
Budapest University of Technology and Economics 
Department of Measurement and Information Systems 

Budapest University of Technology and Economics 
Fault Tolerant Systems Research Group 

Runtime verification 

 
István Majzik 

 

1 

Software and Systems Verification (VIMIMA01) 



Main topics of the course 

 Overview (1) 

o V&V techniques, Critical systems 

 Static techniques (2) 

o Verifying specifications 

o Verifying source code 

 Dynamic techniques: Testing (7) 

o Developer testing, Test design techniques 

o Testing process and levels, Test generation, Automation 

 System-level verification (3) 

o Verifying architecture, Dependability analysis 

o Runtime verification 
2 



Learning outcomes 

 Explain the role of runtime verification and the 
related main challenges (K2) 

 Explain the monitoring technique that uses 
reference automata (K2) 

 Explain the monitoring technique that uses 
temporal logic expressions (K2)  

 Construct an observer automaton on the basis of 
a sequence chart specification (K3)  

 Identify how context-dependent behavior can be 
monitored (K1) 

3 



Table of contents 

 Goals and challenges 

o Use cases 

 Runtime verification techniques 

o Verification based on reference automata 

o Verification based on temporal logic properties 

o Verification based on sequence diagrams 

o Verification based on scenario and context description 

 Implementation experience 

4 



Goals and challenges 



What is runtime verification? 

 Definition: 

Checking the behavior of systems 

o in runtime (on-line), 

o based on formally specified properties 

 Motivation 

o Dependability and safety requirements 

• Safety-critical system: Safety (THR), fault tolerance 

• IT services: Service correctness (SLA), … 

o Runtime faults are inevitable 

• Random faults in hardware components 

• Software design, implementation, configuration faults 

6 



Goal: Runtime detection of faults 

 Runtime fault detection is the basis of fault handling 
o Detection of hardware faults based on source code 

• E.g., checking the CFG (watchdog processors) 

• Only for operational faults, based on implementation 

o Checking on the basis of requirements 
• For systematic (design, coding, configuration) faults as well 

o Verification on the basis of formalized properties 
• Precise representation of requirements 

• Automated synthesis of checker (monitor) components 

 Example: Reactive fault handling 
o Fault detection followed by reaction (e.g., recovery, 

reconfiguration, setting of safe state, …) 

7 



Use case 1: Runtime verification 

 Monitors used for runtime verification 
o Evaluating formalized requirements 

o Detecting errors resulting from operational faults, 
configuration errors, unexpected environmental conditions 

8 

Monitor 
synthesis 

Monitor1 

Requirements 

Monitor2 

Monitorn 

System under 
execution 

R
u

n
ti

m
e

 
ve

ri
fi

ca
ti

o
n

 



Use case 2: Evaluation of test output  

 Monitors can be test oracles in testing frameworks 
o Evaluating the satisfaction of selected requirements 
o Detecting design or implementation errors 

9 

Test executor 

Monitor 
synthesis 

Monitor1 

Monitor2 

Monitorn 

System under 
test (SUT) 

Requirements 

Te
st

 o
ra

cl
es

 



Challenges 

 Verification techniques 

o Formalization of checked properties 

o Efficient algorithms for verification 

 Instrumentation 

o Observation of the information needed for verification 

o Minimizing overhead 

 

 Practical aspects of theoretical results 

o Monitor synthesis 

o Low resource needs, scalable implementation 

  Application in safety relevant embedded systems 

10 



Challenges 

 Verification techniques 

o Formalization of checked properties 

o Efficient algorithms for verification 

 Instrumentation 

o Observation of the information needed for verification 

o Minimizing overhead 

 

 Practical aspects of theoretical results 

o Monitor synthesis 

o Low resource needs, scalable implementation 

  Application in safety relevant embedded systems 

11 

• Execution trace based checking of temporal properties 
• Temporal logics 
• Reference automata 
• Regular expressions 

• Design-by-contract based monitoring 
• Executable assertions 

• Specification-less monitoring 
• Checking the generic correctness requirements of 

concurrent execution (e.g., deadlock, race, livelock, 
serialization conflicts) 



