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Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
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Motivation – bad example
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public class Class1
{
public decimal Calculate(decimal amount, int type, int years) {

decimal result = 0;
decimal disc = (years > 5) ? (decimal)5/100 : (decimal)years/100; 
if (type == 1) result = amount;
else if (type == 2)
{
result = (amount - (0.1m * amount)) - disc * (amount - (0.1m * amount));

}
else if (type == 3) { result = (0.7m * amount) - disc * (0.7m * amount); }
else if (type == 4) {
result = (amount - (0.5m * amount)) - disc * (amount - (0.5m * amount));

}
return result;

}
}

http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code
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http://www.codeproject.com/Articles/1083348/Csharp-BAD-PRACTICES-Learn-how-to-make-a-good-code


Properties of a good source code

 Syntactically correct

 Good quality

o Readable, reusable, maintainable

 Free of bugs

 Adheres to the specification
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Compiler

Coding guidelines

Static analysis, testing

Code review, testing



CODING GUIDELINES
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Learning outcomes

 List some domain, platform and organization 
specific coding guidelines and some of their 
typical categories and elements (K1)
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Coding guidelines – introduction

 Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture

 Main categories

o Industry/domain specific

• Automotive, railway, …

o Platform specific

• C, C++, C#, Java, …

o Organization specific

• Google, CERN, …
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Industry specific: MISRA C

 Motor Industry Software Reliability Association

 Focus on safety, security, reliability, portability

 143 rules + 16 directives

 Tools: SonarQube, Coverity, …

 Examples

o RHS of && and || operators shall not contain side effects

o Test against zero should be made explicit for non-Booleans

o Body of if, else, while, do, for shall always be
enclosed in braces
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Platform specific: .NET

 Framework Design Guidelines (C#)

o Focus on framework and API development

 Categories

o Naming, type design, member design, extensibility, 
exceptions, usage, common design patterns

o „Do”, „Consider”, „Avoid”, „Do not”

 Tool: StyleCop
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https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx


Platform specific: .NET

 Examples

o DO NOT provide abstractions unless they are tested by
developing several concrete implementations and APIs
consuming the abstractions.

o CONSIDER making base classes abstract even if they
don’t contain any abstract members. This clearly
communicates to the users that the class is designed
solely to be inherited from.

o DO use the same name for constructor parameters and a
property if the constructor parameters are used to simply
set the property.
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https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx


Organization specific: Google

 Java Style Guide

 Focus on „hard-and-fast” rules, avoids advices

 Categories

o Source file basics

o Source file structure

o Formatting

o Naming

o Programming practices

o Javadoc
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https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html


Organization specific: Google

 Examples
o Never make your code less readable simply out of fear that

some programs might not handle non-ASCII characters
properly. If that should happen, those programs are broken
and they must be fixed.

o In Google Style special prefixes or suffixes, like those seen
in the examples name_, mName, s_name and kName, are
not used.

o When a reference to a static class member must be
qualified, it is qualified with that class's name, not with a
reference or expression of that class's type.

o Local variable names are written in lowerCamelCase.
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https://google.github.io/styleguide/javaguide.html

https://google.github.io/styleguide/javaguide.html


Organization specific: CERN

 ROOT: data analysis tool/framework 
for high energy physics (C++)

 Categories

o Naming

o Exceptions

o Namespaces

o Comments

o Source layout

 Tool: Artistic Style (astyle)
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https://root.cern/coding-conventions

https://root.cern/coding-conventions


Organization specific: CERN

 Examples

o Avoid the use of raw C types like int, long, float,
double when using data that might be written to disk.

o For naming conventions we follow the Taligent rules.
Types begin with a capital letter (Boolean), base
classes begin with „T” (TContainerView), members
begin with „f” (fViewList), …

o Each header file has the following layout: Module
identification line, Author line, Copyright notice,
Multiple inclusion protection macro, Headers file
includes, Forward declarations, Actual class definition.
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https://root.cern/coding-conventions

https://root.cern/coding-conventions


Coding guidelines – summary

 How to enforce

o Base functionality in many IDEs

o External tools

o Tool integrated in the workflow

 Important

o Always use a common guideline

o As a minimum, common IDE formatter settings

• Can usually be committed to version control as a settings file
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Coding guidelines – summary

 Which one is the best? Which one to select?

