
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying specifications

Istvan Majzik, Zoltan Micskei

1

Software and Systems Verification (VIMIMA01)



Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
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Static techniques
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WHAT: Documents, code or other artefact

HOW: Without execution

USING: Manual examination (reviews) OR 
automated analysis (static analyses)



Motivation

Incomplete or inconsistent specification is a major source of failures!

The 60-70% of IT project failures can be traced back to 
insufficient requirement analysis – Meta Group (2003)

“Significantly more defects were found per page at the earlier 
phases of the software life cycle. ” [inspection of 203 documents]
An analysis of defect densities found during software inspections (JSS, DOI: 10.1016/0164-1212(92)90089-3)

78% (149 from 192) of faults were due to incomplete 
specifications from the faults uncovered during testing 
the Voyager and Galileo probes
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Requirement and specification

Requirement

 Vision, request, 
expectation from

o Users

o Stakeholders (authority, 
management, operator…)

 Basis for validation

Specification

 Request transformed for 
designer and developers

 Result of analysis 
(abstraction, structuring)

 Basis for verification
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Types of specifications

Level

 System Requirements

 System Architecture

 Software Requirements

 Software Architecture

 Software Module

 …

Language

 Natural language text

 Semi formal

o UML, SysML models

o Controlled language

 Formal

o B, Z…

o logics
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RECAP: REQUIREMENTS
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Learning outcomes

 Explain the properties and good practices of 
textual requirements (K2) 
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Definition of a requirement
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“A condition or capability needed by a user to solve a 
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or 
possessed by a system, system component, product, or 
service to satisfy an agreement, standard, specification, 
or other formally imposed documents” (IEEE)



Properties of good requirements

 Identifiable + Unique (unique IDs)

 Consistent (no contradiction)

 Unambiguous (one interpretation)

 Verifiable (e.g. testable to decide if met)
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Captured with special statements and vocabulary



Good practices for writing textual requirements

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions
o E.g.: The system shall monitor the room’s temperature 

when turned on.

 Use of auxiliaries (see RFC 2119)
o Positive: SHALL / MUST > SHOULD > MAY
o Negative: MUST NOT > SHOULD NOT
o They specify priorities!
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a short description (stand-alone sentence / paragraph)

of the problem and not the solution

https://www.ietf.org/rfc/rfc2119.txt


The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR)
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR)
o SC can be implemented without 

further information

 Software Architecture (SA)
o Interfaces, information flow of SW 

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard
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The Concept of Traceability
 Traceability is a core 

certification concept
o For safety-critical systems 

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the 

corresponding lines of source 
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code 

to one ore more 
corresponding requirements

o No extra functionality

R1.1

R2.1

R3.2

R1.2 ?

13



The Concept of Traceability
 Traceability is a core 

certification concept
o For safety-critical systems 

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the 

corresponding lines of source 
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code 

to one ore more 
corresponding requirements

o No extra functionality

R1.1

R3.2

?

R2.1
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Anti-patterns

1. The system should be safe

2. The system shall use Fast 
Fourier Transformation to 
calculate signal value.

3. The system shall continue 
normal operation soon 
after a failure.

4. Sensor data shall be logged 
by a timestamp

5. Unauthorized personnel 
could not access the 
system

Too general / high-level

Describes a solution 
(and not only the problem)

Imprecise 
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or 
inconsistent requirements?
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Example requirements: ETCS

 European Rail Traffic Management System (ERTMS)

o European Train Control System (ETCS) + GSM-R
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
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Source: https://en.wikipedia.org/wiki/European_Train_Control_System

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System


Example requirements: ETCS
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Example requirements: AUTOSAR

AUTomotive Open System Architecture
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https://www.autosar.org/specifications/

https://www.autosar.org/specifications/


Example requirements: AUTOSAR
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High-level 
requirement

Traceability

Low-level 
requirement



Requirement management tools
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https://www.youtube.com/watch?v=
qYK7_g4Fy44

https://www.youtube.com/w
atch?v=YC_NrseqWcc

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc


Agile requirements: User stories

"As a <type of user>, I want <some goal>
so that <some reason>."

 (Many different templates)

 Index card format

 “Just-in-time requirements”

 Connected to acceptance tests (BDD)
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REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus
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Learning outcomes

 Recall the different types of review processes (K1)
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Levels of formality in review

• No formal process

• Peer or technical lead reviewing

Informal 
review

• Meeting led by author

• May be quite informalWalkthrough

• Documented process

• Review meeting with experts

• Pre-meeting preparations for reviewers

Technical 
review

• Formal process

• Led by a trained moderatorInspection
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Source: ISTQB CTFL



Activities of a formal review
• Defining review criteria

• Allocating roles
Planning

• Distributing documents

• Explaining objectives
Kick-off

• Reviewing artefacts

• Noting potential defects, questions and comments

Individual 
preparation

• Discussing and logging results

• Noting defects, making decisions
Review meeting

• Fixing defects

• Recording updated status
Rework

• Checking fixes

• Checking on exit criteria
Follow-up
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Source: ISTQB CTFL



Recommendations for reviews

 Thorough review is time consuming

o Usually 5-10 pages / hour

o Can be 1 page / hour

 Increasing the number of pages to review can 
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages
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Data on safety-critical projects
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fs – functional specification des – design ut des – unit test design int – integration test

fs rev – fs review des rev – review ut run – ut execution sys – system test

Source: The Economics of Unit Testing, ESE 11: 5–31, 2006

http://dx.doi.org/10.1007/s10664-006-5964-9


REVIEW CRITERIA

28



Learning outcomes

 List typical review criteria for requirements and 
specifications (K1)

