
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying specifications

Istvan Majzik, Zoltan Micskei

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Static techniques

3

WHAT: Documents, code or other artefact

HOW: Without execution

USING: Manual examination (reviews) OR
automated analysis (static analyses)

Motivation

Incomplete or inconsistent specification is a major source of failures!

The 60-70% of IT project failures can be traced back to
insufficient requirement analysis – Meta Group (2003)

“Significantly more defects were found per page at the earlier
phases of the software life cycle. ” [inspection of 203 documents]
An analysis of defect densities found during software inspections (JSS, DOI: 10.1016/0164-1212(92)90089-3)

78% (149 from 192) of faults were due to incomplete
specifications from the faults uncovered during testing
the Voyager and Galileo probes

4

Requirement and specification

Requirement

 Vision, request,
expectation from

o Users

o Stakeholders (authority,
management, operator…)

 Basis for validation

Specification

 Request transformed for
designer and developers

 Result of analysis
(abstraction, structuring)

 Basis for verification

5

Types of specifications

Level

 System Requirements

 System Architecture

 Software Requirements

 Software Architecture

 Software Module

 …

Language

 Natural language text

 Semi formal

o UML, SysML models

o Controlled language

 Formal

o B, Z…

o logics

6

RECAP: REQUIREMENTS

7

Learning outcomes

 Explain the properties and good practices of
textual requirements (K2)

8

Definition of a requirement

9

“A condition or capability needed by a user to solve a
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or
possessed by a system, system component, product, or
service to satisfy an agreement, standard, specification,
or other formally imposed documents” (IEEE)

Properties of good requirements

 Identifiable + Unique (unique IDs)

 Consistent (no contradiction)

 Unambiguous (one interpretation)

 Verifiable (e.g. testable to decide if met)

10

Captured with special statements and vocabulary

Good practices for writing textual requirements

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions
o E.g.: The system shall monitor the room’s temperature

when turned on.

 Use of auxiliaries (see RFC 2119)
o Positive: SHALL / MUST > SHOULD > MAY
o Negative: MUST NOT > SHOULD NOT
o They specify priorities!

11

a short description (stand-alone sentence / paragraph)

of the problem and not the solution

https://www.ietf.org/rfc/rfc2119.txt

The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR)
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR)
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard

12

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R2.1

R3.2

R1.2 ?

13

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R3.2

?

R2.1

14

Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system

Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

15

Example requirements: ETCS

 European Rail Traffic Management System (ERTMS)

o European Train Control System (ETCS) + GSM-R
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

16

Source: https://en.wikipedia.org/wiki/European_Train_Control_System

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System

Example requirements: ETCS

17

Example requirements: AUTOSAR

AUTomotive Open System Architecture

18

https://www.autosar.org/specifications/

https://www.autosar.org/specifications/

Example requirements: AUTOSAR

19

High-level
requirement

Traceability

Low-level
requirement

Requirement management tools

20

https://www.youtube.com/watch?v=
qYK7_g4Fy44

https://www.youtube.com/w
atch?v=YC_NrseqWcc

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc

Agile requirements: User stories

"As a <type of user>, I want <some goal>
so that <some reason>."

 (Many different templates)

 Index card format

 “Just-in-time requirements”

 Connected to acceptance tests (BDD)

21

REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus

22

Learning outcomes

 Recall the different types of review processes (K1)

23

Levels of formality in review

• No formal process

• Peer or technical lead reviewing

Informal
review

• Meeting led by author

• May be quite informalWalkthrough

• Documented process

• Review meeting with experts

• Pre-meeting preparations for reviewers

Technical
review

• Formal process

• Led by a trained moderatorInspection

24

Source: ISTQB CTFL

Activities of a formal review
• Defining review criteria

• Allocating roles
Planning

• Distributing documents

• Explaining objectives
Kick-off

• Reviewing artefacts

• Noting potential defects, questions and comments

Individual
preparation

• Discussing and logging results

• Noting defects, making decisions
Review meeting

• Fixing defects

• Recording updated status
Rework

• Checking fixes

• Checking on exit criteria
Follow-up

25

Source: ISTQB CTFL

Recommendations for reviews

 Thorough review is time consuming

o Usually 5-10 pages / hour

o Can be 1 page / hour

 Increasing the number of pages to review can
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages

26

Data on safety-critical projects

27

fs – functional specification des – design ut des – unit test design int – integration test

fs rev – fs review des rev – review ut run – ut execution sys – system test

Source: The Economics of Unit Testing, ESE 11: 5–31, 2006

http://dx.doi.org/10.1007/s10664-006-5964-9

REVIEW CRITERIA

28

Learning outcomes

 List typical review criteria for requirements and
specifications (K1)

 Perform review of requirements and
specifications (K3)

29

Typical review criteria

• Functions

• ReferencesCompleteness

• Internal and external

• TraceabilityConsistency

• Resources

• Usability, Maintainability

• Risks: budget, technical, environmental

Implement-
ability

• Specific

• Unambiguous

• Measurable
Verifiability

30

Criteria from IEEE Std 830-1998

Correct

• Every requirement stated therein is one that the software shall meet

• Consistent with external sources (e.g. standards)

Unambiguous

• Every requirement has only one interpretation

• Formal or semi-formal specification languages can help

Complete

• For every (valid, invalid) input there is specifies behavior

• TBD only possible resolution

Consistent

• No internal contradiction, terminology

Ranked for importance and/or stability

• Necessity of requirements

Verifiable

• Can be checked whether the requirement is met

Modifiable

• Not redundant, structured

Traceable

• Source is clear, effect can be referenced

31

Criteria from IEEE Std 29148-2011
Necessary

• If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

• Avoids placing unnecessary constraints on the design

Unambiguous

• It can be interpreted in only one way; is simple and easy to understand

Consistent

• Is free of conflicts with other requirements

Complete

• Needs no further amplification (measurable and sufficiently describes the capability)

