Software and Systems Verification (VIMIMAO1)

Testing process and levels

Zoltan Micskei, Istvan Majzik

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Main topics of the course

= Qverview (1)

o V&V techniques, Critical systems
= Static techniques (2)

o Verifying specifications

o Verifying source code
= Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

| o Testing process and levels, [Test generation, Automation

= System-level verification (3)
o Verifying architecture, Dependability analysis
o Runtime verification

TESTING PROCESS

Learning outcomes

= Explain the activities and tasks in the typical test
process (K2)

Overview of testing concepts

Software
testing
| | I |
Testing Test levels Test types Test dg5|gn Tes’Flng IN
process techniques lthe lifecycle

Test design Testing in the
techniques lifecycle

Testing process Test levels Test types

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

Source: ISTQB CTFL syllabus

: Test design Testing in the

Planning and

Control Test planning: Scope, risks, objectives
Test approach

Test strategy and/or test policy
Required test resources like people,

, test environments, etc.
Imlementation . .
and Execution Schedule of test analysis and design

tasks, test implementation, execution
Evaluating Exit 3 nd eva | Uation

Criteria and

Reporting e Exit criteria such as Coverage criteria

Test control: Monitoring, corrections

Test strategy

= Guidelines for
o What methodology?
o What kinds of tests?

o What tools?

o Who will test?

o Exit criteria?

o What
documentation?

= Possible example:

o Test-driven development
o Module & system
o JUnit & GUI Tester

o Developers & test
engineers

o At least 90% statement
coverage & every use
case requirement

o Test Report according to
|EEE 829

= Mapping test strategy to the actual test project
o Test objectives
o Test objects, test environment
o Resources, roles,
o Schedules

= Defining test phases
o Length of phase

o Exit criteria

o Measuring quality of testing

Test documentation

Level Test Plan Outline (full example)

L. Introduction

1.1. Dwocument identifier

1.2. Scope

1.3, References

I.4. Level in the overall sequence

1.5. Test classes and overall test conditions
1, Details for this level of test plan

2.1 Test items and their identifiers

2.2 Test Traceability Matrix

2.3 Features to be tested

2.4 Features not to be tested

1.5 Approach

2.6 Itemn pass'fail criteria

2.7 Suspension criteria and resumption requirements
2.8 Test deliverables

3, Test management

3.1 Planned activities and tasks; test progression
1.2 Environment/infrastructurs

3.3 Responsihilities and authority

3.4 Interfaces among the parties involved
1.5 Resources and their allocation

3.6 Training

3.7 Schedules, estimates, and costs

3.8 Risk(s) and contingency(s)

4, General

4.1 Quality assurance procedures

4.2 Metrics

4.2 Test coverage

4.4 (ilossary

4.5 Document change procedures and history

IEEE 829 - Standard for
Software and System Test
Documentation (1998)

o Test Plan (SPACEDIRT:

Scope, People, Approach,
Criteria, Environment,
Deliverables, Incidentals,
Risks, Tasks)

Test specifications: Test
Design, Test Case, Test
Procedure Specifications

Test reporting: Test Item
Transmittal Report, Test Log,
Test Incident Report, Test
Summary Report

Google “10 minute test plan”

= Why do write a plan that is not used and updated?

= Keep only the most important
o Attributes, Components, Capabilities (ACC)

| Simple Web Stor [+] Simple Web Store

jim@amusive.com | Send Feedback | Sign out

Project Spec

About Project Known Risk

Attributes This shows the Total Risk to your application, taking into account any Risk Sources as well as
Components Mitigation Sources that are checked below. Leamn more

Capabilities

Risk ™ Inherent isk ~ # Bugs ™ Code chum ™ Test coverage
Overview

'.':.’e':'t’:ed Data Risk displayed by Attribute and Component
Bugs Secure Simple Fast

Checkins
Data Settings Search

Data Sources .
Data Filters Social
Sales Channel -

Shopping Cart

Social is Secure

User purchases not revealed outside granted permission.

