Software and Systems Verification (VIMIMAO1)

Verifying source code

Akos Hajdu, Istvan Majzik,
Zoltan Micskei

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics
Department of Measurement and Information Systems




Main topics of the course

= Qverview (1)
o V&V techniques, Critical systems
= Static techniques (2)
o Verifying specifications
o Verifying source code
= Dynamic techniques: Testing (7)
o Developer testing, Test design techniques
o Testing process and levels, Test generation, Automation
= System-level verification (3)

o Verifying architecture, Dependability analysis
o Runtime verification




Motivation — bad example

1 public class Classl

2 {

3  public decimal Calculate(decimal amount, int type, int years) {

4 decimal result = 0;

5 decimal disc = (years > 5) ? (decimal)5/100 : (decimal)years/100;

6 if (type == 1) result = amount;

7 else if (type == 2)

8 {

9 result = (amount - (0.1m * amount)) - disc * (amount - (©0.1m * amount));
10 }
11 else if (type == 3) { result = (0.7m * amount) - disc * (0.7m * amount); }
12 else if (type == 4) {
13 result = (amount - (0.5m * amount)) - disc * (amount - (©.5m * amount));
14 }
15 return result;
16 }
17 }

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code



http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

Properties of a good source code

= Good quality Coding guidelines

o Readable, reusable, maintainable

= Free of bugs Static analysis, testing

= Syntactically correct

= Adheres to the specification




CODING GUIDELINES




Learning outcomes

" List some domain, platform and organization
specific coding guidelines and some of their
typical categories and elements (K1)




Coding guidelines — introduction

= Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture
= Main categories

o Industry/domain specific

* Automotive, railway, ...

o Platform specific
* C, C++, C#, Java, ...

o Organization specific
* Google, CERN, ...




Industry specific: MISRA C

= Motor Industry Software Reliability Association
" Focus on safety, security, reliability, portability
= 143 rules + 16 directives

" Tools: SonarQube, Coverity, ...

= Examples
o RHS of && and | | operators shall not contain side effects
o Test against zero should be made explicit for non-Booleans

o Body of if, else, while, do, for shall always be
enclosed in braces




Platform specific: .NET

* Framework Design Guidelines (C#)

o Focus on framework and AP| development

= Categories

o Naming, type design, member design, extensibility,
exceptions, usage, common design patterns

4

o, Do”, ,Consider”, ,, Avoid”, ,Do not”

= Tool: StyleCop

Framework
Design Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

. .u..w-
Development
AT Series

rzyszto alina
ra rams

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx



https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Platform specific: .NET

= Examples

o DO NOT provide abstractions unless they are tested by
developing several concrete implementations and APIs
consuming the abstractions.

o CONSIDER making base classes abstract even if they
don’t contain any abstract members. This clearly
communicates to the users that the class is designed
solely to be inherited from.

o DO use the same name for constructor parameters and a
property if the constructor parameters are used to simply
set the property.

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

11


https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Organization specific: Google

= Java Style Guide
= Focus on ,hard-and-fast” rules, avoids advices

= Categories
o Source file basics
o Source file structure
o Formatting
o Naming
o Programming practices
o Javadoc

https://google.github.io/styleguide/javaguide.html

12


https://google.github.io/styleguide/javaguide.html

Organization specific: Google

= Examples

o Never make your code less readable simply out of fear that
some programs might not handle non-ASCIl characters
properly. If that should happen, those programs are broken
and they must be fixed.

o In Google Style special prefixes or suffixes, like those seen
in the examples name_, mName, s _name and kName, are
not used.

o When a reference to a static class member must be
qualified, it is qualified with that class's name, not with a
reference or expression of that class'’s type.

o Local variable names are written in 1lowerCamelCase.
https://google.github.io/styleguide/javaguide.html

13



https://google.github.io/styleguide/javaguide.html

Organization specific: CERN

= ROOT: data analysis tool/framework
for high energy physics (C++)

= Categories
> Naming ROOT
O Exceptlons Data Analysis Framework
o Namespaces
o Comments
o Source layout