Singular

• Includes only one requirement with no use of conjunctions

Feasible

• Technically achievable, fits within system constraints (cost, schedule, regulatory…)

Traceable

• Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

• Has the means to prove that the system satisfies the specified requirement

32

Quality criteria for agile requirements

33

Source: Heck, P. & Zaidman, A. A systematic literature review on quality criteria for agile requirements specifications.
Software Qual J (2016). DOI: 10.1007/s11219-016-9336-4

Heck, P. & Zaidman, A

https://doi.org/10.1007/s11219-016-9336-4

EXERCISE Specification review

35

Read and review
the example
specification

Note possible
defects and
comments

VERIFYING STATE MACHINES

36

Learning outcomes

 Perform checking of UML state machines for
completeness and unambiguousness (K3)

37

Recap: UML 2 State Machines

38

Hierarchy Concurrent
regions

Recap: UML 2 State Machines

 Challenges for understanding

o Hierarchical states -> state configuration

o Conflicting transitions -> priorities, non-determinism

o Concurrent regions -> concurrent transitions

o Evaluation of guards

 For more information

o Formal methods course (VIMIMA07)

o UML 2.5 specification (OMG)

o G. Pinter: Model based program synthesis and runtime
error detection for dependable embedded systems,
PhD dissertation, BME, 2007

39

http://inf.mit.bme.hu/en/edu/courses/formal-methods/materials
http://www.omg.org/spec/UML/
https://repozitorium.omikk.bme.hu/handle/10890/636

Typical criteria for state machines

 Completeness:

o For each event

o in each state configuration

o the behavior is specified (transition or self-transition)

 Unambiguous:

o for a given event

o in a given state configuration

o there is only one enabled transition

40

EXERCISE State machine review

41

1. Review the
state machine

2. Check
completeness

Detailed criteria for UML state machines

 Completeness

 Unambiguousness

 Initial pseudo-states

 Hiding transitions

 Reachability

 Timeout

42

Source: Zs. Pap. Checking Safety Criteria under UML. PhD dissertation, BME, 2006.

https://repozitorium.omikk.bme.hu/handle/10890/595

UML State Machines: Completeness

In every state configuration, for every event, for all
possible evaluation of guards there is a defined
transition.

43

s1

e1

e2

e3

s1

e1

e2

/e3

s1

e1

e3

s1

e1

e3

e2 e2

[c]

[!c]

Simple

state

Internal

event
Self

transition
Guarded choice

UML State Machines: Unambiguousness I.

For all state configuration and for all event, for all
possible evaluations of guards, for a given hierarchy
level there can be only one enabled transition any
time.

44

s1

e1

e2 [!a]

Hierarchy

e2

s2

s1

e2

e2

Error

s1

e1

e2 [!c&!b]

e2

[c&b]

[!c&b]

Guarded choice

[c&!b]

e2 [a]

UML State Machines: Unambiguousness II.

In concurrent regions for a given event there should
be only in one of the regions an action be defined.

45

e1/a1

e1

e1

e1/a2

s1 s2 s3

s4 s5 s6

a1;a2

or

a2;a1

UML State Machines: Initial pseudo-state

In every region (including the top-level region) there
should be an initial pseudo-state.

46

[c]

[!c]

e
e

e

e
e

s1 s2
s3 s4

s5

s6

UML State Machines: Hiding transitions

Transitions should not be hided due to

 hierarchies,

 other transitions without triggers

47

s1

s2

s3

e

s1
s2

s3s4
e

e

e

UML State Machines: Reachability

Every state should be reachable either directly or
indirectly.

48

s1

Direct

s1

Indirect: through

hierarchy

s2 [c]

[!c]

s3

Error

e

For embedded controllers: timeout

For every state configuration there should be a
transition triggered by the TimeOut event

49

s1

e1

In compound

states:

TimeOut

s2

e2e1

s1

TimeOut

e2

TimeOut

s1

e1

e2

[c]

[!c]

Guarded choice

TimeOut

EXERCISE State machine review II.

50

1. Check
completeness

2. Check
unambiguousness

Checking state machines (tool support)

51

Yakindu Statechart Tools

https://www.youtube.com/watch?v=
uO6MASCBPrg

https://www.youtube.com/watch?v=
05lTlymLugM

IAR visualSTATE

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM

Summary

52

EXTRA MATERIAL: CRITERIA FOR
REACTIVE SYSTEMS

Source: N. G. Leveson. “Safeware: System Safety and Computers”.
Addison Wesley, 1995

53

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

54

Operator

Controller
Controlled

systems

• Initial state is safe

• In case of missing input
events there is a timeout
and not external events

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

55

Operator

Controller
Controlled

systems

• Fore every input in every
state there is a specified
behavior

• Reactions are unambiguous
(deterministic)

• Input validation (value,
timeliness)

• Handing of invalid inputs is
specified

• Rate of interrupts is limited

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

56

Operator

Controller
Controlled

systems

• Credibility checks are
specified

• No unused outputs
• Processing rate of

environment is respected

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

57

Operator

Controller
Controlled

systems

• Effect of outputs is checked
through the inputs

• Control loop is stable

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

58

Operator

Controller
Controlled

systems

• Every state is reachable statically
• Transitions are reversible (there is

a way back)
• More than one transitions from

dangerous to safe states
• Transitions from dangerous to safe

states are confirmed

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

59

Operator

Controller
Controlled

systems

Output events going to
operator:
• Sequence is defined (with

priority)
• Update rate is defined
• Rate is limited

