
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Advanced test design techniques

David Honfi, Zoltan Micskei,
Istvan Majzik

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

 Overview (1.5)

o Introduction, V&V techniques

 Static techniques (1.5)

o Specification, Verifying source code

 Dynamic techniques: Testing (7)

o Testing overview, Test design techniques

o Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification

2

Test design techniques

3

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

Coverage metrics

 What % of testable elements have been tested

 Testable element

o Specification-based: requirement, functionality…

o Structure-based: statement, decision…

 Coverage criterion: X % for Y coverage metric

 This is not fault coverage!

4

How to use coverage metrics?

Evaluation
(measure)

•Evaluate
quality of
existing tests

•Find missing
tests

Selection (goal)

•Design tests
to satisfy
criteria

5

SPECIFICATION-BASED TESTING

6

Learning outcomes

 Describe the goal of specification-based test
design techniques (K2)

 Use test design techniques decision tables and
pair-wise testing to select test cases (K3)

7

Specification-based techniques

8

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

Specification-based techniques

9

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

Decision or cause/effect analysis

 Rules for connecting inputs and outputs

o Business rules: price calculation, insurance, loan…

o Technical: authentication, monitoring system…

 Connections for

o Condition/cause: equiv. partitions of input parameters

o Action/effect: equiv. partitions of output parameters

 Representations:

o Cause-effect graphs

o Decision tables

10

Cause-effect analysis: representation

 Cause-effect graph (Boole graph)

o Source: equivalence partitions of input parameters

o Sink: equivalence partitions of output parameters

o Intermediate: OR, AND, NOT

11

A

B

1

2

OR
Action 1

Action 2

Condition 1

Condition 2

Cause-effect analysis: test design

 Using for test design

o Covering paths in the graph

o Truth tables (see Digital design)

o Originated from HW testing

12

A

B

1

2

OR
Action 1

Action 2

Condition 1

Condition 2

Decision tables

Rule 1 Rule 2 Rule N

Conditions

Condition 1 T T

Condition 2 F T

…

Actions

Action 1 X

Action 2 X

….

13

 Represent each conditions/actions with Booleans

 Conditions/actions in rows, business rules in columns

o (Or representation can be transposed)

 Rules will be the test cases

EXERCISE

The final price of the order is calculated based on
discounts. If the user has a membership card (silver 2%,
gold 3%), this global discount is always applied. There
are also price dependent discounts. If before applying
global discounts the total amount to pay is greater than
100 EUR then the discount is 1%, if it is greater than 200
EUR then the discount is 2%.

Create a decision table!

Decision table

14

Standardized notation (decision tables)

 OMG’s Decision Model And Notation (DMN)

 Represent decision’ requirements, rules…

15

Source: OMG

http://www.omg.org/spec/DMN

Specification-based techniques

16

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…
Based on
use cases

When there are many input parameters

 Failures are caused by (specific) combinations

 Testing all combinations: too much test cases

 Rare combinations may also cause failures

17

Combinatorial testing techniques

 Ad hoc („best guess”)

o Intuition, requirements, typical faults…

 Each choice

o Every choice in at least one test

o Can miss important combination

 N-wise testing

o For each arbitrary n parameters, testing all possible
combinations of their potential values

o Special case (n = 2): pairwise testing

18

Efficiency of n-wise testing

Source: R. Kuhn et al. „Combinatorial Software

Testing”, IEEE Computer, 42:8, 2009

Many faults are triggered by
specific combinations of at

least 2 parameters
(or even 3-6)

Comparing ad hoc
and pairwise testing

(10 projects)

19

EXERCISE

 Given input parameters and potential values:
o OS: Windows, Linux

o CPU: Intel, AMD

o Protocol: IPv4, IPv6

 How many combinations are possible?

 How many test cases are needed for pairwise testing?

 A potential test suite:
o T1: Windows, Intel, IPv4

o T2: Windows, AMD, IPv6

o T3: Linux, Intel, IPv6

o T4: Linux, AMD, IPv4

Pair-wise testing

21

N-wise testing: theory and practice

 Theory: constructing a coverage array

 Tools (see http://www.pairwise.org)

o PICT: Pairwise Independent Combinatorial Testing (MS)

o ACTS - Advanced Combinatorial Testing Suite (NIST)

Source: D. R. Kuhn, R. N. Kacker, Y. Lei

Practical Combinatorial Testing

NIST Special Publication 800-142

22

http://www.pairwise.org/
https://github.com/microsoft/pict
http://csrc.nist.gov/groups/SNS/acts/index.html
http://csrc.nist.gov/groups/SNS/acts/documents/SP800-142-101006.pdf

STRUCTURE-BASED TESTING

23

Structure-based Testing: Outline

 Recap: basic concepts

 Control-flow criteria

 Data-flow criteria

 Evaluation of structure-based testing

24

What is “internal structure”?

