Traffic Light Pedestrians > @ tl_peds
tl_peds have two lights: red, green 0@ 1 > @ button
R-0.3 > @ Designed Domain
et i e lredontepgpy (|| > @ resrames
T > [R] Iteration 2
Push Button o @Eliterzhonts
Pressing any of the push buttons will send a 0rOE1 e ?terat\on 4
signal to the controller — + [/ iteration 5
R-0.4 v > [®I Final

atch?v=YC NrseqWcc S

s (@l @narnhiacte

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc

REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus

Learning outcomes

= Recall the different types of review processes (K1)

Levels of formality in review

InfOrmaI e No formal process
review * Peer or technical lead reviewing

e Meeting led by author

Wa | kth rough e May be quite informal

TeCh N ical e Documented process

. e Review meeting with experts
review * Pre-meeting preparations for reviewers

e Formal process
e Led by a trained moderator

Inspection

Activities of a formal review

e Defining review criteria
e Allocating roles

Planning

. e Distributing documents
Kick-off e Explaining objectives

Individual e Reviewing artefacts
preparation * Noting potential defects, questions and comments

e Discussing and logging results

Review meeting * Noting defects, making decisions

* Fixing defects

Rework e Recording updated status

e Checking fixes

FO”OW_Up e Checking on exit criteria

Recommendations for reviews

" Thorough review is time consuming
o Usually 5-10 pages / hour
o Can be 1 page / hour

" |ncreasing the number of pages to review can
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages

REVIEW CRITERIA

Learning outcomes

= List typical review criteria for requirements and
specifications (K1)

= Perform review of requirements and
specifications (K3)

Typical review criteria

e Functions
e References

Completeness

¢ Internal and external

ConSIStenCy e Traceability
|mp|ement_ e Resources
. e Usability, Maintainability
d b| I |ty e Risks: budget, technical, environmental
e Specific

Verifiability [EUSLCENE

e Measurable

Criteria from |IEEE Std 830-1998

Correct

e Every requirement stated therein is one that the software shall meet
¢ Consistent with external sources (e.g. standards)

Unambiguous

e Every requirement has only one interpretation
e Formal or semi-formal specification languages can help

Complete

e For every (valid, invalid) input there is specifies behavior
e TBD only possible resolution

Consistent

¢ No internal contradiction, terminology

Ranked for importance and/or stability

* Necessity of requirements

Verifiable

® Can be checked whether the requirement is met

Modifiable

¢ Not redundant, structured

Traceable

¢ Source is clear, effect can be referenced

: RN RN AN
2 IS 29 e a @ .

MUEGYETEM 1782 AL WSV WL

Criteria from IEEE Std 29148-2011

Necessary

e If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

¢ Avoids placing unnecessary constraints on the design

Unambiguous

e |t can be interpreted in only one way; is simple and easy to understand

Consistent

¢ |s free of conflicts with other requirements

Complete

* Needs no further amplification (measurable and sufficiently describes the capability)

Singular

e Includes only one requirement with no use of conjunctions

Feasible

e Technically achievable, fits within system constraints (cost, schedule, regulatory...)

Traceable

e Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

* Has the means to prove that the system satisfies the specified requirement

A A R YR YR
T AT 30 e a @ Y.

MUEGYETEM 1782 AL WSV WL

Anti-patterns

The system should be safe Too general / high-level

The system shall use Fast
Fourier Transformation to
calculate signal value.

Describes a solution
(and not only the problem)

The system shall continue
normal operation soon
after a failure.

Imprecise
(how to verify ,soon”?)

Sensor data shall be logged

, Passive should be avoided!
by a timestamp

Unauthorized personnel
could not access the
system

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

31

DA{ORIA Specification review

CALCULATOR

Kévetelményspecifikicid

Jelen dokumentum célja, hogy a CALCULATOR alkalmazassal kapcsolatos
kévetelményeket és tervezési szempontokat ésszefoglalja.

Az alkalmazds bemutatdsa d d .
A Calculator alkalmazas célja, hogy egy egyszer(i szamoldgépet megvaldsitson, mely Rea a n reVI eW

képes nemnegativ egész szamokkal alapmiveletek elvégzésére.

Az alkalmazas felhasznaléi feliilete t h e exa m p I e
specification

Arendszernek egyfajta feliilete van, ezt hasznalja az alkalmazas 6sszes felhasznaldja.
Ezen a feliileten keresztiil a felhasznaldk a kévetkezd funkcidkat érhetik el:
¢ Szamoldégép be- és kikapcsolasa.

