
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Specification-based test design

Zoltan Micskei, Istvan Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2

Test design techniques

3

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

Learning outcomes

 Describe the goal of specification-based test
design techniques (K2)

 Use test design techniques equivalence classes,
boundary value analysis, decision tables and pair-
wise testing to select test cases for simple
programs (K3)

4

EXERCISE

The program reads the lengths of the sides of a
triangle (3 integers). The program writes out
whether the triangle is equilateral, isosceles or
scalene.

o » Glen Myers, The Art of Software Testing, 1979

Design test cases for this program!

Triangle classification program

6

EXERCISE

 Issues with the specification?

 Solutions:

o K. Beck (6 tests), R. Binder (65 tests),
P. Jorgensen (185 tests)…

 Possible test cases:
o Equilateral: 3,3,3
o Isosceles: 5,5,2

• Similarly for the other sides
o Scalene: 5,6,7
o Not a triangle: 1,2,5

• Similarly for the other sides
o Just not a triangle: 1,2,3
o Invalid inputs

• Zero value: 0,1,1
• Negative value: -3,-5,-3
• Not an integer: 2,2,’a’
• Less inputs than needed: 3,4

Triangle classification program

7

Specification-based techniques

8

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

Equivalence class partitioning

 Input and output equivalence classes:

o Data that are expected to cover the same faults
(cover the same part of the program)

o Goal: Each equivalence class is represented by
one test input (selected test data) [induction]

 Highly context-dependent

o Needs to know the domain and the SUT!

o Depends on the skills and experience of the tester

9

Selecting equivalence classes

 Selection uses heuristics

o Initial: valid and invalid partitions

o Next: refine partitions

 Typical heuristics:

o Interval (e.g. 1-1000)

• < min, min-max, >max

o Set (e.g. RED, GREEN, BLUE)

• Valid elements, invalid element

o Specific format (e.g. first character is @)

• Condition true, condition false

o Custom (e.g. February from the months)
10

Deriving test cases from equiv. classes

 Combining equiv. classes of several inputs

 For valid (normal) equivalence classes:

o test data should cover as much equivalence classes as possible

 For invalid equivalence classes:

o first covering the each invalid equivalence class separately

o then combining them systematically

12

EXERCISE NextDate program

14

 Calculates the next day
based on the Gregorian
calendar

 What are the equivalence
classes for the inputs?

 What are the equivalence
classes for the output?

EXERCISE

Input Valid Invalid

Month
V1: 30 day month
V2: 31 day month
V3: February

I1: >= 13
I2: <= 0
I3: not a number
I4: empty

Day

V4: 1-30
V5: 1-31
V6: 1-28
V7: 1-29

I5: >= 32
I6: <= 0
I7: not a number
I8: empty

Year

V8: 1582-9999
V9: not leap year
V10: leap year
V11: centurial year
V12: centurial year (div. by 400)

I9: <=1581
I10: >= 9999
I11: not a number
I12: empty

Special V13: 1752.09.03-1752.09.13. I13: 1582.10.5-1582.10.14.

NextDate equivalence classes

Source: „How we test software at Microsoft”, Microsoft Press, ISBN 0735624259, 2008.

15

EXERCISE

A possible combination:

NextDate test cases

Test Month Day Year Other Output

T1 V1  V2  V3 V6 V8 Érvényes

T2 V1 V4 V9  V8 Érvényes

T3 V2 V5 V10  V8 Érvényes

T4 V3 V6 V11  V8 Érvényes

T5 V3 V7 V12  V8 Érvényes

T6 V13 Érvényes

T7 I1 Hiba

T8 I2 Hiba

T9 I3 Hiba

T10 I4 Hiba

T11 I1 Hiba

…

Have all valid
classes at
least once

One invalid,
others valid

Choosing valid
values randomly

16

Specification-based techniques

17

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

2. Boundary value analysis

 Examining the boundaries of data partitions

o Focusing on the boundaries of equivalence classes

o Both input and output partitions

 Typical faults to be detected:

o Faulty relational operators,

o conditions in cycles,

o size of data structures,

o …

18

Typical test data for boundaries

 A boundary requires 3 tests:

 An interval requires 5-7 tests:

boundary 1 boundary 2

boundary

19

EXERCISE

 Month

o Boundaries: 1, 12

o Test data: 0, 1, (2), 3-10, (11), 12, 13

 Day

o Boundaries: 1, 31

o Test data: 0, 1, (2), 3-29, (30), 31, 32

o Refinement: 28, 29, 30 can also be a boundary

 Year

o Boundaries: 1582, 9999

o Test data: 1581, 1582, (1583), 1584-9997, (9998), 9999, 10000

Boundaries for NextDate

21

Specification-based techniques

22

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

Decision or cause/effect analysis

 Rules for connecting inputs and outputs

o Business rules: price calculation, insurance, loan…

o Technical: authentication system

 Connections for

o Condition/cause: equiv. partitions of input parameters

o Action/effect: equiv. partitions of output parameters

 Representations:

o Cause-effect graphs

o Decision tables

23

Cause-effect analysis

 Cause-effect graph (Boole graph)

o Source: equivalence partitions of input parameters

o Sink: equivalence partitions of output parameters

o Intermediate: OR, AND, NOT

 Using for test design

o Covering paths in the graph

o Truth tables (see Digital design)

o Originated from HW testing

24

Decision tables

Rule 1 Rule 2 Rule N

Conditions

Condition 1 T T

Condition 2 F T

…

Actions

Action 1 X

Action 2 X

….

25

 Represent each input/output partition with Booleans
(conditions/actions)

 Rules will be the test cases

 (Can be represent transposed)

EXERCISE

The final price of the order is calculated based on
discounts. If the user has a membership card (silver 2%,
gold 3%), this global discount is always applied. There
are also price dependent discounts. If before applying
global discounts the total amount to pay is greater than
100 EUR then the discount is 1%, if it is greater than 200
EUR then the discount is 2%.

Create a decision table!

Decision table

26

Standardized notation (decision tables)

 OMG’s Decision Model And Notation (DMN)

 Represent decision’ requirements, rules…

27

Source: OMG

http://www.omg.org/spec/DMN

Specification-based techniques

28

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

When there are many input parameters

 Failures are caused by (specific) combinations

 Testing all combinations: too much test cases

 Rare combinations may also cause failures

29

Combinatorial testing techniques

 Ad hoc („best guess”)

o Intuition, requirements, typical faults…

 Each choice

o Every choice in at least one test

o Can miss important combination

 N-wise testing

o For each arbitrary n parameters, testing all possible
combinations of their potential values

o Special case (n = 2): pairwise testing

30

Efficiency of n-wise testing

Source: R. Kuhn et al. „Combinatorial Software

Testing”, IEEE Computer, 42:8, 2009

Many faults are triggered by
specific combinations of at

least 2 parameters
(or even 3-6)

Comparing ad hoc
and pairwise testing

(10 projects)

31

EXERCISE

 Given input parameters and potential values:
o OS: Windows, Linux

o CPU: Intel, AMD

o Protocol: IPv4, IPv6

 How many combinations are possible?

 How many test cases are needed for pairwise testing?

 A potential test suite:
o T1: Windows, Intel, IPv4

o T2: Windows, AMD, IPv6

o T3: Linux, Intel, IPv6

o T4: Linux, AMD, IPv4

Pair-wise testing

33

N-wise testing: theory and practice

 Theory: constructing a coverage array

 Tools (see http://www.pairwise.org)

o PICT: Pairwise Independent Combinatorial Testing (MS)

o ACTS - Advanced Combinatorial Testing Suite (NIST)

Source: D. R. Kuhn, R. N. Kacker, Y. Lei

Practical Combinatorial Testing

NIST Special Publication 800-142

34

http://www.pairwise.org/
https://github.com/microsoft/pict
http://csrc.nist.gov/groups/SNS/acts/index.html
http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf

Specification-based techniques

35

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

Deriving tests from use cases

 Typical test cases:

o 1 test for main path („happy path”, „mainstream”)

• Oracle: checking post-conditions

o Separate tests for each alternate path

o Tests for violating pre-conditions

 Mainly higher levels (system, acceptance…)

36

EXERCISE Deriving tests from a use case

37

SUMMARY

38

Test design techniques

 Specification and structure based techniques

o Many orthogonal techniques

o Every techniques need practice!

 Only basic techniques are used commonly 

o Exception: safety-critical systems
(e.g. DO178-B requires MC/DC coverage analysis)

 Combination of techniques is useful:

• Example (Microsoft report):

specification based: 83% code coverage

+ exploratory: 86% code coverage

+ structural: 91% code coverage

3939