 In case of models: structure of the model

 In case of code: structure of the code (CFG)

int a = 1;
while(a < 16) {
if(a < 10) {
a += 2;

} else {
a++;

}
}
a = a * 2;

Source code: Control-flow graph:

Basic concepts

26

Statement

Block

Condition

Decision

Branch

int t = 1;

Speed s = SLOW;

if (! started){

start();

}

if (t > 10 && s == FAST){

brake();

} else {

accelerate();

}

27

Basic concepts

 Statement

 Block

o A sequence of one or more consecutive executable statements
containing no branches

 Condition

o Logical expression without logical operators (and, or…)

 Decision

o A logical expression consisting of one or more conditions
combined by logical operators

 Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

Example: decision and condition

 A decision with one condition:

if (temp > 20) {…}

 A decision with 3 conditions:
if (temp > 20 && (valveIsOpen || p == HIGH)) {…}

28

Control Flow Graph (CFG)

 A CFG represents the flow of control

 G = (N, E) directed graph

o Node n ∈ N is a basic block

• Basic block: Sequence of statements with exactly one entry
and exit points.

o Edge e = (ni, nj) ∈ E is a possible flow of control from
basic block ni to basic block nj

29

EXERCISE Building a CFG

30

public void insertionSort(int[] a) {

for(int i = 0; i < a.size(); i++) {

int x = a[i];

int j = i - 1;

while(j >= 0 && a[j] > x) {

a[j+1] = a[j];

j = j – 1;

}

a[j+1] = x;

}

System.out.println("Finished.");

}

Build the CFG of
this program

code

Structure-based Testing: Outline

 Recap: basic concepts

 Control-flow criteria

 Data-flow criteria

 Evaluation of structure-based testing

31

Learning outcomes

 Explain the differences between different control-
flow based coverage criteria (K2)

 Design tests using control-flow based coverage
criteria for imperative programs (K3)

32

33

1. Statement coverage

Number of statements executed during testing

Number of all statements

Statement coverage: 4/5 = 80%

A1

A2

A3A4

A5

Assessing statement coverage

34

k=0

k=1

m=1/k

[a>0]
[a<=0]

All statement is executed at least once

Does not guarantee coverage of empty branches

Statement coverage: 100%

BUT: [a<=0] branch missing!

35

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

Decision coverage: 1/2 = 50%

A2

A3A4

How many outcomes can a decision have?

Assessing decision coverage

36

A2

A3A4

[safe(c) || safe(b)]

100% decision coverage:

All statement is executed at least once

Does not take into account all combinations of conditions!

All outcomes of decisions are covered

safe(c) safe(b)

1 T F

2 F F

safe(b) == True missing!

37

3. Condition coverage

Generic coverage metric for conditions:

Number of tested combinations of conditions

Number of aimed combinations of conditions

Definition (what conditions are aimed):
• Every condition must be set to true and false during testing

Other possible definition:
• Every condition is evaluated to both true and false

• Not the same as above due to lazy evaluation

Assessing condition coverage

38

Does not yield 100% decision coverage!

Every condition has taken all possible outcomes at least once

A2

A3A4

[safe(c) || safe(b)]

100% condition coverage:

safe(c) safe(b)

1 T F

2 F T

False outcome of decision missing!

4. Condition/Decision Coverage (C/DC)

39

Combination of condition and decision coverage

40

Assessing C/DC Coverage

A2

A3A4

[safe(c) || safe(b)]

Every decision has taken all possible outcomes at least once.

Every condition has taken all possible outcomes at least once

Does not take into account whether the condition has any effect!

100% C/DC coverage:

safe(c) safe(b)

1 T T

2 F F

41

5. Modified Condition/Decision Coverage (MC/DC)

 Each entry and exit point has been invoked at least once,

 every condition in a decision in the program has taken all
possible outcomes at least once,

 every decision in the program has taken all possible
outcomes at least once,

 each condition in a decision is shown to independently
affect the outcome of the decision.

A2

A3A4

[safe(c) || safe(b)]

100% MC/DC coverage:

safe(c) safe(b)

1 T F

2 F T

3 F F

42

6. Multiple Condition Coverage

Every combinations of conditions tried

 For n conditions 2n test cases may be necessary!

 (Bit less with lazy evaluation)

 Sometimes not practical, e.g. in avionics systems
there are programs with more than 30 conditions!