" Tool: Artistic Style (astyle)

https://root.cern/coding-conventions



https://root.cern/coding-conventions

Organization specific: CERN

= Examples

o Avoid the use of raw C types like int, long, float,
double when using data that might be written to disk.

o For naming conventions we follow the Taligent rules.
Types begin with a capital letter (Boolean), base
classes begin with ,T” (TContainerView) members
begin with ,f” (fViewlList), ...

o Each header file has the following layout: Module
identification line, Author line, Copyright notice,
Multiple inclusion protection macro, Headers file
includes, Forward declarations, Actual class definition.

https://root.cern/coding-conventions



https://root.cern/coding-conventions

Coding guidelines — summary

" How to enforce
o Base functionality in many IDEs
o External tools
o Tool integrated in the workflow

= Important
o Always use a common guideline
o As a minimum, common IDE formatter settings

* Can usually be committed to version control as a settings file




Coding guidelines — summary

= \WWhich one is the best? Which one to select?

" |n many cases it is already determined
o By the industry, platform or organization
o Consistency with the current code base

= Sometimes it can be determined
o There may be no single best one

* They can be even inconsistent with each other
* Combination is possible

o Do not reinvent the wheel

* Makes it harder for new developers




CODE REVIEW




Learning outcomes

= Apply manual code review on a small unit of code
(~50-100 LOC) using common review criteria (K3)




Manual code review

= Performed by humans
o Typically other team members
o Usually based on some structured checklist
o Similar to review techniques for specification (prev. lecture)

= Different level of formalization

Code inspection ” “Modern” code review




Advantages of code reviews

= Code inspection
o Effective for finding bugs

o Resource-intensive

= “Modern” code review
o More informal, good tool support
o Widespread in industry (MS, Google, FB, ...)

o Further benefits
* Code understanding
* Team awareness

e Change management

Expectations, outcomes, and challenges of modern code review, ICSE 2013



http://dl.acm.org/citation.cfm?id=2486882

Tool support

= Supporting code review
o Discussion, change requests
o Integrated into the development and Cl workflow

= GitHub: pull request reviews (= Lab)
9 ° octocat requested changes 28 days ago View changes Unifled | S

Submit your 3 pending comments

Review summary

This is looking ! I've left a few comments that should be addressed before this gets merged. &
This is looking ! I've left a few comments that should
be addressed before this gets merged. &

data/reusables/open-source.yml

y
| ) Comment
. R Submit general feedback without explicit approval.
+open-source-handbook-repositories: |
+ F informati ifically how t te and D Approve
er more information on open source, specifically how to create and grow an opei Submit feedback and approve merging these changes.
© Reqguest changes
@ octocat 28 days ago Submit feedback that must be addressed before merging.
“provide best practices relating to creating repositories for your open source project.” |

https://help.github.com/articles/about-pull-request-reviews/



https://help.github.com/articles/about-pull-request-reviews/

STATIC ANALYSIS




Static analysis — example

OLoOoONOOUVT P WDNR

public class Sample {
public static void main(String[] args) {

String str = null;

try {
Scanner scanner = new Scanner("file.txt");

str = scanner.nextLine(); Scanner not closed
scanner.close(); in case of exception
} catch (Exception e) { e

System.out.println("Error opening file!");
}

str.replace(" ", ""); M
System.out.println(str); e e




Learning outcomes

= List some bugs that can be detected with static
analysis (K1)

= Use a static analysis tool to find bugs and mistakes
in @ non-trivial code base (~100-1000 LOC) (K3)




Static analysis — introduction

= Definition: analysis of software without execution
o Usually automated tools
o (Human analysis)

