
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Testing process and levels

Zoltan Micskei, Istvan Majzik

1

Software and Systems Verification (VIMIMA01)



Main topics of the course

 Overview (1)

o V&V techniques, Critical systems

 Static techniques (2)

o Verifying specifications

o Verifying source code

 Dynamic techniques: Testing (7)

o Developer testing, Test design techniques

o Testing process and levels, Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification
2



TESTING PROCESS

3



Learning outcomes

 Explain the activities and tasks in the typical test 
process (K2)

4



5

Software 
testing

Testing 
process

Test levels Test types
Test design 
techniques

Testing in 
the lifecycle

Overview of testing concepts



6

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Imlementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

Source: ISTQB CTFL syllabus



7

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Imlementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

Test planning: Scope, risks, objectives
• Test approach
• Test strategy and/or test policy
• Required test resources like people, 

test environments, etc.
• Schedule of test analysis and design 

tasks, test implementation, execution 
and evaluation

• Exit criteria such as Coverage criteria
Test control: Monitoring, corrections



Test strategy

 Possible example:

o Test-driven development

oModule & system

o JUnit & GUI Tester

o Developers & test 
engineers

o At least 90% statement 
coverage & every use 
case requirement

o Test Report according to 
IEEE 829 

 Guidelines for

o What methodology?

oWhat kinds of tests?

o What tools?

o Who will test?

o Exit criteria?

o What 
documentation?

8



9

Test plan

 Mapping test strategy to the actual test project
o Test objectives

o Test objects, test environment

o Resources, roles, 

o Schedules

 Defining test phases
o Length of phase

o Exit criteria

o Measuring quality of testing



10

Test documentation

 IEEE 829 - Standard for 
Software and System Test 
Documentation (1998)

o Test Plan (SPACEDIRT: 
Scope, People, Approach, 
Criteria, Environment, 
Deliverables, Incidentals, 
Risks, Tasks)

o Test specifications: Test 
Design, Test Case, Test 
Procedure Specifications

o Test reporting: Test Item 
Transmittal Report, Test Log, 
Test Incident Report, Test 
Summary Report



Google “10 minute test plan”

 Why do write a plan that is not used and updated?

 Keep only the most important

o Attributes, Components, Capabilities (ACC)

11

Source: 
Google Test Analytics -
Now in Open Source

http://googletesting.blogspot.hu/2011/10/google-test-analytics-now-in-open.html


12

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Imlementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

What can and should be tested?
• Designing and specifying test cases

• Goal
• Preconditions
• Test steps, test data
• Expected results, checks

• Before writing the test code
• Systematic techniques



13

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Implementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

• Manual or automatic
• Not everything is worth 

automating

• Executing tests
• Logging

• Time, test environment
• Version SUT and system
• Outputs
• …

• Incident reporting



14

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Implementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

• Decision on when to stop testing
• Evaluating metrics
• Summary reports



15

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Implementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Test levels Test types
Test design 
techniques

Testing in the 
lifecycle

• After major milestones
• Collecting experience and feedback
• Finishing and storing reusable 

testware (tools, environment)



16

Software 
testing

Testing 
process

Testing 
levels

Unit / 
Module

Integration

System

Acceptance

Alpha and 
beta

Test types
Test design 
techniques

Testing in 
the lifecycle



17

Software 
testing

Testing 
process

Testing 
levels

Test types

Functional

Non-
functional

Regression

…

Test design 
techniques

Testing in 
the lifecycle



18

Software 
testing

Testing 
process

Testing 
levels

Test types

Functional

Non-
functional

Regression

…

Test design 
techniques

Testing in 
the lifecycle

• After changes
• Previous functions 

are still working
• Only subset of tests 

(test selection)
• Test minimization



19

Software 
testing

Testing 
process

Testing levels Test types
Test design 
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the 
lifecycle



20

Software 
testing

Testing 
process

Testing levels Test types
Test design 
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the 
lifecycle