Challenges 

 Verification techniques 

o Formalization of checked properties 

o Efficient algorithms for verification 

 Instrumentation 

o Observation of the information needed for verification 

o Minimizing overhead 

 

 Practical aspects of theoretical results 

o Monitor synthesis 

o Low resource needs, scalable implementation 

  Application in safety relevant embedded systems 

12 



Challenges 

 Verification techniques 

o Formalization of checked properties 

o Efficient algorithms for verification 

 Instrumentation 

o Observation of the information needed for verification 

o Minimizing overhead 

 

 Practical aspects of theoretical results 

o Monitor synthesis 

o Low resource needs, scalable implementation 

  Application in safety relevant embedded systems 

13 

• Active and passive instrumentation 
• Active: inserting source code snippets into observed code 
• Passive: observation without interference 

• Techniques for active instrumentation 
• Aspect-Oriented Programming (AOP) 
• Tracematch: AspectJ extension for trace patterns 

• Synchronous and asynchronous monitoring 



Challenges 

 Verification techniques 

o Formalization of checked properties 

o Efficient algorithms for verification 

 Instrumentation 

o Observation of the information needed for verification 

o Minimizing overhead 

 

 Practical aspects of theoretical results 

o Monitor synthesis 

o Reducing resource needs, scalable implementation 

  Application in critical embedded systems 

14 



Example: Framework for monitor synthesis 
 MOP: Monitoring-Oriented Programming 
 
 
 
 
 
 
 

o FSM:  Finite State Machines 
o ERE:  Extended Regular Expressions 
o CFG:  Context Free Grammars 
o PTLTL:  Past Time Linear Temporal Logic 
o LTL: Linear Temporal Logic 
o PTCaRet: Past Time LTL with Calls and Returns 
o SRS:  String Rewriting Systems 

15 



The discussed solutions 

 To be used in: Control-oriented applications 
o State based, event- and message-driven behavior 

o E.g., safety functions, protocols, … 

 Hierarchical (scalable) runtime verification 
o Local: Behavior of single components (controller, ECU) 

• Reference automaton: control and simple data faults 

• Local temporal properties of states 

o System-level: Interaction of components 
• Temporal properties of interactions 

• Scenario (MSC) based properties 

 Relation to model based design 
o Model based code generation with instrumentation 

16 



Overview: Design-time verification 

17 

Design-time verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Component  
source code 



Overview: Runtime verification 

18 

Design-time verification Runtime verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Instrumentation 

CFG monitor 
synthesis 

MSC monitor 
synthesis 

TL monitor 
synthesis 

Local CFG 
monitors 

Instrumented 
component code 

System-level 
monitors 

System-level 
monitors 



Runtime verification based on 
reference automata 



Overview: Runtime verification 

20 

Design-time verification Runtime verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Instrumentation 

CFG monitor 
synthesis 

MSC monitor 
synthesis 

TL monitor 
synthesis 

Local CFG 
monitors 

Instrumented 
component code 

System-level 
monitors 

System-level 
monitors 



Monitoring on the basis of reference automaton 

Interaction  

(events, 

messages) 

Internal behavior 

Reference 

automaton 

M
o

n
it

o
r 

c
o

m
p

o
n

e
n

t 

 Operational faults (transient) 

 (Manual coding faults) 

Automated instrumentation:  

signatures identifying the states 

21 



State-based monitoring of timed automata 

Detectable faults: 
 Wrong state / state 

transition sequence 
 Stuck in state 

(timeout) 
 Violation of timing 

conditions (in case 
of timed automata 
reference) 

Component 

Instrumentation 

Local monitor Signatures: 
states 

Basis for code generation Reference automaton 

Reference automaton 

22 



Instrumentation in the generated source code 

24 

Initialization 
Instrumentation 

Entering function 

Instrumentation 

Automaton-level State-level 

Exit function 

System loop  

Waiting function 

+ Send state signature to monitor 

• Initializing state variables 
• Listening for events to react 
 

 

Optional: Invalidate state signature 



25 

Case study: Monitoring on the basis of statecharts 

 Systematic and transparent instrumentation: 
o Explicit information for the monitor 