A2

A3A4

[safe(c) || safe(b)]

100% MCC coverage:

safe(c) safe(b)

1 F F

2 F T

3 T F

4 T T

43

Comparing control-flow criteria

Source: Kelly J. Hayhurst et al. „A Practical Tutorial on Modified Condition/Decision Coverage”, NASA/TM-2001-210876, 2001

44

Comparing control-flow criteria

Source: S. A. Vilkomir and J. P. Bowen, “From MC/DC to RC/DC: formalization and analysis of control-flow testing criteria,” Formal

Aspects of Computing, vol. 18, no. 1, pp. 42-62, 2006.

EXERCISE Specification-based test design

45

Product getProduct(String name, Category cat){

if (name == null || ! cat.isValid)

throw new IllegalArgumentException();

Product p = ProductCache.getItem(name);

if (p == null){

p = DAL.getProduct(name, cat);

}

return p;

}

Design tests for
1. Statement
2. Decision
3. C/DC coverage

47

7. Basis path coverage

Number of independent paths traversed during testing

Number of all independent paths

A1

A2

A4A3

A5

A6

A8A7

A9

Tests
1. A1, A2, A3, A5, A6, A7, A9
2. A1, A2, A4, A5, A6, A8, A9

Statement coverage: ?
Decision coverage: ?
Path coverage: ?

Assessing full path coverage

 100% path coverage implies:

o 100% statement coverage, 100% decision coverage

o 100% multiple condition coverage is not implied

 Full path coverage is usually not practical
in case of loops

48

51

Additional coverage criteria

 Loop
o Executing loops 0, 1 or more times

 Race
o Executions from multiple threads on code

 …

Calculating coverage in practice

 Every tool uses different definitions

 Implementation

o Instrument source/byte code

o Adding instructions to count coverage

52

if (a > 10){
CoveredBranch(1, true);
b = 3;

} else {
CoveredBranch(1, false);
b = 5;

}
send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

Structure-based Testing: Outline

 Recap: basic concepts

 Control-flow criteria

 Data-flow criteria

 Evaluation of structure-based testing

53

Learning outcomes

 Summarize the basic ideas of data-flow coverage
criteria (K2)

54

55

Goal of data-flow coverage

 Idea:

o Track the assignment and usage of variables

o Label CFG with data-flow events

 Faults to detect:

o Erroneous assignments

o Effect of assignments

Labeling the control flow graph

 def(v): variable v is assigned in the given location

 use(v): variable v is used in the given location

o p-use(v): value of variable v is used in a condition

o c-use(v): value of variable v is used in a computation

56

EXERCISE Labeling variable def and use

57

x=a+2

z=x+y

y=24

if (x>12)

def x

c-use x

def y

c-use y def z

c-use a

x y z a

p-use x

Variable:

y=30 def y

1

2

3

4

5

Program paths

 Definition clear path for variable v

o v is not assigned in the nodes of the path

58

x=a+2

z=x+y

y=24

if (x>12)

y=30

Definition clear
path for x

Definition clear
path for y

59

Data-flow criteria

 All-defs:

o def v

o use v

use v use v use v

def vfor every v, for every def v:

at least one

def-free path

to one use-v

use v use v use v

def v All-uses:
o p-uses,

o c-uses

use v use v use v

def v All-paths:

60

Comparing structural coverage criteria

All-DU-Paths

All-Uses

All C-Uses / Some P-Uses

All-Defs

All-P-Uses / Some C-Uses

All-P-Uses

All-Edges

All-Nodes

Average projects do
not measure coverage

or aim only for
statement coverage

Standards for safety-
critical prescribe more

complex criteria

Structure-based Testing: Outline

 Recap: basic concepts

 Control-flow criteria

 Data-flow criteria

 Evaluation of structure-based testing

61

Using structural test coverage criteria

 Can be used for:

o Find not tested parts of the program

oMeasure “completeness” of test suite

o Can be basis for exit criteria

o [Spoiler] Test generation (see lectures later)

 Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

62

Using structural test coverage criteria

 Experience from Microsoft

o „Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o „Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o „The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: „Parameterized Unit Testing with Microsoft Pex”)

 Related case studies:

o „Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o „The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

63

http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1109/TSE.2015.2421011

SUMMARY

64

Test design techniques

 Specification and structure based techniques

o Many orthogonal techniques

o Every techniques need practice!

 Only basic techniques are used commonly 

o Exception: safety-critical systems
(e.g. DO178-B requires MC/DC coverage analysis)

 Combination of techniques is useful:

• Example (Microsoft report):

specification based: 83% code coverage

+ exploratory: 86% code coverage

+ structural: 91% code coverage

6565