Source:
Google Test Analytics -
Now in Open Source

User social graph not disclosed without permission.

http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html

Software testing

: Test design Testing in the

Planning and
Control

Analysis and
Design

Imlementation
and Execution

Evaluating Exit
Criteria and
Reporting

Test closure

What can and should be tested?
* Designing and specifying test cases

* Goal

* Preconditions

* Test steps, test data

* Expected results, checks

* Before writing the test code
e Systematic techniques

: Test design Testing in the

Planning and .
Manual or automatic

* Not everything is worth

automating
e Executing tests

Implementation Logglng
and Execution Time, test environment

Version SUT and system
Evaluating Exit

Criteria and OUtpUtS
Reporting o

- Incident reporting
Test closure

Software testing

: Test design
Testing process Test levels Test types

|
Testing in the
lifecycle

Planning and
Control

Analysis and
Design

* Decision on when to stop testing
e Evaluating metrics
* Summary reports

Il mplementation
and Execution

Evaluating Exit
= Criteria and
Reporting

= Test closure

Software testing

|
| | |
: Test design
Testing process Test levels Test types e

Planning and
Control

|
Testing in the
lifecycle

Analysis and
Design

Il mplementation
and Execution

e After major milestones

* Collecting experience and feedback

* Finishing and storing reusable
testware (tools, environment)

Evaluating Exit
= Criteriaand
Reporting

- Test closure

Software
testing

Test design

Testing Testing
process EVELS

|
Testing in
the lifecycle

Unit /
Module

s INtegration

m System

m ACCeptance

Alpha and
beta

Software
testing

| | |
Testing Testing Test types Test dg5|gn
process levels techniques

= Functional

|
Testing in
the lifecycle

Non-
functional

a Regression

Software

testing

| | |
Testing Testing Test types Test d_e5|gn
process levels techniques
Non- After changes
functional Previous functions

are still working
Only subset of tests
(test selection)

Test minimization

|
Testing in
the lifecycle

mm Regression

Software
testing

Testing levels Test types
process

Test design Testing in the

techniques lifecycle

Experience-
based

Specification-
based

Structure-
based

= Fault-based

= Probabilistic

Software
testing
I
| | | | |
Testing T vk T s Test dg5|gn Tes’Flng in the
process techniques lifecycle

Experience-
based

* Ad hoc testing
* Exploratory testing MSpecification-
e based
* Freedom and responsibility
of tester B Structure-
e Test design, execution and based
interpretation in parallel

= Fault-based

= Probabilistic

Software
testing

Testing levels Test types
process

* Error guessing
* Previous or typical faults

* Mutation testing

 Mutating the code
— Evaluating tests

 Mutating the tests
— Creating new tests

Test design
techniques

Testing in the
lifecycle

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Software
testing
| | | |
Testing Testing Test design Testing in
e liaeyele

= \/ modell

Test design Testing in the
techniques lifecycle

Planning and Unit / Module Functional E{pRrIEmEE V modell
Control based

Analys!s e Integration Non-functional ST
Design based

Testing process Testing levels Test types

ImpIementa_tlon Regression Structure-based
and Execution
Evaluating Exit
Criteria and Acceptance Fault-based
Reporting
Test closure Alpha and beta Probabilistic

TESTING PRACTICES

Testing @ Microsoft

= Software Developer Engineer in Test (SDET)

= Same career paths as developers
o Testing is not an entry position
o Test manager is not a promotion but a different path

= ,Hiring testers to pound quality into a product
after it’s been developed is a waste of money.”

Lo

= 10 year support cycle for major releases &=

. L . SOFTWARE
o Worth investing in good test automation ATMICROSOFT

,How we test software at Microsoft”, Microsoft
Press, ISBN 0735624259, 2008.

Testing @ Google

R

’)

Google Testl ng Blog

If it ain't bro ying hard enough

oles
o Test Engineer (TE)

o Software Engineer in Test & Infrastructure (SETI)
* Engineering Productivity

he burden of quality is on the
noulders of those writing the code.” gm

’)

Do not hire too many testers.”

https://testing.googleblog.com/2016/03/from-qa-to-engineering-productivity.html

Testing Quadrants

Customer Facing

=] Scenarios

£ Runtime Tools Usability Testing [

; Functional Testing World Readiness =

o Acceptance Tests Exploratory Testing E

£ Take home / Beta -

o Q2 Q3 <

=

. a1 |a4 3

- =]

Code Churn Anal

r Unit Testing ofe -t Ane V.SIS o

o Performance Testing c

— Code Coverage : :) o

© _ _ Security / Privacy Testing 4

- Static Analysis :

o Stress Testing

Technology Facing

Source: http://angryweasel.com/blog/riffing-on-the-quadrants/

TEST LEVELS

Learning outcomes

= Distinguish the scope of different test levels (K2)

= Describe the different integration testing
approaches (K2)

= Recall the goals of system verification and system
validation testing (K1)

Characteristics of tests in different levels

Recommendations from How Google Tests Software:

Small Medium Large
Execution time <100 ms <1sec As fast as poss.
Time limit (kill) 1 minute 5 minutes 1 hour