= Pattern-based

o Basic static properties with error patterns (mostly)

e E.g.,ignored return value, unused variable
o FindBugs, SonarQube, Coverity
" |nterpretation-based

o Dynamic properties
* E.g., null pointer dereference, index out of bounds

o Infer, PolySpace




FindBugs (Java)
= Large and extensible set of rules ;&\

= Command line, GUI, Eclipse plug-in

= Examples
o Bad practice: random object created and used only once
o Correctness: bitwise add of signed byte value

o Vulnerability: expose inner static state by storing mutable object
into a static field

o Multithreading: synchronization on Boolean could lead to
deadlock

o Performance: invoke toString() on a string
o Security: hardcoded constant database password

o Dodgy: useless assignment in return statement
http://findbugs.sourceforge.net/



http://findbugs.sourceforge.net/

FindBugs (Java)

=+ FindBugs:

File Edit Hawvigation Designation Help

Package | Priority | Category | Bug Kind | Bug Pattern | (—)I}'—““-ja""a in edu.umd.cs.findbugs.util
" a7 assert true;
o= ] edu.umd.cs.findbugs.canfia (3 - ag y
o= 3 edu.umd.cs findbugs filter (13 99 }
o ] eduumd.cs findbugs.util (13 §§ lono static final Fattern tag = Pattern.compile (™ =%\s%<(WWvu+)""
¢ [ Medium (1) 101 public static 3tring getXMLType(Inputitrean in) throws I0
9 E Bad practice (13 10z if [l'in.markSupported())
¢ |j Strearn not closed on all paths (1) igi throw new IllegalidrgumentException(”Input stream
2 I Method may fail to close Stn.eaml 1 — §§ 105 in.mark (5000] ;
D edu.umd.cs.ﬂndbugs.utll.um.getKML'I_ 106 BuffercdReader r = null:
o= ] edu.umd.cs.findbuns visitclass (1) T gg 107 try §
o ] edu.urmd.cs findbugs workflow (2) | |i] 1o8 ¥ = new BufferedReader (Util.getReader (in), 20007 :
o [T jawa.util (2) ~|i 1o
1] IIl | o ] String s; ||
it 1 111 int count = 0:
unclassified |"‘§§ 112 while [count < 4] § =
A 113 s = r.readLine(): -
114 if (2 == mull)
115 break;
: 11la Matcher m = tag.matcheri(s): -
i [ [ [+
|v ‘ 5: | | Find | ‘ Find Next | | Find Previous
L R Lt R T R L T Rt IR LR LU LR RN
edu.umd.cs findbugs.util Util get<MLTypednputStrearm) may fail to close stream sl
At Uil java:line 108]
In method edu.umd.cs findbugs. util Uil get<MLTypednputStream) [Lines 102 - 123] 5
mleed to close java.io Reader L.
-

Tt AR

Method may fail to close stream

The methad creates an Q0 stream ohject, does not assign itto any fields, pass it to other methods that might close it, ar return it, and does not appearto
close the stream an all paths out ofthe method. This may resultin a file descriptar leak. tis generally & good idea to use a £inally hlock to ensure that
streams are closed.

- UNIVERSITY OF
|‘ http:/findbugs.sourceforge.net/ @ NMRYIAND

MUEGYETEM 1782



= Code quality management platform  sonarqube \
= 20+ programming languages (Java, C, C++, C#, ...)
" Features

o Examines coding standards, duplicated code, test
coverage, code complexity, potential bugs and
vulnerabilities, technical debt

o Produces reports, evolution graphs
o Integrates with external tools: IDEs, Cl tools, ...

http://www.sonarqube.org/



http://www.sonarqube.org/

SonarQube

sonarqubﬁ'

eak Period: last 30 days
Bugs & Vulnerabilities o ARSI “ o e

1188 638 4 4

New

3UgS fuinerabilities Y S
Bug Vuinerabilitie: New Bug Vulnerabliities

Code Smells

12k @ 269d 664 18d

Code Smells Debt New Code Smells New Debt

Coverage

& 88.1% 9.3k 90.6%

Coverage on
1.6K New Lines of Code

Coverage Unit Tests




SonarQube

sonarqubﬁ'

£ SonarQube
L

Issues Measures Code Dashboards

& Type £ SonarQube (5] SonarQube = Plugin APl [ sro/mainiji
‘ Bug Override this superclass' "equals”™ method.
Vuinerability o Bug @ Major O Open Notassigned 30min effort