• States entered and left 

• Executed actions 

o Instrumentation: Aspect-oriented programming 

ObservedApp Monitor 

TransitionContext 

RTCContext 

Run-time Monitor 

25 



26 

Case study: Monitoring on the basis of statecharts 

 Systematic and transparent instrumentation: 
o Explicit information for the monitor 

• States entered and left 

• Executed actions 

o Instrumentation: Aspektus-oriented programming 

ObservedApp Monitor 

TransitionContext 

RTCContext 

Run-time Monitor 

Monitor 

Run-time Monitor 

Monitor 

Run-time Monitor 

MessageQueue 

+ sendTrStarting 

… 

msgq 

Firing of a transition 

Leaving source  

state configuration 

Execution of actions 

Entering target 

state configuration 

„Starting 

transition” signature 

„Transition 

finished” signature 

26 



28 

Case study: Monitoring on the basis of statecharts 

 Systematic and transparent instrumentation: 
o Explicit information for the monitor 

• States entered and left 

• Executed actions 

o Instrumentation: Aspektus-oriented programming 

ObservedApp Monitor 

TransitionContext 

RTCContext 

Run-time Monitor 

RTC context 

• Initialization 

• Starting and finishing event 

processing 

• Signals for Transition 

Context 

Transition Context 

• Entering and leaving states  

• Related actions 

28 



29 

Uninitialized 

Initialization 

initStarting initEntry [ieOK] 

Stable 

initFinishing[ifOK] 

Transient 

trStarting [tsOK] / 

createTrCtx 

d
is

p
a

tc
h

 

evtProcStarting 

[epsOK] 

evtProcFinishing 

[epfOK] 

Case study: Monitoring on the basis of statecharts 

 Reference for RTC Context 

29 



30 

Uninitialized 

Initialization 

initStarting initEntry [ieOK] 

Stable 

initFinishing[ifOK] 

Transient 

trStarting [tsOK] / 

createTrCtx 

d
is

p
a

tc
h

 

evtProcStarting 

[epsOK] 

evtProcFinishing 

[epfOK] 

Fault 

detected 
initEntry [!ieOK] 

initFinishing[!ifOK] 

trStarting 

[!tsOK] 

evtProcFinishing [!epfOK] 

evtProcStarting [!epsOK] 

Case study: Monitoring on the basis of statecharts 

30 

• Invalid condition for the 

step according to the 

statechart semantics 
 Reference for RTC Context 



31 

Exiting states 

trAssociated [taOK] 

Entering states 

exitState [xsOK] / 

markInactive 

enterState [esOK] / 

markActive 

trFinishing [tfOK] 

Case study: Monitoring on the basis of statecharts 

31 

 Reference for Transition Context 



32 

Exiting states 

trAssociated [taOK] 

Entering states 

exitState [xsOK] / 

markInactive 

enterState [esOK] / 

markActive 

trFinishing [tfOK] 

Fault 

detected 

exitState 

[!xsOK] 

enterState [!esOK] 

trAssociated 

[!taOK] 

trFinishing [!tfOK] 

Case study: Monitoring on the basis of statecharts 

32 

 Reference for Transition Context 
• Invalid condition for the 

step according to the 

statechart semantics 



Runtime verification based on 
temporal logic properties 



Overview: Runtime verification 

34 

Design-time verification Runtime verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Instrumentation 

CFG monitor 
synthesis 

MSC monitor 
synthesis 

TL monitor 
synthesis 

Local CFG 
monitors 

Instrumented 
component code 

System-level 
monitors 

System-level 
monitors 



Temporal logic based properties 

 Properties: Ordering and reachability of states (events) 
o States: Characterized by atomic propositions 

o Safety properties: Invariants for all states 

o Liveness properties: Reachability of favorable states 

 Formalization: Temporal logics (TL) 
o Linear Time TL: LTL; for a single path of execution (trace) 

• Temporal operators: X (next), U (until), G (globally), F (future) 

• Use case: Checking observed trace in runtime 

o Branching time TL: CTL; for all execution paths 
• LTL operators and path quantifiers: E (exists), A (forall) 

• Use case: Checking all paths (design-time or during testing) 