 Perform review of requirements and 
specifications (K3)
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Typical review criteria

• Functions

• ReferencesCompleteness

• Internal and external

• TraceabilityConsistency

• Resources

• Usability, Maintainability

• Risks: budget, technical, environmental

Implement-
ability

• Specific

• Unambiguous

• Measurable
Verifiability
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Criteria from IEEE Std 830-1998

Correct

• Every requirement stated therein is one that the software shall meet

• Consistent with external sources (e.g. standards)

Unambiguous

• Every requirement has only one interpretation

• Formal or semi-formal specification languages can help

Complete

• For every (valid, invalid) input there is specifies behavior

• TBD only possible resolution

Consistent

• No internal contradiction, terminology

Ranked for importance and/or stability

• Necessity of requirements

Verifiable

• Can be checked whether the requirement is met

Modifiable

• Not redundant, structured

Traceable

• Source is clear, effect can be referenced
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Criteria from IEEE Std 29148-2011
Necessary

• If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

• Avoids placing unnecessary constraints on the design

Unambiguous

• It can be interpreted in only one way; is simple and easy to understand

Consistent

• Is free of conflicts with other requirements

Complete

• Needs no further amplification (measurable and sufficiently describes the capability)

Singular

• Includes only one requirement with no use of conjunctions

Feasible

• Technically achievable, fits within system constraints (cost, schedule, regulatory…)

Traceable

• Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

• Has the means to prove that the system satisfies the specified requirement
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Quality criteria for agile requirements
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Source: Heck, P. & Zaidman, A. A systematic literature review on quality criteria for agile requirements specifications. 
Software Qual J (2016). DOI: 10.1007/s11219-016-9336-4

Heck, P. & Zaidman, A

https://doi.org/10.1007/s11219-016-9336-4


EXERCISE Specification review 
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Read and review 
the example 
specification

Note possible 
defects and 
comments



VERIFYING STATE MACHINES
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Learning outcomes

 Perform checking of UML state machines for 
completeness and unambiguousness (K3)
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Recap: UML 2 State Machines
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Hierarchy Concurrent 
regions



Recap: UML 2 State Machines

 Challenges for understanding

o Hierarchical states -> state configuration

o Conflicting transitions -> priorities, non-determinism

o Concurrent regions -> concurrent transitions

o Evaluation of guards

 For more information

o Formal methods course (VIMIMA07)

o UML 2.5 specification (OMG)

o G. Pinter: Model based program synthesis and runtime 
error detection for dependable embedded systems, 
PhD dissertation, BME, 2007
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http://inf.mit.bme.hu/en/edu/courses/formal-methods/materials
http://www.omg.org/spec/UML/
https://repozitorium.omikk.bme.hu/handle/10890/636


Typical criteria for state machines

 Completeness:

o For each event 

o in each state configuration

o the behavior is specified (transition or self-transition)

 Unambiguous:

o for a given event

o in a given state configuration

o there is only one enabled transition
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EXERCISE State machine review
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1. Review the 
state machine

2. Check 
completeness



Detailed criteria for UML state machines

 Completeness

 Unambiguousness

 Initial pseudo-states

 Hiding transitions

 Reachability

 Timeout
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Source: Zs. Pap.  Checking Safety Criteria under UML. PhD dissertation, BME, 2006.

https://repozitorium.omikk.bme.hu/handle/10890/595


UML State Machines: Completeness

In every state configuration, for every event, for all 
possible evaluation of guards there is a defined 
transition.
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UML State Machines: Unambiguousness I.

For all state configuration and for all event, for all 
possible evaluations of guards, for a given hierarchy 
level there can be only one enabled transition any 
time.
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UML State Machines: Unambiguousness II.

In concurrent regions for a given event there should 
be only in one of the regions an action be defined.
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e1/a1

e1

e1
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UML State Machines: Initial pseudo-state

In every region (including the top-level region) there 
should be an initial pseudo-state.
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UML State Machines: Hiding transitions

Transitions should not be hided due to

 hierarchies,

 other transitions without triggers
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UML State Machines: Reachability

Every state should be reachable either directly or 
indirectly.
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Direct

s1
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s2 [c]

[!c]

s3

Error

e



For embedded controllers: timeout

For every state configuration there should be a 
transition triggered by the TimeOut event
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s1

e1
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states:

TimeOut

s2

e2e1
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EXERCISE State machine review II.
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1. Check 
completeness

2. Check 
unambiguousness



Checking state machines (tool support)
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Yakindu Statechart Tools 

https://www.youtube.com/watch?v=
uO6MASCBPrg

https://www.youtube.com/watch?v=
05lTlymLugM

IAR visualSTATE

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM


Summary
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EXTRA MATERIAL: CRITERIA FOR 
REACTIVE SYSTEMS

Source: N. G. Leveson. “Safeware: System Safety and Computers”. 
Addison Wesley, 1995 
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Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

• Initial state is safe

• In case of missing input 
events there is a timeout 
and not external events



Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

• Fore every input in every 
state there is a specified 
behavior

• Reactions are unambiguous 
(deterministic)

• Input validation (value, 
timeliness)

• Handing of invalid inputs is 
specified

• Rate of interrupts is limited



Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

• Credibility checks are 
specified

• No unused outputs
• Processing rate of 

environment is respected



Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

• Effect of outputs is checked 
through the inputs

• Control loop is stable



Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

• Every state is reachable statically
• Transitions are reversible (there is 

a way back)
• More than one transitions from 

dangerous to safe states
• Transitions from dangerous to safe 

states are confirmed 



Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface
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Operator

Controller
Controlled 

systems

Output events going to 
operator:
• Sequence is defined (with 

priority)
• Update rate is defined
• Rate is limited


