
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying specifications

Istvan Majzik, Zoltan Micskei

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Static techniques

3

WHAT: Documents, code or other artefact

HOW: Without execution

USING: Manual examination (reviews) OR
automated analysis (static analyses)

Motivation

Incomplete or inconsistent specification is a major source of failures!

The 60-70% of IT project failures can be traced back to
insufficient requirement analysis – Meta Group (2003)

“Significantly more defects were found per page at the earlier
phases of the software life cycle. ” [inspection of 203 documents]
An analysis of defect densities found during software inspections (JSS, DOI: 10.1016/0164-1212(92)90089-3)

78% (149 from 192) of faults were due to incomplete
specifications from the faults uncovered during testing
the Voyager and Galileo probes

4

Requirement and specification

Requirement

 Vision, request,
expectation from

o Users

o Stakeholders (authority,
management, operator…)

 Basis for validation

Specification

 Request transformed for
designer and developers

 Result of analysis
(abstraction, structuring)

 Basis for verification

5

Types of specifications

Level

 System Requirements

 System Architecture

 Software Requirements

 Software Architecture

 Software Module

 …

Language

 Natural language text

 Semi formal

o UML, SysML models

o Controlled language

 Formal

o B, Z…

o logics

6

RECAP: REQUIREMENTS

7

Learning outcomes

 Explain the properties and good practices of
textual requirements (K2)

8

Definition of a requirement

9

“A condition or capability needed by a user to solve a
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or
possessed by a system, system component, product, or
service to satisfy an agreement, standard, specification,
or other formally imposed documents” (IEEE)

Properties of good requirements

 Identifiable + Unique (unique IDs)

 Consistent (no contradiction)

 Unambiguous (one interpretation)

 Verifiable (e.g. testable to decide if met)

10

Captured with special statements and vocabulary

Good practices for writing textual requirements

 English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions
o E.g.: The system shall monitor the room’s temperature

when turned on.

 Use of auxiliaries (see RFC 2119)
o Positive: SHALL / MUST > SHOULD > MAY
o Negative: MUST NOT > SHOULD NOT
o They specify priorities!

11

a short description (stand-alone sentence / paragraph)

of the problem and not the solution

https://www.ietf.org/rfc/rfc2119.txt

The Certification Perspective: High-level vs Low-Level

 High Level Requirements (HLR)
o customer-oriented

o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR)
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)

 Executable Object Code (EOC)

HLR

LLRSA

SC

OC

DR

DR

Concepts from DO-178C standard

12

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R2.1

R3.2

R1.2 ?

13

The Concept of Traceability
 Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

 Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

 Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R3.2

?

R2.1

14

Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system

Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

15

Example requirements: ETCS

 European Rail Traffic Management System (ERTMS)

o European Train Control System (ETCS) + GSM-R
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

16

Source: https://en.wikipedia.org/wiki/European_Train_Control_System

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System

Example requirements: ETCS

17

Example requirements: AUTOSAR

AUTomotive Open System Architecture

18

https://www.autosar.org/specifications/

https://www.autosar.org/specifications/

Example requirements: AUTOSAR

19

High-level
requirement

Traceability

Low-level
requirement

Requirement management tools

20

https://www.youtube.com/watch?v=
qYK7_g4Fy44

https://www.youtube.com/w
atch?v=YC_NrseqWcc

https://www.youtube.com/watch?v=qYK7_g4Fy44
https://www.youtube.com/watch?v=YC_NrseqWcc

Agile requirements: User stories

"As a <type of user>, I want <some goal>
so that <some reason>."

