
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Testing process and levels

Zoltan Micskei, Istvan Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

TESTING PROCESS

3

Learning outcomes

 Explain the activities and tasks in the typical test
process (K2)

4

5

Software
testing

Testing
process

Test levels Test types
Test design
techniques

Testing in
the lifecycle

Overview of testing concepts

6

Software testing

Testing process

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

Source: ISTQB CTFL syllabus

7

Software testing

Testing process

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

Test planning: Scope, risks, objectives
• Test approach
• Test strategy and/or test policy
• Required test resources like people,

test environments, etc.
• Schedule of test analysis and design

tasks, test implementation, execution
and evaluation

• Exit criteria such as Coverage criteria
Test control: Monitoring, corrections

Test strategy

 Possible example:

o Test-driven development

oModule & system

o JUnit & GUI Tester

o Developers & test
engineers

o At least 90% statement
coverage & every use
case requirement

o Test Report according to
IEEE 829

 Guidelines for

o What methodology?

oWhat kinds of tests?

o What tools?

o Who will test?

o Exit criteria?

o What
documentation?

8

9

Test plan

 Mapping test strategy to the actual test project
o Test objectives

o Test objects, test environment

o Resources, roles,

o Schedules

 Defining test phases
o Length of phase

o Exit criteria

o Measuring quality of testing

10

Test documentation

 IEEE 829 - Standard for
Software and System Test
Documentation (1998)

o Test Plan (SPACEDIRT:
Scope, People, Approach,
Criteria, Environment,
Deliverables, Incidentals,
Risks, Tasks)

o Test specifications: Test
Design, Test Case, Test
Procedure Specifications

o Test reporting: Test Item
Transmittal Report, Test Log,
Test Incident Report, Test
Summary Report

Google “10 minute test plan”

 Why do write a plan that is not used and updated?

 Keep only the most important

o Attributes, Components, Capabilities (ACC)

11

Source:
Google Test Analytics -
Now in Open Source

http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html
http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html
http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html
http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html

12

Software testing

Testing process

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

What can and should be tested?
• Designing and specifying test cases

• Goal
• Preconditions
• Test steps, test data
• Expected results, checks

• Before writing the test code
• Systematic techniques

13

Software testing

Testing process

Planning and
Control

Analysis and
Design

Implementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

• Manual or automatic
• Not everything is worth

automating

• Executing tests
• Logging

• Time, test environment
• Version SUT and system
• Outputs
• …

• Incident reporting

14

Software testing

Testing process

Planning and
Control

Analysis and
Design

Implementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

• Decision on when to stop testing
• Evaluating metrics
• Summary reports

15

Software testing

Testing process

Planning and
Control

Analysis and
Design

Implementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Test levels Test types
Test design
techniques

Testing in the
lifecycle

• After major milestones
• Collecting experience and feedback
• Finishing and storing reusable

testware (tools, environment)

16

Software
testing

Testing
process

Testing
levels

Unit /
Module

Integration

System

Acceptance

Alpha and
beta

Test types
Test design
techniques

Testing in
the lifecycle

17

Software
testing

Testing
process

Testing
levels

Test types

Functional

Non-
functional

Regression

…

Test design
techniques

Testing in
the lifecycle

18

Software
testing

Testing
process

Testing
levels

Test types

Functional

Non-
functional

Regression

…

Test design
techniques

Testing in
the lifecycle

• After changes
• Previous functions

are still working
• Only subset of tests

(test selection)
• Test minimization

19

Software
testing

Testing
process

Testing levels Test types
Test design
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the
lifecycle

20

Software
testing

Testing
process

Testing levels Test types
Test design
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the
lifecycle

• Ad hoc testing
• Exploratory testing

• Freedom and responsibility
of tester

• Test design, execution and
interpretation in parallel

21

Software
testing

Testing
process

Testing levels Test types
Test design
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the
lifecycle