 In many cases it is already determined

o By the industry, platform or organization

o Consistency with the current code base

 Sometimes it can be determined

o There may be no single best one

• They can be even inconsistent with each other

• Combination is possible

o Do not reinvent the wheel

• Makes it harder for new developers
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CODE REVIEW
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Learning outcomes

 Apply manual code review on a small unit of code 
(~50-100 LOC) using common review criteria (K3)
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Manual code review

 Performed by humans

o Typically other team members

o Usually based on some structured checklist

o Similar to review techniques for specification (prev. lecture)

 Different level of formalization
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Code inspection “Modern” code review



Advantages of code reviews

 Code inspection

o Effective for finding bugs

o Resource-intensive

 “Modern” code review

o More informal, good tool support

oWidespread in industry (MS, Google, FB, …)

o Further benefits

• Code understanding

• Team awareness

• Change management

21

Expectations, outcomes, and challenges of modern code review, ICSE 2013

http://dl.acm.org/citation.cfm?id=2486882


Tool support

 Supporting code review

o Discussion, change requests

o Integrated into the development and CI workflow

 GitHub: pull request reviews ( Lab)
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https://help.github.com/articles/about-pull-request-reviews/

https://help.github.com/articles/about-pull-request-reviews/


STATIC ANALYSIS
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Static analysis – example
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public class Sample {
public static void main(String[] args) {

String str = null;
try {

Scanner scanner = new Scanner("file.txt");
str = scanner.nextLine();
scanner.close();

} catch (Exception e) {
System.out.println("Error opening file!");

}
str.replace(" ", "");
System.out.println(str);

}
}

Scanner not closed 
in case of exception

str may be null

str immutable
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Learning outcomes

 List some bugs that can be detected with static 
analysis (K1)

 Use a static analysis tool to find bugs and mistakes 
in a non-trivial code base (~100-1000 LOC) (K3)
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Static analysis – introduction

 Definition: analysis of software without execution

o Usually automated tools

o (Human analysis)

 Pattern-based

o Basic static properties with error patterns (mostly)
• E.g., ignored return value, unused variable

o FindBugs, SonarQube, Coverity

 Interpretation-based

o Dynamic properties
• E.g., null pointer dereference, index out of bounds

o Infer, PolySpace
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FindBugs (Java)

 Large and extensible set of rules

 Command line, GUI, Eclipse plug-in

 Examples

o Bad practice: random object created and used only once

o Correctness: bitwise add of signed byte value

o Vulnerability: expose inner static state by storing mutable object 
into a static field

o Multithreading: synchronization on Boolean could lead to 
deadlock

o Performance: invoke toString() on a string

o Security: hardcoded constant database password

o Dodgy: useless assignment in return statement
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http://findbugs.sourceforge.net/

http://findbugs.sourceforge.net/


FindBugs (Java)
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SonarQube

 Code quality management platform

 20+ programming languages (Java, C, C++, C#, …)

 Features

o Examines coding standards, duplicated code, test 
coverage, code complexity, potential bugs and 
vulnerabilities, technical debt

o Produces reports, evolution graphs

o Integrates with external tools: IDEs, CI tools, …
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http://www.sonarqube.org/

http://www.sonarqube.org/


SonarQube
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SonarQube

34



Coverity

 Static analyzer of the Synopsys suite

 C, C++, C#, Java, JavaScript

 Used by CERN, NASA, …

 Examples: resource leaks, null pointers, 
uninitialized data, concurrency issues, …

 Coverity Scan: free service for open source 
projects

o Integrated with GitHub and Travis CI

35

http://www.synopsys.com/software/coverity/Pages/default.aspx https://scan.coverity.com/

http://www.synopsys.com/software/coverity/Pages/default.aspx
https://scan.coverity.com/


Using static analysis tools efficiently

 Integrate to build process

o Perform check before/after each commit

o Generate reports, send e-mails

 Use from the start of a project

o Too many problems would discourage developers

 Configure the tools

o Filter based on severity or category

o Add custom rules
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Using static analysis tools efficiently

 Review the results carefully

o False positives and false negatives are possible

 False positive (false alarm)

o An error found may not cause a real failure

o Ignore rule / one occurrence

• Always explain why it is not an error

 False negative

o No errors found does not mean correct software
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Confusing terms! Define full confusion matrix!



Advantages of static analysis

 Analyzing software without execution

o Analysis before software is executable or input is 
present

o Execution may be expensive

 Find subtle errors

o Interesting even for expert programmers

 Automatic process

o Integrated into development process
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More information

 J. Carmack. In-Depth: Static Code Analysis

o “it is irresponsible to not use it”

o “there was an epic multi-programmer, multi-day bug 
hunt that wound up being traced to something that 
/analyze had flagged, but I hadn't fixed yet.”

