
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Structure-based test design

David Honfi, Zoltan Micskei,
Istvan Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Test design techniques

3

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

STRUCTURE-BASED TESTING

4

What is “internal structure”?

 In case of models: structure of the model

5

A1

A2

A3A4

S

A5 E

S1

S2
S3

e1 / a1
e2[g] / a1

e0 / a0

S4

e1 / a2

e2

e1 / a2

e2[g1] / a2

S

What is “internal structure”?

 In case of models: structure of the model

 In case of code: structure of the code (CFG)

6

6

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

} else {

d: m=n-i;

}

e: printf("%d\n",n);

}

f: printf("Ready.")

Source code: Control-flow graph:

b

c

d

e

a

f

Coverage metrics

 What % of testable elements have been tested

 Testable element

o Specification-based: requirement, functionality…

o Structure-based: statement, decision…

 Coverage criterion: X % for Y coverage metric

 This is not fault coverage!

7

How to use coverage metrics?

Evaluation
(measure)

•Evaluate
quality of
existing tests

•Find missing
tests

Selection (goal)

•Design tests
to satisfy
criteria

8

CONTROL-FLOW CRITERIA

9

Learning outcomes

 Explain the differences between different control-
flow based coverage criteria (K2)

 Design tests using control-flow based coverage
criteria for imperative programs (K3)

10

11

Basic concepts

 Statement

 Block

o A sequence of one or more consecutive executable statements
containing no branches

 Condition

o Logical expression without logical operators (and, or…)

 Decision

o A logical expression consisting of one or more conditions
combined by logical operators

 Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

Example: decision and condition

 A decision with one condition:

if (temp > 20) {…}

 A decision with 3 conditions:
if (temp > 20 && (valveIsOpen || p == HIGH)) {…}

12

Control Flow Graph (CFG)

 A CFG represents the flow of control

 G = (N, E) directed graph

o Node n ∈ N is a basic block

• Basic block: Sequence of statements with exactly one entry
and exit points.

o Edge e = (ni, nj) ∈ E is a possible flow of control from
basic block ni to basic block nj

13

Example: Control Flow Graph

14

14

int a = 1;
while(a < 16) {
if(a < 10) {
a += 2;

} else {
a++;

}
}
a = a * 2;

Source code: Control-flow graph:

basic
blockcontrol

flow

EXERCISE Building a CFG

15

public void insertionSort(int[] a) {

for(int i = 0; i < a.size(); i++) {

int x = a[i];

int j = i - 1;

while(j >= 0 && a[j] > x) {

a[j+1] = a[j];

j = j – 1;

}

a[j+1] = x;

}

System.out.println("Finished.");

}
Build the CFG of

this program
code

A

B

D

E

C

F

16

1. Statement coverage

Number of statements executed during testing

Number of all statements

Statement coverage: 80%

A1

A2

A3A4

A5

Assessing statement coverage

17

Does not require to cover empty branches!

Statement coverage: 100%

k=0

k=1

m=1/k

[a>0]
[a<=0]

Missing: [a<=0] branch

18

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

Decision coverage: 50%

A2

A3A4

Assessing decision coverage

19

Does not take into account all combinations of conditions!

A2

A3A4

[safe(c) || safe(b)]

100% decision coverage:

1. safe(c) = true, safe(b) = false

2. safe(c) = false, safe(b) = false

20

3. Condition coverage

Generic coverage metric for conditions:

Number of tested combinations of conditions

Number of aimed combinations of conditions

Definition (what conditions are aimed):
• Every condition must be set to true and false during testing

• Does not yield 100% decision coverage!

Example of 100% condition coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true

Other possible definition:
• Every condition is evaluated to both true and false

• Not the same as above due to lazy evaluation

A2

A3A4

[safe(c) || safe(b)]

21

4. Condition/Decision Coverage (C/DC)

 Every condition in a decision in the program has
taken all possible outcomes at least once, and

 every decision in the program has taken all
possible outcomes at least once.

100%-os C/DC coverage:
1. safe(c) = true, safe(b) = true
2. safe(c) = false, safe(b) = false

Does not take into account whether the condition has any effect!

A2

A3A4

[safe(c) || safe(b)]

22

5. Modified Condition/Decision Coverage (MC/DC)

 Each entry and exit point has been invoked at least once,

 every condition in a decision in the program has taken all
possible outcomes at least once,

 every decision in the program has taken all possible
outcomes at least once,

 each condition in a decision is shown to independently
affect the outcome of the decision.

100%-os MC/DC coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false

A2

A3A4

[safe(c) || safe(b)]

23

6. Multiple Condition Coverage

 Every combinations of conditions tried

o For n conditions 2n test cases may be necessary!

o (Bit less with lazy evaluation)

o Sometimes not practical, e.g. in avionics systems there
are programs with more than 30 conditions!