¢ Szamrendszervaltds: bekapcsolt allapot esetén a szamologép barmikor
atallithaté, hogy a szamokat kettes vagy tizes szamrendszerben jeleniti meg.

¢ Alapmiiveletek elvégzése egész szamokkal.
Az alkalmazds részletes kivetelményei

Funkcionalis kdvetelmények

Az alkalmazasnak a kdvetkezd funkcionilis kévetelményeket kell teljesitenie.

Azonositd | Név Prioritas | Leiras

REQ 1 Be- és kikapcsolds | Magas A szamoldgépet barmikor be és ki kell tudni
kapcsolni. Kikapcsolaskor nem kell semmilyen d f t d
allapotot megériznie, bekapcsolas utdn mindig az e e C S a n

alapallapotbdl kell indulnia.

REQ 2 Szamrendszerek Kézepes | A szdmokat meg kell tudnia jelenitenie tizes és m t
kettes szamrendszerben. CO I I I n S
REQ_3 Alapmiiveletek Magas A szamolégépnek a kovetkezd alapmiiveleteket
elvégzése kell tudnia elvégeznie: 0Osszeadas, kivonas,
SZOrZAS.
REQ 3 32 bites szamok | Magas A rendszernek 0 és 232-1 kézdtti szamokat kell
kezelése tudnia kezelnie.

Nem-funkcionalis kévetelmények

A szamoldgép feliiletének az adott szamitas komplexitiasaval ardnyos iddn beliil valaszt
kell adnia, a feliilet nem ,fagyhat le".

Az alkalmazdssal szemben nincsenek specidlis egyéb nem-funkcionalis kévetelmények.

MUEGYETEM 1782

VERIFYING STATE MACHINES

Learning outcomes

= Perform checking of UML state machines for
completeness and unambiguousness (K3)

Recap: UML 2 State Machines

Camera : Count

Carln

! ® o
fOff" \ . CarGo | ® | CountO]
[On : : Carln
do/blink 1 I :
5| |3 | [Count1l]
s| |5 |Shoot| !
Sl | | | Carln
|
S : [Count2]
|
|
|
I

Hierarchy - Concurrent
regions

35

Recap: UML 2 State Machines

" Challenges for understanding
o Hierarchical states -> state configuration
o Conflicting transitions -> priorities, non-determinism
o Concurrent regions -> concurrent transitions
o Evaluation of guards

" For more information
o Formal methods course (VIMIMAOQ7)
o UML 2.5 specification

o G. Pinter: Model based program synthesis and runtime
error detection for dependable embedded systems,

PhD dissertation, BME, 2007

https://repozitorium.omikk.bme.hu/handle/10890/636

Typical criteria for state machines

= Completeness:
o For each event
o in each state configuration
o the behavior is specified (transition or self-transition)

= Unambiguous:
o for a given event
o in a given state configuration

o there is only one enabled transition

w

ORI State machine revie

-,

Calculator_StateMachine
.’_g‘ Off ‘
I
turnOff(SR
W
i On
| f
‘ Decimal ‘ I ﬂ{ operand1 '_;Ientermumhenj
M | enterCperator()
dispalyBinani) |
\/ dispalyl:eu:imalﬂ-| operatorEntered ‘
‘ Binary | \‘/ enterMumben])
| \ operand2 i
| enterEgual()/compute enterNumber)
i |

1. Review the
state machine

2. Check
completeness

Detailed criteria for UML state machines

= Completeness

= Unambiguousness
" |nitial pseudo-states
= Hiding transitions

= Reachability
= Timeout

Source: Zs. Pap. Checking Safety Criteria under UML. PhD dissertation, BME, 2006.

https://repozitorium.omikk.bme.hu/handle/10890/595

UML State Machines: Completeness

In every state configuration, for every event, for all
possible evaluation of guards there is a defined
transition.

Internal Self Guarded choice
event transijtion

UML State Machines: Unambiguousness |.

For all state configuration and for all event, for all
possible evaluations of guards, for a given hierarchy
level there can be only one enabled transition any

time.

Hierarchy Guarded choice

] s2)

e

S1
‘ 192
O J

UML State Machines: Unambiguousness Il.

In concurrent regions for a given event there should
be only in one of the regions an action be defined.

UML State Machines: Initial pseudo-state

In every region (including the top-level region) there
should be an initial pseudo-state.

