
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Verifying source code

Akos Hajdu, Istvan Majzik,
Zoltan Micskei

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Motivation – bad example

4

public class Class1
{
public decimal Calculate(decimal amount, int type, int years) {

decimal result = 0;
decimal disc = (years > 5) ? (decimal)5/100 : (decimal)years/100;
if (type == 1) result = amount;
else if (type == 2)
{
result = (amount - (0.1m * amount)) - disc * (amount - (0.1m * amount));

}
else if (type == 3) { result = (0.7m * amount) - disc * (0.7m * amount); }
else if (type == 4) {
result = (amount - (0.5m * amount)) - disc * (amount - (0.5m * amount));

}
return result;

}
}

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code

Properties of a good source code

 Syntactically correct

 Good quality

o Readable, reusable, maintainable

 Free of bugs

 Adheres to the specification

5

Compiler

Coding guidelines

Static analysis, testing

Code review, testing

CODING GUIDELINES

6

Learning outcomes

 List some domain, platform and organization
specific coding guidelines and some of their
typical categories and elements (K1)

7

Coding guidelines – introduction

 Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture

 Main categories

o Industry/domain specific

• Automotive, railway, …

o Platform specific

• C, C++, C#, Java, …

o Organization specific

• Google, CERN, …

8

Industry specific: MISRA C

 Motor Industry Software Reliability Association

 Focus on safety, security, reliability, portability

 143 rules + 16 directives

 Tools: SonarQube, Coverity, …

 Examples

o RHS of && and || operators shall not contain side effects

o Test against zero should be made explicit for non-Booleans

o Body of if, else, while, do, for shall always be
enclosed in braces

9

Platform specific: .NET

 Framework Design Guidelines (C#)

o Focus on framework and API development

 Categories

o Naming, type design, member design, extensibility,
exceptions, usage, common design patterns

o „Do”, „Consider”, „Avoid”, „Do not”

 Tool: StyleCop

10

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Platform specific: .NET

 Examples

o DO NOT provide abstractions unless they are tested by
developing several concrete implementations and APIs
consuming the abstractions.

o CONSIDER making base classes abstract even if they
don’t contain any abstract members. This clearly
communicates to the users that the class is designed
solely to be inherited from.

o DO use the same name for constructor parameters and a
property if the constructor parameters are used to simply
set the property.

11

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

Organization specific: Google

 Java Style Guide

 Focus on „hard-and-fast” rules, avoids advices

 Categories

o Source file basics

o Source file structure

o Formatting

o Naming

o Programming practices

o Javadoc

12

https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html

Organization specific: Google

 Examples
o Never make your code less readable simply out of fear that

some programs might not handle non-ASCII characters
properly. If that should happen, those programs are broken
and they must be fixed.

o In Google Style special prefixes or suffixes, like those seen
in the examples name_, mName, s_name and kName, are
not used.

o When a reference to a static class member must be
qualified, it is qualified with that class's name, not with a
reference or expression of that class's type.

o Local variable names are written in lowerCamelCase.

13

https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html

Organization specific: CERN

 ROOT: data analysis tool/framework
for high energy physics (C++)

 Categories

o Naming

o Exceptions

o Namespaces

o Comments

o Source layout

 Tool: Artistic Style (astyle)

14

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Organization specific: CERN

 Examples

o Avoid the use of raw C types like int, long, float,
double when using data that might be written to disk.

o For naming conventions we follow the Taligent rules.
Types begin with a capital letter (Boolean), base
classes begin with „T” (TContainerView), members
begin with „f” (fViewList), …

o Each header file has the following layout: Module
identification line, Author line, Copyright notice,
Multiple inclusion protection macro, Headers file
includes, Forward declarations, Actual class definition.

15

https://root.cern/coding-conventions

https://root.cern/coding-conventions

Coding guidelines – summary

 How to enforce

o Base functionality in many IDEs

o External tools

o Tool integrated in the workflow

 Important

o Always use a common guideline

o As a minimum, common IDE formatter settings

• Can usually be committed to version control as a settings file

16

Coding guidelines – summary

 Which one is the best? Which one to select?