 (Many different templates)

 Index card format

 “Just-in-time requirements”

 Connected to acceptance tests (BDD)

21

REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus

22

Learning outcomes

 Recall the different types of review processes (K1)

23

Levels of formality in review

• No formal process

• Peer or technical lead reviewing

Informal
review

• Meeting led by author

• May be quite informalWalkthrough

• Documented process

• Review meeting with experts

• Pre-meeting preparations for reviewers

Technical
review

• Formal process

• Led by a trained moderatorInspection

24

Source: ISTQB CTFL

Activities of a formal review
• Defining review criteria

• Allocating roles
Planning

• Distributing documents

• Explaining objectives
Kick-off

• Reviewing artefacts

• Noting potential defects, questions and comments

Individual
preparation

• Discussing and logging results

• Noting defects, making decisions
Review meeting

• Fixing defects

• Recording updated status
Rework

• Checking fixes

• Checking on exit criteria
Follow-up

25

Source: ISTQB CTFL

Recommendations for reviews

 Thorough review is time consuming

o Usually 5-10 pages / hour

o Can be 1 page / hour

 Increasing the number of pages to review can
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages

26

Data on safety-critical projects

27

fs – functional specification des – design ut des – unit test design int – integration test

fs rev – fs review des rev – review ut run – ut execution sys – system test

Source: The Economics of Unit Testing, ESE 11: 5–31, 2006

http://dx.doi.org/10.1007/s10664-006-5964-9

REVIEW CRITERIA

28

Learning outcomes

 List typical review criteria for requirements and
specifications (K1)

 Perform review of requirements and
specifications (K3)

29

Typical review criteria

• Functions

• ReferencesCompleteness

• Internal and external

• TraceabilityConsistency

• Resources

• Usability, Maintainability

• Risks: budget, technical, environmental

Implement-
ability

• Specific

• Unambiguous

• Measurable
Verifiability

30

Criteria from IEEE Std 830-1998

Correct

• Every requirement stated therein is one that the software shall meet

• Consistent with external sources (e.g. standards)

Unambiguous

• Every requirement has only one interpretation

• Formal or semi-formal specification languages can help

Complete

• For every (valid, invalid) input there is specifies behavior

• TBD only possible resolution

Consistent

• No internal contradiction, terminology

Ranked for importance and/or stability

• Necessity of requirements

Verifiable

• Can be checked whether the requirement is met

Modifiable

• Not redundant, structured

Traceable

• Source is clear, effect can be referenced

31

Criteria from IEEE Std 29148-2011
Necessary

• If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

• Avoids placing unnecessary constraints on the design

Unambiguous

• It can be interpreted in only one way; is simple and easy to understand

Consistent

• Is free of conflicts with other requirements

Complete

• Needs no further amplification (measurable and sufficiently describes the capability)

Singular

• Includes only one requirement with no use of conjunctions

Feasible

• Technically achievable, fits within system constraints (cost, schedule, regulatory…)

Traceable

• Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

• Has the means to prove that the system satisfies the specified requirement

32

Quality criteria for agile requirements

33

Source: Heck, P. & Zaidman, A. A systematic literature review on quality criteria for agile requirements specifications.
Software Qual J (2016). DOI: 10.1007/s11219-016-9336-4

Heck, P. & Zaidman, A

https://doi.org/10.1007/s11219-016-9336-4

EXERCISE Specification review

35

Read and review
the example
specification

Note possible
defects and
comments

VERIFYING STATE MACHINES

36

Learning outcomes

 Perform checking of UML state machines for
completeness and unambiguousness (K3)

37

Recap: UML 2 State Machines

38

Hierarchy Concurrent
regions

Recap: UML 2 State Machines

 Challenges for understanding

o Hierarchical states -> state configuration

o Conflicting transitions -> priorities, non-determinism

o Concurrent regions -> concurrent transitions

o Evaluation of guards

 For more information

o Formal methods course (VIMIMA07)

o UML 2.5 specification (OMG)

o G. Pinter: Model based program synthesis and runtime
error detection for dependable embedded systems,
PhD dissertation, BME, 2007

39

http://inf.mit.bme.hu/en/edu/courses/formal-methods/materials
http://www.omg.org/spec/UML/
https://repozitorium.omikk.bme.hu/handle/10890/636

Typical criteria for state machines

 Completeness:

o For each event

o in each state configuration

o the behavior is specified (transition or self-transition)

 Unambiguous:

o for a given event

o in a given state configuration

o there is only one enabled transition

40

EXERCISE State machine review

41

1. Review the
state machine

2. Check
completeness

Detailed criteria for UML state machines

 Completeness

 Unambiguousness

 Initial pseudo-states

 Hiding transitions

 Reachability

 Timeout

42

Source: Zs. Pap. Checking Safety Criteria under UML. PhD dissertation, BME, 2006.

https://repozitorium.omikk.bme.hu/handle/10890/595

UML State Machines: Completeness

In every state configuration, for every event, for all
possible evaluation of guards there is a defined
transition.