• Error guessing
• Previous or typical faults

• Mutation testing
• Mutating the code

– Evaluating tests
• Mutating the tests

– Creating new tests

22

Software
testing

Testing
process

Testing
levels

Test types
Test design
techniques

Testing in
the lifecycle

V modell

Agile

…

23

Software testing

Testing process

Planning and
Control

Analysis and
Design

Implementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Testing levels

Unit / Module

Integration

System

Acceptance

Alpha and beta

Test types

Functional

Non-functional

Regression

…

Test design
techniques

Experience-
based

Specification-
based

Structure-based

Fault-based

Probabilistic

Testing in the
lifecycle

V modell

Agile

…

TESTING PRACTICES

24

25

Testing @ Microsoft

 Software Developer Engineer in Test (SDET)

 Same career paths as developers

o Testing is not an entry position

o Test manager is not a promotion but a different path

 „Hiring testers to pound quality into a product
after it’s been developed is a waste of money.”

 10 year support cycle for major releases

oWorth investing in good test automation

„How we test software at Microsoft”, Microsoft
Press, ISBN 0735624259, 2008.

26

Testing @ Google

 Roles

o Test Engineer (TE)

o Software Engineer in Test & Infrastructure (SETI)

 „The burden of quality is on the
shoulders of those writing the code.”

 „Do not hire too many testers.”

https://testing.googleblog.com/2016/03/from-qa-to-engineering-productivity.html

Testing Quadrants

27

Source: http://angryweasel.com/blog/riffing-on-the-quadrants/

TEST LEVELS

28

Learning outcomes

 Distinguish the scope of different test levels (K2)

 Describe the different integration testing
approaches (K2)

 Recall the goals of system verification and system
validation testing (K1)

29

Characteristics of tests in different levels

Recommendations from How Google Tests Software:

30

Small Medium Large

Execution time < 100 ms < 1 sec As fast as poss.

Time limit (kill) 1 minute 5 minutes 1 hour

Resource Small Medium Large

Network (socket) Mocked only localhost Yes

Database Mocked Yes Yes

File access Mocked Yes Yes

System call No Not recommended Yes

Multiple threads Not recommended Yes Yes

Sleep No Yes Yes

System properties No Yes Yes

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

31

Integration testing

 Motivation

o The system-level interaction of modules may be
incorrect despite the fact that all modules are correct

 Methods
o Functional testing: Testing scenarios

• Sometimes the scenarios are part of the specification

o (Structure based testing at module level)

 Approaches
o “Big bang” testing: integration of all modules

o Incremental testing: stepwise integration of modules
32

Testing the interactions of modules

Integration testing approaches

Integration
testing

Big bang Incremental

Top-down

Bottom-up

33

“Big bang” testing

 Integration of all modules and testing using the external
interfaces of the integrated system

 External test executor

 Based of the functional specification of the system

 To be applied only in case of small systems

34

D

C

Tester1

A

Tester2 B

Debugging is difficult!

Incremental integration and testing

 In case of complex systems (supports debugging)

 Adapts to module hierarchy (calling levels)

35

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

A3 A31 A311 A312 A

Top-down integration testing

 Modules are tested from the caller modules

 Stubs replace the lower-level modules that are called

 Requirement-oriented testing

 Module modification: modifies the testing of lower levels

36

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Tested module:

test executor

Module

to be tested

Test

stub

Test

stub

Test

stub

Bottom-up integration testing
 Modules use already tested modules

 Test executor is needed

 Testing is performed in parallel with integration

 Module modification: modifies the testing of upper levels
A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test

executor

Module

to be tested

Tested

module

Tested

module

Tested

module

37

Top down vs. bottom up

 Top down

+ Requirement oriented

+ Working “skeleton” early

- Harder to create stubs than drivers

- Tests inputs are far from module to integrate

 Bottom up

+ Integration oriented, more constructive

+ Easier to control and observe the system

- System is assembled only at the end

38

Integration with the runtime environment

 Motivation: It is hard to construct stubs for the
runtime environment
o Platform services, RT-OS, task scheduler, …