Code Smell 12k

() SonarQube (=) SonarQube :: Plugin APl [ sro/mainji

2 Resolution

‘ Unresolved 118 | Fixed 4 The retumn value of "parseDouble” must be used
False Positive 0 Won't fix . Bug @ Critical O Open Notassigned 10min effort
Removed 41
(5 SonarQube () SonarQube :: Plugin APl [3) sra/mainiji
O Severity
() Status NullPointerException might be thrown as ‘value' is nuliable |

Bug @ Blocker ( Open <= Simon Brandhof 10min effc

UEGYETEM



= Static analyzer of the Synopsys suite S‘/ﬂ[ll:S‘/S
= C, C++, C#, Java, JavaScript
= Used by CERN, NASA, ...

= Examples: resource leaks, null pointers,
uninitialized data, concurrency issues, ...

= Coverity Scan: free service for open source
projects

o Integrated with GitHub and Travis CI

http://www.synopsys.com/software/coverity/Pages/default.aspx https://scan.coverity.com/



http://www.synopsys.com/software/coverity/Pages/default.aspx
https://scan.coverity.com/

Using static analysis tools efficiently

" |ntegrate to build process
o Perform check before/after each commit
o Generate reports, send e-mails

= Use from the start of a project
o Too many problems would discourage developers

= Configure the tools
o Filter based on severity or category

o Add custom rules




Using static analysis tools efficiently

= Review the results carefully
o False positives and false negatives are possible

" False positive (false alarm)
o An error found may not cause a real failure
o lgnore rule / one occurrence

* Always explain why it is not an error

" False negative

o No errors found does not mean correct software

Confusing terms! Define full confusion matrix!




Advantages of static analysis

= Analyzing software without execution

o Analysis before software is executable or input is
present

o Execution may be expensive

= Find subtle errors

o Interesting even for expert programmers

= Automatic process

o Integrated into development process




More information

= J. Carmack. In-Depth: Static Code Analysis

o “itis irresponsible to not use it”

o “there was an epic multi-programmer, multi-day bug;
hunt that wound up being traced to something that
/analyze had flagged, but | hadn't fixed yet.”

= A few Billion Lines of code Later using static
Analysis to find Bugs in the Real World

{J coverity’
o Turning a prototype into commercial tool

o “False positives do matter. In our experience, more than
30% easily cause problems. People ignore the tool. True
bugs get lost in the false.”



https://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.php
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

DYNAMIC PROPERTIES
WITH STATIC ANALYSIS




Learning outcomes

= Explain the main concept of abstract
interpretation (K2)




Dynamic properties

= Motivation: detect run time failures without
executing the software

o Examples: null pointer, index out of bounds,
uninitialized data, arithmetic error, overflow, dead
code,...

= Can be performed by control-flow and data-flow
analysis
o Calculate interval for each variable

o Propagate intervals based on control-flow




k=ioread32();
1=2;

: Jj=k+5;

: while (i<10) {
i=1+1;
J=J3+3;

}
: // end of loop

k=k/(1-7);

coNoOoOuUuThWDNEO

Division by zero?
For what k?




e
B = 931 931._ 2: j=k+5;
X0 {(O’O'k) l kE[ 2 '2 1]} 3: alhile (i<10) {

= X1={(2,j,k) | (i,j,k) X0} 4 isia

: J=J]+53;
= X2={(i,k+5,k) | (i,j,k)eX1} 6: }

7: // end of loop
= X3=X2 U X6 8: k=k/(i-j);

= X4={(i+1,j,k) | (i,j,k)eX3, <10}
= X5={(i,j+3,k) | (i,jk)eX4}

= X6= X5

= X7={(i,,k) | (i,j,k)eX3, i=10}

= X8={(i,j,k/(i-j)) | (i,j,k)eX7}




X0={(0,0,k) | ke[-23%,231-1]}
:_231’231_1]}

X0={(0,0,k) | ke
X1={(2,J,k) | (i/j/
X1={(2,0,k) | ke

k) e X0}

231, 23-1])