43

s1

e1

e2

e3

s1

e1

e2

/e3

s1

e1

e3

s1

e1

e3

e2 e2

[c]

[!c]

Simple

state

Internal

event
Self

transition
Guarded choice

UML State Machines: Unambiguousness I.

For all state configuration and for all event, for all
possible evaluations of guards, for a given hierarchy
level there can be only one enabled transition any
time.

44

s1

e1

e2 [!a]

Hierarchy

e2

s2

s1

e2

e2

Error

s1

e1

e2 [!c&!b]

e2

[c&b]

[!c&b]

Guarded choice

[c&!b]

e2 [a]

UML State Machines: Unambiguousness II.

In concurrent regions for a given event there should
be only in one of the regions an action be defined.

45

e1/a1

e1

e1

e1/a2

s1 s2 s3

s4 s5 s6

a1;a2

or

a2;a1

UML State Machines: Initial pseudo-state

In every region (including the top-level region) there
should be an initial pseudo-state.

46

[c]

[!c]

e
e

e

e
e

s1 s2
s3 s4

s5

s6

UML State Machines: Hiding transitions

Transitions should not be hided due to

 hierarchies,

 other transitions without triggers

47

s1

s2

s3

e

s1
s2

s3s4
e

e

e

UML State Machines: Reachability

Every state should be reachable either directly or
indirectly.

48

s1

Direct

s1

Indirect: through

hierarchy

s2 [c]

[!c]

s3

Error

e

For embedded controllers: timeout

For every state configuration there should be a
transition triggered by the TimeOut event

49

s1

e1

In compound

states:

TimeOut

s2

e2e1

s1

TimeOut

e2

TimeOut

s1

e1

e2

[c]

[!c]

Guarded choice

TimeOut

EXERCISE State machine review II.

50

1. Check
completeness

2. Check
unambiguousness

Checking state machines (tool support)

51

Yakindu Statechart Tools

https://www.youtube.com/watch?v=
uO6MASCBPrg

https://www.youtube.com/watch?v=
05lTlymLugM

IAR visualSTATE

https://www.youtube.com/watch?v=uO6MASCBPrg
https://www.youtube.com/watch?v=05lTlymLugM

Summary

52

EXTRA MATERIAL: CRITERIA FOR
REACTIVE SYSTEMS

Source: N. G. Leveson. “Safeware: System Safety and Computers”.
Addison Wesley, 1995

53

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

54

Operator

Controller
Controlled

systems

• Initial state is safe

• In case of missing input
events there is a timeout
and not external events

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

55

Operator

Controller
Controlled

systems

• Fore every input in every
state there is a specified
behavior

• Reactions are unambiguous
(deterministic)

• Input validation (value,
timeliness)

• Handing of invalid inputs is
specified

• Rate of interrupts is limited

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

56

Operator

Controller
Controlled

systems

• Credibility checks are
specified

• No unused outputs
• Processing rate of

environment is respected

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

57

Operator

Controller
Controlled

systems

• Effect of outputs is checked
through the inputs

• Control loop is stable

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

58

Operator

Controller
Controlled

systems

• Every state is reachable statically
• Transitions are reversible (there is

a way back)
• More than one transitions from

dangerous to safe states
• Transitions from dangerous to safe

states are confirmed

Review criteria for reactive systems

 State definition

 Inputs (events)

 Outputs

 Outputs and triggers

 Transitions

 Human-machine interface

59

Operator

Controller
Controlled

systems

Output events going to
operator:
• Sequence is defined (with

priority)
• Update rate is defined
• Rate is limited