 Strategy:
1. Top-down integration of the application modules to

the level of the runtime environment

2. Bottom-up testing of the runtime environment
• Isolation testing of functions (if necessary)

• „Big bang” testing with the lowest level of the application
module hierarchy

3. Integration of the application with the runtime
environment, finishing top-down integration

39

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

40

System testing

Testing on the basis of the system specification

 Characteristics:
o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties

 Testing aspects:
o Data integrity

o User profile (workload)

o Checking application conditions of the system
(resource usage, saturation)

o Testing fault handling

41

Types of system tests

42

Performance testing

Configuration testing

Concurrency testing

Stress testing

Reliability testing

Tester

Failover testing

• Checking saturation effects

• Real workload

• Response times

• Hardware and software settings

• Increasing the number of users

• Checking deadlock, livelock

• Checking the effects of faults

• Checking the redundancy

• Checking failover/failback

Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val.

design

43

Validation testing

 Goal: Testing in real environment
o User requirements are taken into account

o Non-specified expectations come to light

o Reaction to unexpected inputs/conditions is checked

o Events of low probability may appear

 Timing aspects
o Constraints and conditions of the real environment

o Real-time testing and monitoring is needed

 Environment simulation
o If given situations cannot be tested in a real environment

(e.g., protection systems)

o Simulators shall be validated somehow

44

EXTRA MATERIAL:
UML 2 TESTING PROFILE (U2TP)

45

U2TP: UML 2 Testing Profile (OMG, 2004)
 Able to capture all needed information for functional black-box

testing (specification of test artifacts)
o Mapping rules to TTCN-3, JUnit

 Language (notation) and not a method (how to test)

Packages (concept groups):

 Test Architecture
o Elements and relationship involved in test

o Importing the UML design model of the SUT

 Test Data
o Structures and values to be processed in a test

 Test Behavior
o Observations and activities during testing

 Time Concepts
o Timer (start, stop, read, timeout), TimeZone (synchronized)

U2TP Test Architecture package

Identification of main components:
 SUT: System Under Test

o Characterized by interfaces to control and observation

o System, subsystem, component, class, object

 Test Component: part of the test system (e.g., simulator)
o Realizes the behavior of a test case

(Test Stimulus, Test Observation, Validation Action, Log Action)

 Test Context: collaboration of test architecture elements
o Initial test configuration (test components)

o Test control (decision on execution, e.g., if a test fails)

 Scheduler: controls the execution of test components
o Creation and destruction of test components

 Arbiter: calculation of final test results
o E.g., threshold on the basis of test component verdicts

U2TP Test Architecture example

U2TP Test Data package

 Identification of types and values for test
(sent and received data)
o Wildcards (* or ?)

o Test Parameter
• Stimulus and observation

o Argument
• Concrete physical value

o Data Partition: Equivalence class for a given type
• Class of physical values, e.g., valid names

o Data Selector: Retrieving data out of a data pool
• Operating on contained values or value sets

o Templates

U2TP Test Data example

U2TP Test Behavior package

 Specification of default/expected behavior

 Identification of behavioral elements:
o Test Stimulus: test data sent to SUT

o Test Observation: reactions from the SUT

o Verdict: pass, fail, error, inconclusive values

o Actions: Validation Action (inform Arbiter), Log Action

 Test Case: Specifies one case to test the SUT
o Test Objective: named element

o Test Trace: result of test execution
• Messages exchanged

o Verdict

U2TP Test Behavior example

Example: BlueTooth roaming

System under test:

Test objective:

 Slave Roaming Layer functionality
o Monitoring link quality

o Connecting to a different master

Example: Components

Test package

Test context Overview

Example: Test configuration and control

Test configuration Test control

Test
scenario

Test case
implementa-
tion
(see Blue-
ToothSuite)

• References
• Timers
• Defaults

Test scenarios (details)

Sequence diagrams

Default behaviours specified
to catch the observations
that lead to verdicts
• Here: Processing timer events

