Software and Systems Verification (VIMIMAO1)

Structure-based test design

David Honfi, Zoltan Micskei,
Istvan Majzik

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics
Department of Measurement and Information Systems

Main topics of the course

= Qverview (1)
o V&V techniques, Critical systems
= Static techniques (2)
o Verifying specifications
o Verifying source code
= Dynamic techniques: Testing (7)
o Developer testing, Test design techniques
o Testing process and levels, Test generation, Automation
= System-level verification (3)

o Verifying architecture, Dependability analysis
o Runtime verification

Test design techniques

Goal: Select test cases based on test objectives

‘ Specification-based | ‘ Structure-based |

e SUT: black box e SUT: white box
* Only spec. is known * Inner structure known
* Testing specified * Testing based on

functionality internal behavior
\§ AN /

STRUCTURE-BASED TESTING

What is “internal structure”?

= |n case of models: structure of the model

/‘S%< Al > > e0/a0 \
el::j\\\T (/;;i
el/a

b
—= %) :
/ e[g]/::
W e

é&\x e2[gl]/a2
S4
(A5 :©E —{

5 AN AN A
H H

What is “internal structure”?

= |n case of models: structure of the model
" |n case of code: structure of the code (CFG)

/ Source code: Control-flow graph: \
a. for (i=0; i<MAX; i++) { ‘

b: if (i==a) {
C: n=n-I;

} else { ‘

T

e: printf("%d\n",n);
}

F

!: printf("Ready.") ‘< i /

Coverage metrics

= What % of testable elements have been tested

= Testable element
o Specification-based: requirement, functionality...
o Structure-based: statement, decision...

" Coverage criterion: X % for Y coverage metric

= This is not fault coverage!

How to use coverage metrics?

Evaluation ;
Selection (goal)
(measure)
e Evaluate e Design tests
quality of to satisfy
existing tests criteria

* Find missing
tests

CONTROL-FLOW CRITERIA

Learning outcomes

= Explain the differences between different control-
flow based coverage criteria (K2)

= Design tests using control-flow based coverage
criteria for imperative programs (K3)

Basic concepts

= Statement
= Block

o A sequence of one or more consecutive executable statements
containing no branches

= Condition
o Logical expression without logical operators (and, or...)
= Decision

o A logical expression consisting of one or more conditions
combined by logical operators

= Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

Example: decision and condition

= A decision with one condition:
if (temp > 20) {..}

= A decision with 3 conditions:
if (temp > 20 && (valveIsOpen || p == HIGH)) {..}

Control Flow Graph (CFG)

= A CFG represents the flow of control

= G=(N, E) directed graph
o Node n €N is a basic block

* Basic block: Sequence of statements with exactly one entry
and exit points.

o Edge e = (n, n;) € Eis a possible flow of control from
basic block n;to basic block n,

Example: Control Flow Graph

/ Source code:

while(a < 16) {
if(a < 10) {
a += 2;
} else {
a++;

Control-flow graph

I ba5|c
contro block
flow

FLANONA Building a CFG

public void insertionSort(int[] a) { Q
for(int i = @; i < a.size(); i++) {
int x = a[i]; (B)
int j =1 - 1;
while(j >= 0 && a[j] > x) { G
a[j+1] = a[]]; ‘@
j=3-1;
} ©
a[j+1] = x;
) ©
System.out.println("Finished."); Build the CEG of

} this program

code

1. Statement coverage

Number of statements executed during testing

Number of all statements

__

Statement coverage: 80%

Assessing statement coverage

Statement coverage: 100%

Missing: [a<=0] branch

Does not require to cover empty branches!

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

__

Decision coverage: 50%

Assessing decision coverage

Does not take into account all combinations of conditions!

[safe(c) || safe(b)]

100% decision coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = false

3. Condition coverage

Generic coverage metric for conditions:

__

Number of tested combinations of conditions

Number of aimed combinations of conditions

__

Definition (what conditions are aimed):

e Every condition must be set to true and false during testing
e Does not yield 100% decision coverage!

Example of 100% condition coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true [safe(c) || safe(b)]

Other possible definition:

e Every condition is evaluated to both true and false
* Not the same as above due to lazy evaluation

4. Condition/Decision Coverage (C/DC)

= Every condition in a decision in the program has
taken all possible outcomes at least once, and

= every decision in the program has taken all
possible outcomes at least once.

100%-0s C/DC coverage:
1. safe(c) = true, safe(b) = true [safe(c) || safe(b)]
2. safe(c) = false, safe(b) = false

Does not take into account whether the condition has any effect!

5. Modified Condition/Decision Coverage (MC/DC)

= Each entry and exit point has been invoked at least once,

= every condition in a decision in the program has taken all
possible outcomes at least once,

= every decision in the program has taken all possible
outcomes at least once,

= each condition in a decision is shown to independently
affect the outcome of the decision.

100%-0s MC/DC coverage:

1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false

[safe(c) || safe(b)]

6. Multiple Condition Coverage

= Every combinations of conditions tried
o For n conditions 2" test cases may be necessary!

o (Bit less with lazy evaluation)

o Sometimes not practical, e.g. in avionics systems there
are programs with more than 30 conditions!