Resource Small Medium Large
Network (socket) Mocked only localhost Yes
Database Mocked Yes Yes
File access Mocked Yes Yes
System call No Not recommended Yes
Multiple threads Not recommended Yes Yes
Sleep No Yes Yes
System properties No Yes Yes

Testing and test design in the V-model

Requirement
analysis

\

System
specification

\

Archite

design

cture

\

System val.
design

System test
design

Operation,
maintenance

A

System
validation

/

System
verification

Integration test
design

integ

System

ration

Module
design

Module test
design

Module

verification

\/

Module
implementation

Integration testing

Testing the interactions of modules

= Motivation

o The system-level interaction of modules may be
incorrect despite the fact that all modules are correct

= Methods

o Functional testing: Testing scenarios
* Sometimes the scenarios are part of the specification

o (Structure based testing at module level)

= Approaches
o “Big bang” testing: integration of all modules
o Incremental testing: stepwise integration of modules

PR YR YRS

32 @ 0O T

Integration testing approaches

Integration
testing
| | |
Bottom-up

“Big bang” testing

" |ntegration of all modules and testing using the external
interfaces of the integrated system

= External test executor
= Based of the functional specification of the system
" To be applied only in case of small systems

1
Testerl | B Tester2
! 1

c :
/[Debugging is difficult!]
D __—

Incremental integration and testing

" |n case of complex systems (supports debugging)
= Adapts to module hierarchy (calling levels)

Al

A3

A31

>

A311

A312

A32

A33

A311

A312

A313

Top-down integration testing

= Modules are tested from the caller modules

= Stubs replace the lower-level modules that are called

= Requirement-oriented testing

= Module modification: modifies the testing of lower levels

A
Tested module;
\ test executor

Al A2 A3

Module ASE
to be tested /

A32 A33

Bottom-up integration testing

= Modules use already tested modules

= Test executor is needed

= Testing is performed in parallel with integration

= Module modification: modifies the testing of upper levels

A
Test
\ executor

Al A2 A3

|
Module — A32 A33
to be tested J

Top down vs. bottom up

= Top down
+ Requirement oriented
+ Working “skeleton” early
- Harder to create stubs than drivers
- Tests inputs are far from module to integrate

= Bottom up
+ Integration oriented, more constructive
+ Easier to control and observe the system

- System is assembled only at the end

Integration with the runtime environment

= Motivation: It is hard to construct stubs for the
runtime environment

o Platform services, RT-0S, task scheduler, ...
= Strategy:

1.

Top-down integration of the application modules to
the level of the runtime environment

. Bottom-up testing of the runtime environment
* |solation testing of functions (if necessary)

* ,Big bang” testing with the lowest level of the application
module hierarchy

. Integration of the application with the runtime
environment, finishing top-down integration

Testing and test design in the V-model

Requirement
analysis

\

System
specification

\

System val.
design

System test
design

Operation,
maintenance

A

System
validation

System
verification

integ

System

ration

/

Architecture Integration test
design | "~ design
Module Module test
design T design

Module

verification

\/

Module
implementation

System testing

Testing on the basis of the system specification

= Characteristics:
o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties

= Testing aspects:
o Data integrity
o User profile (workload)

o Checking application conditions of the system
(resource usage, saturation)

o Testing fault handling

Types of system tests

Performance testing

-

/f‘gufaﬂontesung [Hardware and software settings]
w

% Concurrency testing * Increasing the number of users
Test \ » Checking deadlock, livelock
ester :

Stress testing [+ Checking saturation effects |

o

Reliability testing

» Real workload
* Response times

[- Checking the effects of faults]

» Checking the redundancy
Failover testing » Checking failover/failback

Testing and test design in the V-model

Requirement
analysis

\

System
specification

\

System val.

design

System test
design

Architecture Integration test
design | "~ design
Module Module test
design T design

Operation,
maintenance

System
validation

System
verification

/

System
integration

/

Module
verification

\/

Module
implementation

Validation testing

= Goal: Testing in real environment
o User requirements are taken into account
o Non-specified expectations come to light
o Reaction to unexpected inputs/conditions is checked
o Events of low probability may appear

= Timing aspects
o Constraints and conditions of the real environment
o Real-time testing and monitoring is needed

" Environment simulation

o If given situations cannot be tested in a real environment
(e.g., protection systems)

o Simulators shall be validated somehow

EXTRA MATERIAL:
UML 2 TESTING PROFILE (U2TP)

U2TP: UML 2 Testing Profile (OMG, 2004)

= Able to capture all needed information for functional black-box
testing (specification of test artifacts)

o Mapping rules to TTCN-3, JUnit
= Language (notation) and not a method (how to test)

Packages (concept groups):
= Test Architecture

o Elements and relationship involved in test
o Importing the UML design model of the SUT