 In many cases it is already determined

o By the industry, platform or organization

o Consistency with the current code base

 Sometimes it can be determined

o There may be no single best one

• They can be even inconsistent with each other

• Combination is possible

o Do not reinvent the wheel

• Makes it harder for new developers

17

CODE REVIEW

18

Learning outcomes

 Apply manual code review on a small unit of code
(~50-100 LOC) using common review criteria (K3)

19

Manual code review

 Performed by humans

o Typically other team members

o Usually based on some structured checklist

o Similar to review techniques for specification (prev. lecture)

 Different level of formalization

20

Code inspection “Modern” code review

Advantages of code reviews

 Code inspection

o Effective for finding bugs

o Resource-intensive

 “Modern” code review

o More informal, good tool support

oWidespread in industry (MS, Google, FB, …)

o Further benefits

• Code understanding

• Team awareness

• Change management

21

Expectations, outcomes, and challenges of modern code review, ICSE 2013

http://dl.acm.org/citation.cfm?id=2486882

Tool support

 Supporting code review

o Discussion, change requests

o Integrated into the development and CI workflow

 GitHub: pull request reviews (Lab)

23

https://help.github.com/articles/about-pull-request-reviews/

https://help.github.com/articles/about-pull-request-reviews/

STATIC ANALYSIS

25

Static analysis – example

27

public class Sample {
public static void main(String[] args) {

String str = null;
try {

Scanner scanner = new Scanner("file.txt");
str = scanner.nextLine();
scanner.close();

} catch (Exception e) {
System.out.println("Error opening file!");

}
str.replace(" ", "");
System.out.println(str);

}
}

Scanner not closed
in case of exception

str may be null

str immutable

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Learning outcomes

 List some bugs that can be detected with static
analysis (K1)

 Use a static analysis tool to find bugs and mistakes
in a non-trivial code base (~100-1000 LOC) (K3)

28

Static analysis – introduction

 Definition: analysis of software without execution

o Usually automated tools

o (Human analysis)

 Pattern-based

o Basic static properties with error patterns (mostly)
• E.g., ignored return value, unused variable

o FindBugs, SonarQube, Coverity

 Interpretation-based

o Dynamic properties
• E.g., null pointer dereference, index out of bounds

o Infer, PolySpace

29

FindBugs (Java)

 Large and extensible set of rules

 Command line, GUI, Eclipse plug-in

 Examples

o Bad practice: random object created and used only once

o Correctness: bitwise add of signed byte value

o Vulnerability: expose inner static state by storing mutable object
into a static field

o Multithreading: synchronization on Boolean could lead to
deadlock

o Performance: invoke toString() on a string

o Security: hardcoded constant database password

o Dodgy: useless assignment in return statement

30

http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/

FindBugs (Java)

31

SonarQube

 Code quality management platform

 20+ programming languages (Java, C, C++, C#, …)

 Features

o Examines coding standards, duplicated code, test
coverage, code complexity, potential bugs and
vulnerabilities, technical debt

o Produces reports, evolution graphs

o Integrates with external tools: IDEs, CI tools, …

32

http://www.sonarqube.org/

http://www.sonarqube.org/

SonarQube

33

SonarQube

34

Coverity

 Static analyzer of the Synopsys suite

 C, C++, C#, Java, JavaScript

 Used by CERN, NASA, …

 Examples: resource leaks, null pointers,
uninitialized data, concurrency issues, …

 Coverity Scan: free service for open source
projects

o Integrated with GitHub and Travis CI

35

http://www.synopsys.com/software/coverity/Pages/default.aspx https://scan.coverity.com/

http://www.synopsys.com/software/coverity/Pages/default.aspx
https://scan.coverity.com/

Using static analysis tools efficiently

 Integrate to build process

o Perform check before/after each commit

o Generate reports, send e-mails

 Use from the start of a project

o Too many problems would discourage developers

 Configure the tools

o Filter based on severity or category

o Add custom rules

36

Using static analysis tools efficiently

 Review the results carefully

o False positives and false negatives are possible

 False positive (false alarm)

o An error found may not cause a real failure

o Ignore rule / one occurrence

• Always explain why it is not an error

 False negative

o No errors found does not mean correct software

37

Confusing terms! Define full confusion matrix!

Advantages of static analysis

 Analyzing software without execution

o Analysis before software is executable or input is
present

o Execution may be expensive

 Find subtle errors

o Interesting even for expert programmers

 Automatic process

o Integrated into development process

38

More information

 J. Carmack. In-Depth: Static Code Analysis

o “it is irresponsible to not use it”

o “there was an epic multi-programmer, multi-day bug
hunt that wound up being traced to something that
/analyze had flagged, but I hadn't fixed yet.”