 Runtime checking TL properties 
o Not on a model, but on an observed trace 

35 



Setup of TL based monitoring 

Component1 

Instrumentation 

Component2 

Instrumentation 

Component3 

Instrumentation 

TL monitors 

TL monitor 
synthesis 

Observed 
information: 

Trace of 
signatures: 
elements of 

atomic 
propositions 

(states, 
events) 

TL requirements 

36 



Monitoring LTL expressions 

 Preprocessing: Normal form of expressions 
o Only , , X and U operators can be included 

o All expressions can be mapped to this normal form 
• Using de Morgan’s laws for Boolean expressions 

• Mapping LTL operators: F p = true U p,   G P =  (F p) 

 Separating two parts of the expressions: 
o Present-time part: Boolean expressions of atomic 

propositions 

o Next-time part: Expression after an X operator 

o Basic rule:  P U Q = Q  (P  X (P U Q)) 
 

              present       next-time 

37 



Role of the separated expressions 
 Present-time part 

o Can be checked in the actual state (step of the observed trace) 
o I.e., receiving a set of atomic propositions about current state 

and events of the observed system 

 Next-time part 
o Can be checked from the next state (suffix of the trace) 
o I.e., receiving the future part of the observed trace of atomic 

propositions 
 Example:  P U Q = Q  (P  X (P U Q)) 

 

38 

Output: 

• True, if Q is true 

• False, if Q is false 

and P is false 

• Otherwise depends 

on next state 

Atomic propositions 

in the current state 

(represented as 

Boolean inputs) 

Next-time 

expression to be 

evaluated later 



Evaluating a trace of atomic propositions 

 Checking of P U Q = Q  (P  X (P U Q)) 

 Checking a trace: 

39 

P P,R Q 

F 
T 

F 
T 

T 
F 

Blocks represent the 

iterative evaluation of 

next-time expressions 

Sequence of inputs 

(atomic propositions) 

according to the trace 



Construction of the observer automaton 

 Basic idea of monitoring (summary): 
o Constructing an observer:  

Receives atomic propositions in each step of the trace 
o Evaluates present-time part in its actual state:  

Error detected if it is false independent of next-time part 
o Delegates next-time part of the expression to its next state: 

Error to be detected from the next state 

 Iterative construction of the observer: 
o Separate present-time and next-time expressions 
o Assign monitor state (data structure) for the expressions 

• Evaluation of present-time expression 
• If the same expressions occur repeatedly:  

no new monitoring state shall be assigned 

o Continue with the next-time expression for the next state 

40 



Operations with ternary logic 

 Evaluation of expressions 

o The result of evaluation of the next-time expression  
is “unknown” 

o The “unknown” is always resolved at the end  
of the trace 

 Operations with ternary logic: 

41 



Extension: CTL based monitoring 
 Suited to checking sets of execution traces 

o Quantification: “For all traces …”,  “There shall exist a trace that …” 

 E.g., monitors as test oracles check all traces of a test suite 
o Specific events are added: <New trace>, <End of last trace> 

 Monitor synthesis 
o Checking a single trace: Similar to LTL checking 

o Checking a set of traces (test suite): Observer constructed 

 Example: Observer for checking AF (for all traces eventually …) 

42 



Runtime verification based on 
sequence diagrams 



Overview: Runtime verification 

44 

Design-time verification Runtime verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Instrumentation 

CFG monitor 
synthesis 

MSC monitor 
synthesis 

TL monitor 
synthesis 

Local CFG 
monitors 

Instrumented 
component code 

System-level 
monitors 

System-level 
monitors 



MSC based properties 

 Goal: Checking interactions based on intuitive description 
o Synchronization, message passing, local conditions 

 Formalism: Message Sequence Charts variant 
o Lifelines, messages, guard conditions, combined fragments 

 

45 



Setup of MSC based monitoring 

Component1 

Instrumentation 

Component2 

Instrumentation 

Component3 

Instrumentation 

Trace of 
signatures: 
Elements of 
interactions 
(messages,  

events, 
variable and 
clock values) 

46 

MSC monitors 
for components 

MSC monitor 
synthesis 

MSC requirements 



Restrictions and extensions 
 Combined fragments relevant to monitoring: 

o Alternative (alt), optional (opt), parallel (par) 