100% multiple condition coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false
4. safe(c) = true, safe(b) = true

A2

A3A4

[safe(c) || safe(b)]

24

Comparing control-flow criteria

Source: Kelly J. Hayhurst et al. „A Practical Tutorial on Modified Condition/Decision Coverage”, NASA/TM-2001-210876, 2001

25

Comparing control-flow criteria

Source: S. A. Vilkomir and J. P. Bowen, “From MC/DC to RC/DC: formalization and analysis of control-flow testing criteria,” Formal

Aspects of Computing, vol. 18, no. 1, pp. 42-62, 2006.

EXERCISE Specification-based test design

26

Product getProduct(String name, Category cat){

if (name == null || ! cat.isValid)

throw new IllegalArgumentException();

Product p = ProductCache.getItem(name);

if (p == null){

p = DAL.getProduct(name, cat);

}

return p;

}

Design tests for
1. Statement
2. Decision
3. C/DC coverage

27

7. Basis path coverage

Number of independent paths traversed during testing

Number of all independent paths

Path coverage: 80%

Statement coverage: 100%

A1

A2

A3A4

A5

Assessing full path coverage

 100% path coverage implies:

o 100% statement coverage, 100% decision coverage

o 100% multiple condition coverage is not implied

 Full path coverage is usually not practical
in case of loops

28

A structure based testing technique

 Goal: Covering independent paths
o Independent paths from the point of view of testing:

There is a statement or decision in the path,
that is not included in the other path

 The maximal number of independent paths:
o CK, cyclomatic complexity

o In regular control flow graphs:
CK(G)=E-N+2, where

E: number of edges

N: number of nodes in the control flow graph G
(connected graph, with 1-1 initial and final node)

 The set of independent paths is not unique

Generating structure based test sequences

 Algorithm:
o Selecting max. CK independent paths

o Generating inputs to traverse the paths,
each after the other

 Problems:
o Not all paths can be traversed (see conditions)

• Is it possible to generate a proper input sequence?

• It is possible to set the internal variables in a proper way to
traverse the selected path?

o Cycles: Traversal shall be limited (minimized)

 There are no fully automated tools to generate
test sequences for path coverage

30

31

Additional coverage criteria

 Loop
o Executing loops 0, 1 or more times

 Race
o Executions from multiple threads on code

 …

Calculating coverage in practice

 Every tool uses different definitions

 Implementation

o Instrument source/byte code

o Adding instructions to count coverage

32

if (a > 10){
CoveredBranch(1, true);
b = 3;

} else {
CoveredBranch(1, false);
b = 5;

}
send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

DATA-FLOW COVERAGE

33

Learning outcomes

 Summarize the basics of data-flow coverage
criteria (K2)

34

35

Goal of data-flow coverage

 Idea:

o Track the assignment and usage of variables

o Label CFG with data-flow events

 Faults to detect:

o Erroneous assignments

o Effect of assignments

Labeling the control flow graph

 def(v): variable v is assigned in the given location

 use(v): variable v is used in the given location

o p-use(v): value of variable v is used in a condition

o c-use(v): value of variable v is used in a computation

36

EXERCISE Labeling variable def and use

37

x=a+2

z=x+y

y=24

if (x>12)

def x

c-use x

def y

c-use y def z

c-use a

x y z a

p-use x

Variable:

y=30 def y

Program paths

 Definition clear path for variable v

o v is not assigned in the nodes of the path

38

x=a+2

z=x+y

y=24

if (x>12)

y=30

Definition clear
path for x

Definition clear
path for y

39

Data-flow criteria

 All-defs:

o def v

o use v

use v use v use v

def vfor every v, for every def v:

at least one

def-free path

to one use-v

use v use v use v

def v All-uses:
o p-uses,

o c-uses

use v use v use v

def v All-paths:

40

Comparing structural coverage criteria

All-DU-Paths

All-Uses

All C-Uses / Some P-Uses

All-Defs

All-P-Uses / Some C-Uses

All-P-Uses

All-Edges

All-Nodes

Average projects do
not measure coverage

or aim only for
statement coverage

Standards for safety-
critical prescribe more

complex criteria

SUMMARY

41

Using test coverage criteria

 Can be used for:

o Find not tested parts of the program

oMeasure “completeness” of test suite

o Can be basis for exit criteria

 Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

42

Using test coverage criteria

 Experience from Microsoft

o „Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o „Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o „The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: „Parameterized Unit Testing with Microsoft Pex”)

 Related case studies:

o „Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o „The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

43