X2={(i. k+5,k) | (i.i,k)eX1}
X2={(2,k+5 k) | ke[-23, 231-1]}
X3=X2 U X6
X3={(i j,k) | ke[-231, 231-1], i€[2,10], j=k+3i-1)
X4={(i+1,j k) | (i,,k)eX3, <10}
X4={(i,j,k) | ke[-23%, 231-1], i[3,10], j=k+3i-4}

coNOuUVT A~ WNEO

: k=ioread32();
: 1=2;

: j=k+5;

: while (i<10) {

i=i+1;
Jj=J+3;

Do)
: // end of loop
: k=k/(i-3);

Loop invariant:

j=k+5+3(i-2)




* X5={(ii+3,) | (ijk)eXa} 0 Koo
X5={(i,j,k) | ke[-2%1, 2%1-1], 2: jokss;
i€[3,10], j=k+3i-1} | 2F vhite {1<l0) o
= X6= X5 5: } j=j+3;
6:
X6=X5 7: // end of loop
8: k=k/(i-7);

= X7={(i,j,k) | (i,j,k)€X3, i=10}
X7={(10,j,k) | ke[-23%, 231-1], j=k+29}

= X8={(i,j,k/(i-j)) | (i,j,k)eX7}
X8={(10,j,k/(i-j)) | ke[-231, 231-1], j=k+29}

" Error at X8, if i-j=0

Since i=10, this can happen if k=-19 = X8___={(10,10,-19)}

error




Analyzing dynamic properties

= Based on analyzing control-flow and data-flow
o Operations with intervals and constraints
o Loops: determine loop invariants
= Calculating loop invariants
o Undecidable in general
o Approximations are required
= Abstraction: over-approximate intervals

o All errors are detected
o False positives (false alarms) are possible

* Can be treated as a hint for further analysis




Abstraction illustrated

x(t) Real error

Error zone

Possible trajectories
of variable x during
execution

RN

| Abstraction
Error zone

False alarm

Source: Patrick Cousot VMCAI’'05




= Static analysis tool by Facebook
o Focus on mobile development

o Users: Facebook, Instagram, Oculus, Spotify,
WhatsApp, ...

= Android and Java
o Null pointers, resource leaks, context leak

= {OS and Objective-C

o Null pointers, memory leaks, resource leaks

http://fbinfer.com/



http://fbinfer.com/

Infer

Infer Java Tutorial

Resources java

Pointers.java Hello java
Iz = ISy RS CUT TN L L Ly

& Root 20 a.method(); .
Hello.java 21 | 3
Pointers.java . .
Resources java i_:uv vold may[auseNF‘E(}. {
24 Random rng = new Random();
25 Pointers.A& a = Pointers.mayReturnMull{rng.nextInt({));
26 FIXME: should check for null before calling method()
27 a.method();
28 ¥
29
38 - vold mayleakResource() throws IOException {
31 OutputStream stream = Resources.allocateResource(); W
Analyzed 3 files ~
Found 3 isasues
./RBoot/Hello.java:27: error: NULL_DEREFERENCE
cbkject a last assigned on line 25 could be null and i3 dereferenced at line 27
25. Pointers.hR a = Pointers.mayBeturniull {rng.nextInt()):
26. S/ FIEME: should check for null before calling method()
27. > a.method() :
28. }
29,
30.
W
£ >
I t to your progral ress Enter to send | 2> Send

MUEGYETEM

1782



PolySpace

= Static analysis tool by MathWorks for C/C++
= Bug Finder

o Run time errors, concurrency issues, vulnerabilities
o Coding guidelines

= Code prover

o Can prove absence of overflow, division by zero, index
out of bounds

o Color codes: safe, definite error, )
unreachable

http://www.mathworks.com/products/polyspace/ ‘\ MathWorks:

51


http://www.mathworks.com/products/polyspace/

Verifying source code — summary

= Coding guidelines
o Industry, platform, organization specific

= Static analysis tools

o Analyze software without execution

More subtle errors

= Dynamic properties with static analysis

o Abstract interpretation




