
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Code-based test generation

David Honfi, Zoltan Micskei,
Istvan Majzik

Software and Systems Verification (VIMIMA01)

1



Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2



Learning outcomes

 Explain the basic ideas of different code-based 
test generation techniques (K2)

 Demonstrate the workflow of symbolic execution 
on a method by graphically representing the 
execution using a symbolic execution tree (K3)

 Use different code-based test generator tools (K3)

3



Motivation

 Given a barely tested software to test

o Availability: source code or binary

 Developer testing

o Can be expensive, incomplete, etc.

 Alternative approaches

o Combinatorial, model-based, etc.

 Idea: generate tests somehow!

o Based on various criteria (e.g., coverage)

4



Test selection based on source code

5

int fun1(int a, int b){
if (a == 0){

printf(ERROR_MSG);
return -1;

}
if (b > a)

return b*a + 5;
else
return (a+b) / 2;

}

1
2

3

4

a b statement

0 * 1, 2

a!=0 b > a 3

a!=0 b <= a 4



What is missing?

What can be checked without expectations?

 Basic, generic errors (exception, segfault…)

 Failing assert statement for different inputs

 Manually extending assertions can improve this

 Reuse of already existing outputs

o Regression testing, different implementations

6

test case = input + expected output



TECHNIQUES

7



Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

8



Example: Static symbolic execution

9

int fun1(int a, int b){
if (a == 0){

printf(ERROR_MSG);
return -1;

}
if (b > a)

return b*a + 5;
else
return (a+b) / 2;

}

1
2

3

4

a == 0

a: 0
b: 0

T

b > a

F

a: 1
b: 2

T

a: 2
b: 1

F

PC: Path 
Constraint

Selected inputs



Symbolic execution: the idea

 Static program analysis technique from the ’70s

 Application for test generation

o Symbolic variables instead of normal ones

o Constraints forming for each path with symb. variables

o Constraint solving (e.g., SMT solver)

o A solution yields an input to execute a given path

 New century, new progress:

o Enough computing power (e.g., for SMT solvers)

o New ideas, extensions, algorithms and tools

10



Extending static symbolic execution

 Static SE fails in several cases, e.g.

o Too long paths  too many constraints

o Cannot decide if a path is really feasible or not

 Idea: mix symbolic with concrete executions

o Dynamic Symbolic Execution (DSE) or

o Concolic Testing

11



Dynamic symbolic execution

Code to generate inputs for:

Constraints to solve

a!=null

a!=null &&
a.Length>0

a!=null &&
a.Length>0 &&
a[0]==1234567890

void CoverMe(int[] a)
{

if (a == null) return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

Observed constraints

a==null
a!=null &&
!(a.Length>0)
a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

int[] a

null

{}

{0}

{123…}
a==null

a.Length>0

a[0]==123…
T

TF

T

F

F

Execute&MonitorSolve

Choose next path

Done: There is no path left.

Negated condition

Source: T. Xie, N. Tillmann, P. Lakshman:
Advances in Unit Testing: Theory and Practice

12



Tools available

Name Platform Language Notes

KLEE Linux C (LLVM bitcode)

Pex Windows .NET assembly VS2015: IntelliTest

SAGE Windows x86 binary Security testing, SaaS model

Jalangi - JavaScript

Symbolic
PathFinder

- Java

Other (discontinued) tools:

CATG, CREST, CUTE, Euclide, EXE, jCUTE, jFuzz, LCT, Palus, PET, etc.

13

More tools: http://mit.bme.hu/~micskeiz/pages/cbtg.html

http://mit.bme.hu/~micskeiz/pages/cbtg.html


DEMO: Microsoft IntelliTest

14

Generate unit tests for your code with IntelliTest
https://msdn.microsoft.com/en-us/library/Dn823749.aspx

SEViz (Symbolic Execution VisualIZer)
https://github.com/FTSRG/seviz

https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://github.com/FTSRG/seviz


EXERCISE Building a SE tree

15

public bool fun2(int a) {

int[] arr = new int[] { a, a*2, a*3 };

for(int i = 0; i < 3; i++) {

if(arr[i] > 10) {

return false;

}

}

return true;

}

Build the SE tree 
of this method

F

F

F

T

a > 10

a <= 10 &&
a*2 > 10

a <= 10 &&
a*2 <=10 &&

a*3 > 10

a <= 10 &&
a*2 <=10 &&

a*3 <= 10



Pex for fun / Code Hunt
http://pexforfun.com

http://codehunt.com

16



Parameterized Unit Testing

 Idea: Using tests as specifications

o Easy to understand, easy to check, etc.

o But: too specific (used for a code unit), verbose, etc. 

 Parameterized Unit Test (PUT)

o Wrapper method for method/unit under test

oMain elements

• Inputs of the unit

• Assumptions for input space restriction

• Call to the unit

• Assertions for expected results

o Serves as a specification  Test generators can use it

18



Example: Parameterized Unit Testing

19

void ReduceQuantityPUT(Product prod, int soldCount) {
// Assumptions
Assume.IsTrue(prod != null);
Assume.IsTrue(soldCount > 0);
// Calling the UUT
int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
// Assertions
Assert.IsTrue(newQuantity >= 0);
int oldQuantity = StorageManager.GetQuantityFor(prod);
Assert.IsTrue(newQuantity < oldQuantity);

}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }



Example: Parameterized Unit Testing

20

void ReduceQuantityPUT(Product prod, int soldCount) {
// Assumptions
Assume.IsTrue(prod != null);
Assume.IsTrue(soldCount > 0);
// Calling the UUT
int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
// Assertions
Assert.IsTrue(newQuantity >= 0);
int oldQuantity = StorageManager.GetQuantityFor(prod);
Assert.IsTrue(newQuantity < oldQuantity);

}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }



Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

26



Random test generation

Random selection from input domain

 Advantage:

o Very fast

o Very cheap

 Ideas:

o If no error found: trying different parts of domain

o Selection based on: ”diff”, ”distance”, etc. 