UML State Machines: Hiding transitions

Transitions should not be hided due to
= hjerarchies,

= other transitions without triggers

UML State Machines: Reachability

Every state should be reachable either directly or
indirectly.

Indirect: through
hierarchy

For embedded controllers: timeout

For every state configuration there should be a
transition triggered by the TimeOut event

TimeOut In compound Guarded choice
states:
e1

TimeOut 1 52)
Y e1 s [TimeOut

S | TimeOut
ks
o /

EXERCISE State machine review IlI.

example state_machine

511

e1() |

e3()

e3()

512

e3()[c]

1. Check 2. Check

completeness unambiguousness

Checking state machines (tool support)
Yakindu Statechart Tools IAR visualSTATE

default main region

interface:
[/ Define events and
// and vanables hers

52 |

s1 |
r2 ri

<name = %21 ‘
Verfication result log for all steps:
Tasks 'ﬁ_ Problems &3 Properties
Y errors, 1 warning, 0 others Conflicting transitions: (Emor)
Description Resource Path L Eventi:
v @ Enors (4items) State3: Event1() / -> State
£ A state must have a name. default.sct fyakindu-test li State3: All) [SelfCounter > 10] / -> Final1
1 Mode is not reachable. default.sct fyakindu-test li }
43 Region must have a 'default’ entry. default.sct fyakindu-test li {
43 Target state has regions without 'default’ entr default.sct Syakindu-test li Etvaetm:f:E ent2) / -> State2
v (& Warnings (1 item) g 4 g ? /> Fi
=1 Missing trigger. Transition is never taken. Use default.sct fyakindu-test li)State& ARQ [SeliCournter > 10} / -> Finall
https://www.youtube.com/watch?v= https://www.youtube.com/watch?v=

uO6MASCBPrg O5ITlymLugM

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM

Summary

= |dentifiable + Unique (unique IDs)
WHAT: Documents, code or other artefact = Consistent (no contradiction)

. . . .
ST U Dot o Unambiguous (one interpretation)

= Verifiable (e.g. testable to decide if met)
USING: Manual examination (reviews) OR
automated analysis (static analyses)

Captured with special statements and vocabulary

Typical review criteria UML State Machines: Completeness

< Functions In every state configuration, for every event, for all
* References possible evaluation of guards there is a defined
transition.

Completeness

« Internal and external
* Traceability

Consistency

Simple Internal Self EuEmEs e
state event transition
|mp|ement_ * Resources
e * Usability, Maintainability
ablllty « Risks: budget, technical, environmental
= Specific

Verifiability — [UELEERE

* Measurable

UEGYETEM 1782

EXTRA MATERIAL: CRITERIA FOR

REACTIVE SYSTEMS

Source: N. G. Leveson. “Safeware: System Safety and Computers”.
Addison Wesley, 1995

Review criteria for reactive systems

State definition
Inputs (events)
Outputs
Outputs and triggers
Transitions

Human-machine interface

Operator

Initial state is safe

In case of missing input
events there is a timeout
and not external events

Controlled
systems

Review criteria for reactive systems

State definition
Inputs (events)
Outputs
Outputs and triggers
Transitions

Human-machine interfa¢

Operator

Fore every input in every
state there is a specified

behavior

Reactions are unambiguous
(deterministic)

Input validation (value,
timeliness)

Handing of invalid inputs is
specified

Rate of interrupts is limited

Controlled
systems

Review criteria for reactive systems

State definition

Inputs (events)

* Credibility checks are

specified

Outputs * No unused outputs
* Processing rate of

Outputs and triggers
Transitions
Human-machine interface

Operator

environment is respected

Controlled
systems

Review criteria for reactive systems

= State definition

" |nputs (events) » Effect of outputs is checked
through the inputs
- OUtpUtS * Control loop is stable

= Qutputs and triggers

" Transitions
= Human-machine interface

Controlled

Operator systems

Review criteria for reactive systems

State definition
Inputs (events)
Outputs

Outputs and triggers
Transitions
Human-machine interface

Operator

Every state is reachable statically
Transitions are reversible (there is

a way back)

More than one transitions from
dangerous to safe states
Transitions from dangerous to safe
states are confirmed

Controlled
systems

Review criteria for reactive systems

State definition

Output events going to
Inputs (events) operator:

e Sequence is defined (with

Outputs
Outputs and triggers

priority)

* Update rate is defined

e Rate is limited

Transitions
Human-machine interface

Operator

Controlled
systems