100% multiple condition coverage:
1. safe(c) = true, safe(b) = false

2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false [safe(c) || safe(b)]

4. safe(c) = true, safe(b) = true

Comparing control-flow criteria

Table 1. Types of Structural Coverage

Coverage Criteria

Statement
Coverage

Decision
Coverage

Condition
Coverage

Condition/
Decision
Coverage

MC/DC

Multiple
Condition
Coverage

Every point of entry and exit in the
program has been invoked at least
once

Every statement in the program
has been invoked at least once

Every decision in the program has
taken all possible outcomes at least
once

Every condition in a decision in the
program has taken all possible
outcomes at least once

Every condition in a decision has
been shown to independently affect
that decision’s outcome

Every combination of condition
outcomes within a decision has
been invoked at least once

Source: Kelly J. Hayhurst et al. ,A Practical Tutorial on Modified Condition/Decision Coverage”, NASA/TM-2001-210876, 2001

Comparing control-flow criteria

multiple condition coverage

k

modified condition/decision coverage

k

full predicate coverage

Y
decision/condition coverage

A

decision coverage condition coverage

\/

statement coverage

Source: S. A. Vilkomir and J. P. Bowen, “From MC/DC to RC/DC: formalization and analysis of control-flow testing criteria,” Formal
Aspects of Computing, vol. 18, no. 1, pp. 42-62, 2006.

PLHNORIA Specification-based test design

Product getProduct(String name, Category cat){
if (name == null || ! cat.isVvalid)
throw new IllegalArgumentException();

Product p = ProductCache.getItem(name);

if (p == null){
p = DAL.getProduct(name, cat);

Design tests for

1. Statement
2. Decision
3. C/DC coverage

return p;

7. Basis path coverage

__

. Number of independent paths traversed during testing:
' Number of all independent paths '

Path coverage: 80%

Statement coverage: 100%

Assessing full path coverage

= 100% path coverage implies:
o 100% statement coverage, 100% decision coverage
o 100% multiple condition coverage is not implied

= Full path coverage is usually not practical
in case of loops

A structure based testing technique

= Goal: Covering independent paths

o Independent paths from the point of view of testing:
There is a statement or decision in the path,
that is not included in the other path

= The maximal number of independent paths:
o CK, cyclomatic complexity

o In regular control flow graphs:
CK(G)=E-N+2, where

E: number of edges

N: number of nodes in the control flow graph G
(connected graph, with 1-1 initial and final node)

= The set of independent paths is not unique

Generating structure based test sequences

= Algorithm:
o Selecting max. CK independent paths
o Generating inputs to traverse the paths,
each after the other
= Problems:

o Not all paths can be traversed (see conditions)
* |s it possible to generate a proper input sequence?

* |tis possible to set the internal variables in a proper way to
traverse the selected path?

o Cycles: Traversal shall be limited (minimized)

" There are no fully automated tools to generate
test sequences for path coverage

Additional coverage criteria

= Loop
o Executing loops 0, 1 or more times

= Race
o Executions from multiple threads on code

Calculating coverage in practice

= Every tool uses different definitions
= Implementation

o Instrument source/byte code
o Adding instructions to count coverage

if (a > 10){
CoveredBranch(1, true);
b = 3;

} else {
CoveredBranch(1, false);
b = 5;

}

send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

DATA-FLOW COVERAGE

Learning outcomes

= Summarize the basics of data-flow coverage
criteria (K2)

Goal of data-flow coverage

" |dea:
o Track the assignment and usage of variables
o Label CFG with data-flow events

= Faults to detect:

o Erroneous assignments

o Effect of assighments

Labeling the control flow graph

= def(v): variable v is assigned in the given location

= yse(v): variable v is used in the given location

o p-use(v): value of variable v is used in a condition

o c-use(v): value of variable v is used in a computation

FLANONAH Labeling variable def and use
Variable: @ @ @ @

[x=a+2 J def x c-use a
[y;é4] def y
| if (;>12)] D-use X
N
[z=x+y J c-use X c-usey def z

| y=30 defy

Program paths

= Definition clear path for variable v
o v is not assigned in the nodes of the path

|

x=a+2

|

|

y=

24

|

A

y

| if (x>12) |

|

Z=X+y

Definition clear
path for x

Definition clear
path fory

Data-flow criteria

. - °
All-defs: for every v, for every def v: def v
o defv at least one
O use Vv def-free path
toone use-v @ O
usev usev use v
" All-uses: swefv W All-paths: def v
O p-uses,
O C-uses

use v use v use v use v use v use v

Comparing structural coverage criteria

Standards for safety-
[All-DU-Paths] w .
7 critical prescribe more
[All-Uses] . .
/ — complex criteria
[All C-Uses / Some P-Uses] [A”'P'USGS/SQEAC'US‘BS]
[All-P-Uses]
All-Defs)
All-Edges]
All-Nodes

Average projects do
not measure coverage
or aim only for
statement coverage

SUMMARY

Using test coverage criteria

" Can be used for:
o Find not tested parts of the program
o Measure “completeness” of test suite
o Can be basis for exit criteria

= Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

Using test coverage criteria

= Experience from Microsoft

o ,Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o ,,Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o ,The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: ,Parameterized Unit Testing with Microsoft Pex”)

= Related case studies:

o ,,Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o ,, The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