 Tool for Java:

27



Randoop: feedback-driven generation

 Generation of method sequence calls

 Compound objects:

 Heuristics:

o Execution of selected case

o Throwing away invalid, redundant cases

28



Cases studies of robustness testing

 Robustness testing

o Fuzz: random inputs for console programs

• Unix (1990), Unix (1995), MacOS (2007)

o NASA: flash file system

• Simulating HW errors, comparison with references

• (Model checking did not scale well)

 Randoop

o JDK, .NET libraries: checks for basic attributes
(e.g.: o.equals(o) returns true)

o Comparison of JDK 1.5 and 1.6

o Was able to found bugs in well-tested components

29



Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

30



Using annotations for test generation

 If the code contains:

o pre- and post-conditions (e.g.: design by contract)

o other annotations

 These are able to guide test generation.

31

/*@ requires amt > 0 && amt <= acc.bal;

@ assignable bal, acc.bal;

@ ensures bal == \old(bal) + amt

@   && acc.bal == \old(acc.bal - amt); @*/

public void transfer(int amt, Account acc) {

acc.withdraw(amt);

deposit(amt);

}



Tools for annotation-based test generation

 AutoTest

o Eiffel language, Design by Contract

o Input: „object pool”, random generation

• Idea: Include inputs that satisfy preconditions.

o Expected output: contracts

32

AutoTest: Bertrand Meyer et al., "Program that Test Themselves", IEEE Computer 42:9, 2009.



Tools for property-based test generation
 QuickCheck

o Goal: replace manual values with generated ones

o Tries to cover laws of input domains

33

@Test
public void sortedListCreation() {

for (List<Integer> any : someLists(integers())) {
SortedList sortedList = new SortedList(any);
List<Integer> expected = sort(any);
assertEquals(expected, sortedList.toList());

}
}
private List<Integer> sort(List<Integer> any) {

ArrayList<Integer> sorted = new ArrayList<Integer>(any);
Collections.sort(sorted);
return sorted;

}
Claessen et al. "QuickCheck: a lightweight tool for random testing of Haskell programs"

ACM Sigplan Notices 46.4 (2011): 53-64



Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

34



Search-based techniques

Search-based Software Engineering (SBSE)

 Metaheuristic algorithms

o genetic alg., simulated annealing, hill climbing…

 Representing a problem as a search:

o Search space:
program structure + possible inputs

o Objective function: reaching a test goal 
(e.g., covering all decisions of a given condition)

35



A tool for search-based test generation

 „Whole test suite generation”

o All test goals are taken into account

o Searches based on multiple metrics

• E.g., high coverage with minimal test suite

 Specialities:

o Minimizes test code, maintains readability

o Uses sandbox for environment interaction

36



EVALUATIONS

37



Applying these techniques on real code?

 SF100 benchmark (Java)

o 100 projects selected from SourceForge

o EvoSuite reaches branch coverage of 48%

o Large deviations among projects

 A large-scale embedded system (C)

o Execution of CREST and KLEE on a project of ABB

o ~60% branch coverage reached

o Fails and issues in several cases

38

G. Fraser and A. Arcuri, “Sound Empirical Evidence in Software Testing,” ICSE 2013

X. Qu, B. Robinson: A Case Study of Concolic Testing Tools and Their Limitations, ESEM 2011



Are these techniques really that good?

 Does it help software developers?

o 49 participants wrote and generated tests

o Generated tests with high code coverage did not 
discover more injected failures

 Finding real faults

o Defects4J: database of 357 issues from 5 projects

o Tools evaluated: EvoSuite, Randoop, Agitar

o Only found 55% of faults

39

G. Fraser et al., “Does Automated White-Box Test Generation Really Help Software Testers?,” ISSTA 2013

S. Shamshiri et al., „Do automatically generated unit tests find real faults? An empirical study of 
effectiveness and challenges.” ASE 2015



Comparison of test generator tools

 Various source code snippets to execute 

o Covering most important features of languages

 300 Java/.NET snippets 

o Executed on 6 different tools

 Experience:

o Huge difference in tools

o Some snippets challenging for all tools

40

L. Cseppentő, Z. Micskei: „Evaluating Symbolic Execution-based Test Tools,” ICST’15



41

Comparison of test generator tools



Current challenges

 Complex arithmetic operations (e.g., logarithms)

 Floating point numbers (e.g., equality)

 Non-trivial string operations

 Environment calls (e.g., files, native, external libs)

 Multithreading

 Compound data structures

 Pointer operations

 …

42



Summary

 Tests generation is possible based on code

 Various different techniques available

 Further challenges:

o Scalability

o Test oracle production

o etc.

 Active topic of research in software engineering

43