• Ad hoc testing
• Exploratory testing

• Freedom and responsibility 
of tester

• Test design, execution and 
interpretation in parallel



21

Software 
testing

Testing 
process

Testing levels Test types
Test design 
techniques

Experience-
based

Specification-
based

Structure-
based

Fault-based

Probabilistic

Testing in the 
lifecycle

• Error guessing
• Previous or typical faults

• Mutation testing
• Mutating the code

– Evaluating tests
• Mutating the tests

– Creating new tests



22

Software 
testing

Testing 
process

Testing 
levels

Test types
Test design 
techniques

Testing in 
the lifecycle

V modell

Agile

…



23

Software testing

Testing process

Planning and 
Control

Analysis and 
Design

Implementation 
and Execution

Evaluating Exit 
Criteria and 
Reporting

Test closure

Testing levels

Unit / Module

Integration

System

Acceptance

Alpha and beta

Test types

Functional

Non-functional

Regression

…

Test design 
techniques

Experience-
based

Specification-
based

Structure-based

Fault-based

Probabilistic

Testing in the 
lifecycle

V modell

Agile

…



TESTING PRACTICES

24



25

Testing @ Microsoft

 Software Developer Engineer in Test (SDET)

 Same career paths as developers 

o Testing is not an entry position

o Test manager is not a promotion but a different path

 „Hiring testers to pound quality into a product 
after it’s been developed is a waste of money.”

 10 year support cycle for major releases

oWorth investing in good test automation

„How we test software at Microsoft”, Microsoft 
Press, ISBN 0735624259, 2008.



26

Testing @ Google

Roles

o Test Engineer (TE)

o Software Engineer in Test & Infrastructure (SETI)

• Engineering Productivity

„The burden of quality is on the 
shoulders of those writing the code.”

„Do not hire too many testers.”

https://testing.googleblog.com/2016/03/from-qa-to-engineering-productivity.html


Testing Quadrants

27

Source: http://angryweasel.com/blog/riffing-on-the-quadrants/



TEST LEVELS

28



Learning outcomes

 Distinguish the scope of different test levels (K2)

 Describe the different integration testing 
approaches (K2)

 Recall the goals of system verification and system 
validation testing (K1)

29



Characteristics of tests in different levels

Recommendations from How Google Tests Software:

30

Small Medium Large

Execution time < 100 ms < 1 sec As fast as poss.

Time limit (kill) 1 minute 5 minutes 1 hour

Resource Small Medium Large

Network (socket) Mocked only localhost Yes

Database Mocked Yes Yes

File access Mocked Yes Yes

System call No Not recommended Yes

Multiple threads Not recommended Yes Yes

Sleep No Yes Yes

System properties No Yes Yes



Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val. 

design

31



Integration testing

 Motivation

o The system-level interaction of modules may be 
incorrect despite the fact that all modules are correct

 Methods
o Functional testing: Testing scenarios

• Sometimes the scenarios are part of the specification

o (Structure based testing at module level)

 Approaches
o “Big bang” testing: integration of all modules

o Incremental testing: stepwise integration of modules
32

Testing the interactions of modules



Integration testing approaches

Integration 
testing

Big bang Incremental

Top-down

Bottom-up

33



“Big bang” testing

 Integration of all modules and testing using the external 
interfaces of the integrated system

 External test executor

 Based of the functional specification of the system

 To be applied only in case of small systems

34

D

C

Tester1

A

Tester2B

Debugging is difficult!



Incremental integration and testing

 In case of complex systems (supports debugging)

 Adapts to module hierarchy (calling levels)

35

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

A3 A31 A311 A312A



Top-down integration testing

 Modules are tested from the caller modules

 Stubs replace the lower-level modules that are called

 Requirement-oriented testing

 Module modification: modifies the testing of lower levels

36

A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Tested module:

test executor

Module 

to be tested

Test

stub

Test

stub

Test

stub



Bottom-up integration testing
 Modules use already tested modules

 Test executor is needed

 Testing is performed in parallel with integration

 Module modification: modifies the testing of upper levels
A

A1 A2

A31

A311

A3

A32 A33

A312 A313

Test

executor

Module

to be tested

Tested

module

Tested

module

Tested

module

37



Top down vs. bottom up

 Top down

+ Requirement oriented

+ Working “skeleton” early

- Harder to create stubs than drivers

- Tests inputs are far from module to integrate

 Bottom up

+ Integration oriented, more constructive

+ Easier to control and observe the system

- System is assembled only at the end

38



Integration with the runtime environment

 Motivation: It is hard to construct stubs for the 
runtime environment
o Platform services, RT-OS, task scheduler, …