 A few Billion Lines of code Later using static 
Analysis to find Bugs in the Real World

o Turning a prototype into commercial tool

o “False positives do matter. In our experience, more than 
30% easily cause problems. People ignore the tool. True 
bugs get lost in the false.”
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https://www.gamasutra.com/view/news/128836/InDepth_Static_Code_Analysis.php
https://cacm.acm.org/magazines/2010/2/69354-a-few-billion-lines-of-code-later/fulltext


DYNAMIC PROPERTIES
WITH STATIC ANALYSIS
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Learning outcomes

 Explain the main concept of abstract 
interpretation (K2)
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Dynamic properties

 Motivation: detect run time failures without 
executing the software

o Examples: null pointer, index out of bounds, 
uninitialized data, arithmetic error, overflow, dead 
code,…

 Can be performed by control-flow and data-flow 
analysis

o Calculate interval for each variable

o Propagate intervals based on control-flow
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Example
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0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4:     i=i+1;
5:     j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Division by zero? 
For what k?



Example

 X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}

 X2={(i,k+5,k) | (i,j,k)X1}

 X3= X2  X6

 X4={(i+1,j,k) | (i,j,k)X3, i<10}

 X5={(i,j+3,k) | (i,j,k)X4}

 X6= X5

 X7={(i,j,k) | (i,j,k)X3, i=10}

 X8={(i,j,k/(i-j)) | (i,j,k)X7}
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0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4:     i=i+1;
5:     j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Possible (i,j,k) values



Example

 X0={(0,0,k) | k[-231,231-1]}
X0={(0,0,k) | k[-231,231-1]}

 X1={(2,j,k) | (i,j,k)X0}
X1={(2,0,k) | k[-231, 231-1]}

 X2={(i,k+5,k) | (i,j,k)X1}
X2={(2,k+5,k) | k[-231, 231-1]}

 X3= X2  X6
X3={(i,j,k) | k[-231, 231-1], i[2,10], j=k+3i-1}

 X4={(i+1,j,k) | (i,j,k)X3, i<10}
X4={(i,j,k) | k[-231, 231-1], i[3,10], j=k+3i-4}
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0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4:     i=i+1;
5:     j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);

Loop invariant:
j=k+5+3(i-2)



Example

 X5={(i,j+3,k) | (i,j,k)X4}
X5={(i,j,k) | k[-231, 231-1],

i[3,10], j=k+3i-1}

 X6= X5
X6=X5

 X7={(i,j,k) | (i,j,k)X3, i=10}
X7={(10,j,k) | k[-231, 231-1], j=k+29}

 X8={(i,j,k/(i-j)) | (i,j,k)X7}
X8={(10,j,k/(i-j)) | k[-231, 231-1], j=k+29}

 Error at X8, if i-j=0
Since i=10, this can happen if k=-19  X8error={(10,10,-19)}
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0: k=ioread32();
1: i=2;
2: j=k+5;
3: while (i<10) {
4:     i=i+1;
5:     j=j+3;
6: }
7: // end of loop
8: k=k/(i-j);



Analyzing dynamic properties

 Based on analyzing control-flow and data-flow

o Operations with intervals and constraints

o Loops: determine loop invariants

 Calculating loop invariants

o Undecidable in general

o Approximations are required

 Abstraction: over-approximate intervals

o All errors are detected

o False positives (false alarms) are possible

• Can be treated as a hint for further analysis
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Error zone

Error zone

Abstraction illustrated
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t

x(t)

Possible trajectories 
of variable x during 

execution

Real error

Abstraction

False alarm
Source: Patrick Cousot VMCAI’05



Infer

 Static analysis tool by Facebook

o Focus on mobile development

o Users: Facebook, Instagram, Oculus, Spotify, 
WhatsApp, …

 Android and Java

o Null pointers, resource leaks, context leak

 iOS and Objective-C

o Null pointers, memory leaks, resource leaks
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http://fbinfer.com/

http://fbinfer.com/


Infer
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PolySpace

 Static analysis tool by MathWorks for C/C++

 Bug Finder

o Run time errors, concurrency issues, vulnerabilities

o Coding guidelines

 Code prover

o Can prove absence of overflow, division by zero, index 
out of bounds

o Color codes: safe, definite error, unproven, 
unreachable
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http://www.mathworks.com/products/polyspace/

http://www.mathworks.com/products/polyspace/


Verifying source code – summary

 Coding guidelines

o Industry, platform, organization specific

 Static analysis tools

o Analyze software without execution

 Dynamic properties with static analysis

o Abstract interpretation
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