 Parts of the chart: 
o Condition part (pre-chart): behavior to be matched  

to check the property (otherwise not relevant) 
o Assert part (main chart): behavior to be matched  

to satisfy a property (otherwise violated)  

47 



Monitoring on the basis of an MSC 

 Monitor constructed here: Observing a single lifeline 
(single component) 

48 



Monitoring on the basis of an MSC 

 Observer automata constructed  
on the basis of the MSC lifeline 

49 

• Input events and messages,  

e.g., ?humanDetected 

• Output actions and messages,  

e.g., !speakNearbyAlert 



Role of condition and assert part 

 Not matching behaviour has different  
meaning on the condition and assert parts 

50 

Condition part: 

Not matching 

means property 

is not triggered 

Assert part:  

Not matching 

means property 

is violated 

End state: 

Reaching it  

means property  

is satisfied 



Basic patterns to construct the monitor 
(Negative edges  

are omitted) 

51 

 Alternative: 

 

 

 Parallel: 

 

 

 

 Optional: 

opt

Control

speakAlert

playSound

alt

Control

speakAlert

playSound

par

Control

speakAlert

playSound

 

!playSound !speakAlert

truetrue

 

!playSound !speakAlert

truetrue

!speakAlert !playSound

 

!playSound
!speakAlert

true

true

!playSound



Common Execution Context 

LSC Monitor 

Steps of monitor synthesis 

52 

MSC monitor source code 

Observer automaton 

Message Sequence Chart requirement 



Execution context for the monitors 

 Execution scheduler for monitor instances 

o Responsible for starting / stopping the monitors 

o Management of error notifications and status 

 Activation modes of monitoring 

o Initial 

o Invariant 

o Iterative 

53 



Runtime verification based on 
scenario and context description 



Overview: Runtime verification 

55 

Design-time verification Runtime verification 

System 
requirements 

Model checking 

Formal model  
(e.g., automaton) 

Code 
generation 

Instrumentation 

CFG monitor 
synthesis 

MSC+ monitor 
synthesis 

TL monitor 
synthesis 

Local CFG 
monitors 

Instrumented 
component code 

System-level 
monitors 

System-level 
monitors 



New challenges 

 Monitoring autonomous systems 

o Context-aware behaviour (perceived environment) 

o Adaptation to changing context (decisions, strategy) 

 Specification of requirements: Scenarios 

o Behaviour: Sequences of events / actions  
with condition (prechart) and assertion (main chart) 

o Including references to situations in the context 

 Monitoring context-aware systems 

o Observing the changes in the context of the system 

o Checking the behaviour of the system itself 

56 



Monitoring setup 

57 

Real  environment Simulator 

OR 

Runtime 
traces 

Requirements 

Trace evaluation 
by monitors 

Challenge:  
Checking a runtime trace  
w.r.t. the scenario based 
requirements efficiently 

Observed 
events,  
actions, 
and context 
changes 



sd REQ2

assert

Perception SUT : Robot Actuators
CF2

SUT : Robot L : LivingBeing
tooClose

AE : 

AppearEvent

CF3

SUT : Robot L : LivingBeing
near

loop(0,*)

hornBell

{ Context: CF2 }

{ Context: CF3 }

Formalization of requirements 

 Scenarios of events/actions based on MSC 

 Extensions for referencing contexts 

Context view 

(context fragments) 
Scenario view 

(events and actions as messages) 

Context of the SUT (objects and 
relations) at a given point 

Events coming from 
the sensors 

Actions sent to the 
actuators 

Reference to  
a context 
fragment 

Mandatory 
behavior 

  

58 



Tasks of the monitor 

59 

Observed trace: 
• Events and actions  

of the SUT 
• Concrete configurations 

of the context 

Matching messages:  
Observer automaton 

Matching context fragments:  
Graph matching 

sd REQ2

assert

Perception SUT : Robot Actuators
CF2

SUT : Robot L : LivingBeing
tooClose

AE : 