 A few Billion Lines of code Later using static
Analysis to find Bugs in the Real World

o Turning a prototype into commercial tool

o “False positives do matter. In our experience, more than
30% easily cause problems. People ignore the tool. True
bugs get lost in the false.”

39

https://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.php
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext

DYNAMIC PROPERTIES
WITH STATIC ANALYSIS

40

Learning outcomes

 Explain the main concept of abstract
interpretation (K2)

41

Dynamic properties

 Motivation: detect run time failures without
executing the software

o Examples: null pointer, index out of bounds,
uninitialized data, arithmetic error, overflow, dead
code,…

 Can be performed by control-flow and data-flow
analysis

o Calculate interval for each variable

o Propagate intervals based on control-flow

42

Example

43

0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4: i=i+1;
5: j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Division by zero?
For what k?

Example

 X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}

 X2={(i,k+5,k) | (i,j,k)X1}

 X3= X2 X6

 X4={(i+1,j,k) | (i,j,k)X3, i<10}

 X5={(i,j+3,k) | (i,j,k)X4}

 X6= X5

 X7={(i,j,k) | (i,j,k)X3, i=10}

 X8={(i,j,k/(i-j)) | (i,j,k)X7}

44

0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4: i=i+1;
5: j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Possible (i,j,k) values

Example

 X0={(0,0,k) | k[-231,231-1]}
X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}
X1={(2,0,k) | k[-231, 231-1]}

 X2={(i,k+5,k) | (i,j,k)X1}
X2={(2,k+5,k) | k[-231, 231-1]}

 X3= X2 X6
X3={(i,j,k) | k[-231, 231-1], i[2,10], j=k+3i-1}

 X4={(i+1,j,k) | (i,j,k)X3, i<10}
X4={(i,j,k) | k[-231, 231-1], i[3,10], j=k+3i-4}

45

0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4: i=i+1;
5: j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Loop invariant:
j=k+5+3(i-2)

Example

 X5={(i,j+3,k) | (i,j,k)X4}
X5={(i,j,k) | k[-231, 231-1],

i[3,10], j=k+3i-1}

 X6= X5
X6=X5

 X7={(i,j,k) | (i,j,k)X3, i=10}
X7={(10,j,k) | k[-231, 231-1], j=k+29}

 X8={(i,j,k/(i-j)) | (i,j,k)X7}
X8={(10,j,k/(i-j)) | k[-231, 231-1], j=k+29}

 Error at X8, if i-j=0
Since i=10, this can happen if k=-19 X8error={(10,10,-19)}

46

0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4: i=i+1;
5: j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Analyzing dynamic properties

 Based on analyzing control-flow and data-flow

o Operations with intervals and constraints

o Loops: determine loop invariants

 Calculating loop invariants

o Undecidable in general

o Approximations are required

 Abstraction: over-approximate intervals

o All errors are detected

o False positives (false alarms) are possible

• Can be treated as a hint for further analysis

47

Error zone

Error zone

Abstraction illustrated

48

t

x(t)

Possible trajectories
of variable x during

execution

Real error

Abstraction

False alarm
Source: Patrick Cousot VMCAI’05

Infer

 Static analysis tool by Facebook

o Focus on mobile development

o Users: Facebook, Instagram, Oculus, Spotify,
WhatsApp, …

 Android and Java

o Null pointers, resource leaks, context leak

 iOS and Objective-C

o Null pointers, memory leaks, resource leaks

49

http://fbinfer.com/

http://fbinfer.com/

Infer

50

PolySpace

 Static analysis tool by MathWorks for C/C++

 Bug Finder

o Run time errors, concurrency issues, vulnerabilities

o Coding guidelines

 Code prover

o Can prove absence of overflow, division by zero, index
out of bounds

o Color codes: safe, definite error, unproven,
unreachable

51

http://www.mathworks.com/products/polyspace/

http://www.mathworks.com/products/polyspace/

Verifying source code – summary

 Coding guidelines

o Industry, platform, organization specific

 Static analysis tools

o Analyze software without execution

 Dynamic properties with static analysis

o Abstract interpretation

52

M
o

re
 s

u
b

tl
e

er
ro

rs

D
if

fi
cu

lt
y