 Strategy:
1. Top-down integration of the application modules to 

the level of the runtime environment

2. Bottom-up testing of the runtime environment
• Isolation testing of functions (if necessary)

• „Big bang” testing with the lowest level of the application 
module hierarchy

3. Integration of the application with the runtime 
environment, finishing top-down integration

39



Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val. 

design

40



System testing

Testing on the basis of the system specification

 Characteristics:
o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties

 Testing aspects:
o Data integrity

o User profile (workload)

o Checking application conditions of the system 
(resource usage, saturation)

o Testing fault handling

41



Types of system tests

42

Performance testing

Configuration testing

Concurrency testing

Stress testing

Reliability testing

Tester

Failover testing

• Checking saturation effects

• Real workload

• Response times

• Hardware and software settings

• Increasing the number of users

• Checking deadlock, livelock

• Checking the effects of faults

• Checking the redundancy

• Checking failover/failback



Testing and test design in the V-model

Requirement

analysis

System

specification

Architecture

design

Module

design

Module

implementation

Module

verification

System

integration

System

verification

System

validation

Operation,

maintenance

Module test

design

Integration test

design

System test

design

System val. 

design

43



Validation testing

 Goal: Testing in real environment
o User requirements are taken into account

o Non-specified expectations come to light

o Reaction to unexpected inputs/conditions is checked

o Events of low probability may appear

 Timing aspects
o Constraints and conditions of the real environment

o Real-time testing and monitoring is needed

 Environment simulation
o If given situations cannot be tested in a real environment 

(e.g., protection systems)

o Simulators shall be validated somehow

44



EXTRA MATERIAL: 
UML 2 TESTING PROFILE (U2TP)

45



U2TP: UML 2 Testing Profile (OMG, 2004)
 Able to capture all needed information for functional black-box 

testing (specification of test artifacts)
o Mapping rules to TTCN-3, JUnit

 Language (notation) and not a method (how to test)

Packages (concept groups):

 Test Architecture
o Elements and relationship involved in test

o Importing the UML design model of the SUT

 Test Data
o Structures and values to be processed in a test

 Test Behavior
o Observations and activities during testing

 Time Concepts
o Timer (start, stop, read, timeout), TimeZone (synchronized)



U2TP Test Architecture package

Identification of main components:
 SUT: System Under Test

o Characterized by interfaces to control and observation

o System, subsystem, component, class, object

 Test Component: part of the test system (e.g., simulator)
o Realizes the behavior of a test case

(Test Stimulus, Test Observation, Validation Action, Log Action)

 Test Context: collaboration of test architecture elements
o Initial test configuration (test components)

o Test control (decision on execution, e.g., if a test fails)

 Scheduler: controls the execution of test components 
o Creation and destruction of test components

 Arbiter: calculation of final test results
o E.g., threshold on the basis of test component verdicts



U2TP Test Architecture example



U2TP Test Data package

 Identification of types and values for test 
(sent and received data)
o Wildcards (* or ?)

o Test Parameter
• Stimulus and observation

o Argument
• Concrete physical value

o Data Partition: Equivalence class for a given type
• Class of physical values, e.g., valid names

o Data Selector: Retrieving data out of a data pool
• Operating on contained values or value sets

o Templates



U2TP Test Data example



U2TP Test Behavior package

 Specification of default/expected behavior

 Identification of behavioral elements:
o Test Stimulus: test data sent to SUT

o Test Observation: reactions from the SUT

o Verdict: pass, fail, error, inconclusive values

o Actions: Validation Action (inform Arbiter), Log Action

 Test Case: Specifies one case to test the SUT
o Test Objective: named element

o Test Trace: result of test execution
• Messages exchanged

o Verdict



U2TP Test Behavior example



Example: BlueTooth roaming

System under test:

Test objective:

 Slave Roaming Layer functionality
o Monitoring link quality

o Connecting to a different master



Example: Components

Test package

Test contextOverview



Example: Test configuration and control

Test configuration Test control



Test
scenario

Test case
implementa-
tion
(see Blue-
ToothSuite)

• References
• Timers
• Defaults



Test scenarios (details)

Sequence diagrams

Default behaviours specified
to catch the observations
that lead to verdicts
• Here: Processing timer events