AppearEvent

CF3

SUT : Robot L : LivingBeing
near

loop(0,*)

hornBell

{ Context: CF2 }

{ Context: CF3 }

sd REQ2

assert

Perception SUT : Robot ActuatorsCF2

SUT : Robot L : LivingBeing
tooClose

AE : 

AppearEvent

CF3

SUT : Robot L : LivingBeing
near

loop(0,*)

hornBell

{ Context: CF2 }

{ Context: CF3 }



0

1

2 3

4

5

t5: ?humanDetected t4: ?animalDetected

t7: truet6: true

t9: !stop

t8: ~(!stop)

t1: true

t2: context(CF1)

t3: ~(?humanDetected) 
     ∧ ~(?animalDetected)

Construction of the observer automaton 

 One observer automaton for each req. scenario 
o Structure of the observer: like for MSC 

o Transitions: events, actions, or context changes 

o State types: not triggered / violated / satisfied 

alt

sd REQ1

assert

SUT : Robot

humanDetected

stop

animalDetected

{ Context: CF1

60 

Context 
matching is 
included in 

checking 



Context matching as graph matching 

 Checking sequences of contexts observed in a trace  

o Graph based representation of the contexts 

o Matching of context graph fragments (requirements) to 
context graph sequences (observed trace) 

61 

CF3

SUT : Robot L : LivingBeing
near

robot1 chair23

table23

human2

dog4

robot1 chair23

table23dog4

robot1 chair23

table23

Context fragment 
(requirement): 

Observed trace: 



Specific problems of graph matching 

 Matching all requirement 
scenarios to a trace 
o Decomposition of the 

context fragments  
to store and match 
common parts only once 

 

 Matching context 
fragments of requirements  
at each step of the trace 
o Concurrent threads of 

monitors (evaluation) are 
started when matching is 
detected 

62 

1 2 3 4

1 2

1 2

3

1 2

4

2

21

1

1 2

3

1 2

4



Handling abstract relations 

 Peculiarities in 
requirement properties 

o Abstract relations  
(e.g., “near”)  
  

o Hierarchy of objects 
(e.g., “desk” is a 
“furniture”) 

 Handling peculiarities in 
the monitor 

o Preprocessing the trace 
to derive abstract 
relations 

o Using compatibility 
relation when 
matching context 
elements 

63 



Implementation experience 



Implementation of TL and LSC monitoring 

 Realized for two different embedded platforms 

o motes with wireless communication modules 

• Industrial case study: Bit synchronization protocol 

o mbed rapid prototyping microcontroller 

• Educational demonstrator: train controller system 

65 



Time overhead 

Complex control functions: 
Less than 12% overhead 

66 

0 s

10 s

20 s

30 s

40 s

50 s

60 s

Code skeleton only

No
instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All
0 s

10 s

20 s

30 s

40 s

50 s

60 s

With communication and
control functions

• Execution time on the mbed platform 

Simple control functions:  
Larger overhead can be expected 

(50.000 state changes) 

(500.000 state changes) 



Code (memory) overhead 

 Code size on the mbed platform 

67 

99%

99%

100%

100%

101%

101%

102%

102%

103%

Code skeleton only With communication and
control functions

No instrumentation

Local monitoring

CTL monitoring

LSC monitoring

All

Moderate overhead: Less than 5% 



Implementation of scenario monitoring 

 Prototype implementation 

o Scenario based requirements: In Eclipse UML2 

o Monitor: Java application 

 Complexity is determined by the graph matching 

o Best case: O(IM), worst case: O(NIMM2) 

• N: number of requirement graph fragments to be matched 

• M: average size of requirement graph fragments 

• I: number of vertices in the context graph (in observed trace) 

o Requirement graphs (context fragments)  
are usually small (thus M is low) 

 

68 



Summary 

Monitor synthesis for 
o Runtime verification in critical systems 
o Test oracles (test evaluation) in testing frameworks 

69 

TL  
monitors 

Temporal logic 
(LTL, TCTL) 

Message Seq. 
Charts (MSC) 

MSC + context 
scenarios 

Scenario  
monitors 

MSC  
monitors 

Monitor 
synthesis 

Monitor  
synthesis 

Monitor  
synthesis 

Formalized requirements 