= Test Data

o Structures and values to be processed in a test
= Test Behavior

o Observations and activities during testing

= Time Concepts
o Timer (start, stop, read, timeout), TimeZone (synchronized)

U2TP Test Architecture package

ldentification of main components:
= SUT: System Under Test

o Characterized by interfaces to control and observation
o System, subsystem, component, class, object
= Test Component: part of the test system (e.g., simulator)

o Realizes the behavior of a test case
(Test Stimulus, Test Observation, Validation Action, Log Action)

= Test Context: collaboration of test architecture elements
o Initial test configuration (test components)
o Test control (decision on execution, e.g., if a test fails)

= Scheduler: controls the execution of test components
o Creation and destruction of test components

= Arbiter: calculation of final test results
o E.g., threshold on the basis of test component verdicts

U2TP Test Architecture example

SV e)
SUT parts
/,‘__,/
atesiContexis
SWIFTSuite
77
swiftPort swiftPort 7
«SUb] nét?nu:;k' C «SUbs
euBank : Bank o SWIFTNethork = usBank : Bank
1 1
bankPort accountPort i bankFort accountPort bankPort
bankCo bankCom
Lt J
«SUts «SUbs
euATM: ATM usATM: ATM
™1 [g |
atmPort atmPort
LJ
«testComponents E:]
tc: s gt
= transactionControll ——— [Test component
Utility part parts
dp: «testc?rmponent» Ia:
dataPool IoadMe;nager LoadArbiter

U2TP Test Data package

= |dentification of types and values for test
(sent and received data)

o Wildcards (* or ?)

o Test Parameter
e Stimulus and observation

o Argument
* Concrete physical value

o Data Partition: Equivalence class for a given type
 Class of physical values, e.g., valid names

o Data Selector: Retrieving data out of a data pool
* Operating on contained values or value sets

o Templates

U2TP Test Data example

TestData

TrxnData

account : String
balance: Integer
amount: IMoney
cardData: CardData

s

:EUTrxnData[1]

account = "Fred Bloggs”
balance = 10,000
amount = 3500
cardData = Card1

:EUTrxnDatal2]

account = "Dr Watson”

<<<DataPartition>> <<<DataPartition>> balance = 10,000
EUTrxnData USTrxnData amount = 20
cardData = Card2
<<DataSelector>> <<DataSelector>> :USTrxnData[1]
getEUTrxnData(): TrxnData | |getUSTrxnData(). TrxnData .
B > account = "Joe Senior’
| balance = 10,000
amount = 3500
1 cardData = Card3
«DataPool»
: [2]
DataPool USTrxnDatal2
account = "Barbara Wall”
balance = 10,000
<<DataSelector>> amount = 20
getDistributioninterval():Integer cardData = Card4

U2TP Test Behavior package

= Specification of default/expected behavior

= |dentification of behavioral elements:
o Test Stimulus: test data sent to SUT
o Test Observation: reactions from the SUT
o Verdict: pass, fail, error, inconclusive values
o Actions: Validation Action (inform Arbiter), Log Action

= Test Case: Specifies one case to test the SUT
o Test Objective: named element

o Test Trace: result of test execution
* Messages exchanged

o Verdict

U2TP Test Behavior example

P

Test suite object
performing the test case

sd addSameMoney():Verdi -

self Class instances
of the SUT
LS
_ Money(20, "USD") P = |
"""""""""""""" money1:Money
sd Wiring(DataPecol p))
«testComponents asuts wsSuts asuts

I
|
|
l
Money(S0, "USD") : Im usATM usBank euBank
|
|
|
|
|
|
|

———————— ————————— —— — ———— ————

I
|
|
I
i
o .. S<create>>. | atestComponents !
Sdinoney2) > startTest b i
get N :
"""" . |
1 alt)
ot J runEUTrxn(p.getEUTrxnData())
add (-) : new Money (70, "USD” i I
}‘i""“(‘) ------- ?Y'(','",T'",{ .48 | p-—————- ————J:¢——————————~:t————————————JI————————————IL————-
| |
. 3 Return of i runUSTrxn(p.getUSTrxnData())
retumn pass y 1

]
1

; B
[validationAction» pass |

\ J—L test verdict

T
I
i
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Example: BlueTooth roaming

System under test:

Slave: Master:
. . Data Exchange . X
Slave Application - —— == 2 - > Master Application
SRI I-II-IIIIHI-II-II-III|H|-II-+-|III-II-II-IHIIII-II-II-IHIIII-II-II-IIIIHI-I {Vlnual CGHHECtlﬂn} I-IHIIII-II-II-IHIIII-II-II-IHIII|-I|-|I-|II|H+II-|I-|IIIHI-II-II-IIII‘II-II-II MRI
Slav Master
Roaming Layer Roaming Layer
HCT |I-I|-I||IHI-||-I|-I||IHI-||-I:I-IIIILII-II-IHIIII-II-II-IHIIII-II-II-IIIIHI- HCI IIIIilIIIIIIIlIIII |I|I|Ill|l|l|ill|l LNTI
Link Manager T T Link Manager
! Slave Master '
Baseband BT- BT- ‘ Baseband LAN
. 'Hardware Hardware .
Bluetooth Radio L L |Eluetouth Radio!
A A _
Radio Connection Fixed Connection

Test objective:

= Slave Roaming Layer functionality
o Monitoring link quality
o Connecting to a different master

Example: Components

Jrsum

" testcomponent
Test-Coordinator """" un.h‘n‘_l.-‘pan‘ """"
i Location-DataBase
= Ot Location
Coordinator | j Sarver
T L
—
o el ATa
“testcomponent " { test component | test component
SlaveApp i Masteri Master2
Application| | : Application Application
L N (J: - }L I
oo e i
E
Master Master
Slave BTRoaming BTRoaming
l BTRoaming
HeCl .;_—[) HCI []'_)HCI
.................................. resrmmmnmrHardware JURSUN SO
Slave Master
BT-HW BT-HWs
t . System Under Test % . Test Component i . Test Components

i " with new class

Overview

|7 with existing classes

BluetoothTest

Yo —
3 _zampetBluetooth-
{{Tﬂsﬁonmﬁfmbb Hoaming
==TestContoxts= Slave-
BluetoothSuite Application

HC

<< TegdComponent==
Hardware

<<TestCamponant» I'I:'_m i
Test- I:I.I-DcaB“un
Coordinator ataBase

' LNI

PE [=
== TesiComponants>

Master

Test package

<<TestContextsx
BluetoothSuite
+ HList: list
— threshold: Integer
— verdict: Verdict

+ Connect_to_Master()
+ Bad_Link_Quality()
+ Good_Link_Quality()

<<TestCase>>
— TestRoaming_noWarning(): Verdict

<<TestCase=>
— TestRoaming_withWarning(): Verdict

Test context

UEGYETEM

178

Example: Test configuration and control

<< TestContext>:>
BluetoothSuite

< Tesilo mpor et
sa: Slave-
Application

1

p_=

<< lesiComponants:
co: Test—Coordinator

Location-
Database

—
<= TastComponant==
hw: Hardware

<= JestiContaxtsx
BluetoothSuite

sd Blustooth_TestControl |

Test configuration

ref | yerdict :=
TestRoaming_noWarning

[verdict==fail]
[verdict=—=pass]
ref [verdict :=
TestRoaming_withWarning

®

Test control

sd TestRoaming_n oWarning{]:Uerdic_:L,' —
Te St . Coord-Defaul
e T —— "‘ B Jnﬁn = b Te g = g = A=Testli Bl < B0 orie i
: gz [| fom fatart o I N i e T
Application Roaming Coordinatol
scenario Ti(6s)
f
= Connect_To_Master("M1")
data . data ,,
Test case 0583 "2 Good_Link_Quality
implementa- iR data . data
tion "Y' Bad_Link_Quality
(See Blue- con_request("M2’) : con request ;
. ._con_request ;
ToothSuite) T22s) |
;con_request{ Mgg) con_request:
* References | _con_request |
e Timers T2
i . con_accept | i i
L ; : - i : :
i ._con_confirm_slave i o
’ ;:ﬁf;‘;;ul‘ - ,_con_confirm(*M3")
[ref | |] |
makeList
! i roamingList{["M1","M2","M4"]):
E_mamingList(["M;l","ME","M4"]} roamingljsét{["l"m " M2 M4 '
raf i i : E :
Disconnect
T
<<'»‘HH$E|‘(::IHACHGH>:
pass

Test scenarios (details)

sd Good_Link_Quality

<<SUT>
sr:Slave

Roaming

v

< TestComponents
hw:Hardware

get_link_quality

quality(good)

sdBad_Link_Quality |

cxSUT>=
sr:Slave
Roaming

W

<< TestComponent=
hw:Hardware

get_link_quality

. quality(bad)

Sequence diagrams

waoDafaul £

statemachine Coord_

Deto

Ti/setverdict(fail)

/

&

=

e

U

*fsetverdict{inconc)

T2/=zetvardict{fail)

Default behaviours specified
to catch the observations

that lead to verdicts

e Here: Processing timer events

