
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Code-based test generation

David Honfi, Zoltan Micskei,
Istvan Majzik

Software and Systems Verification (VIMIMA01)

1

Main topics of the course

 Overview (1.5)

o Introduction, V&V techniques

 Static techniques (1.5)

o Specification, Verifying source code

 Dynamic techniques: Testing (7)

o Testing overview, Test design techniques

o Test generation, Automation

 System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification

2

Learning outcomes

 Explain the basic ideas of different code-based
test generation techniques (K2)

 Demonstrate the workflow of symbolic execution
on a method by graphically representing the
execution using a symbolic execution tree (K3)

 Use different code-based test generator tools (K3)

3

Motivation

 Given a barely tested software to test

o Availability: source code or binary

 Developer testing

o Can be expensive, incomplete, etc.

 Idea: generate tests somehow!

o Based on various criteria (e.g., coverage)

4

Test selection based on source code

5

int fun1(int a, int b){
if (a == 0){

printf(ERROR_MSG);
return -1;

}
if (b > a)

return b*a + 5;
else
return (a+b) / 2;

}

1
2

3

4

a b statement

0 * 1, 2

a!=0 b > a 3

a!=0 b <= a 4

This can be (easily) automated!

Idea of white-box test generation

6

Source/binary
code

Selected
inputs

Test generator tool

1.

1.

generate 2.

2.

execute

Observed
output

3.

3.

What is missing?

What can be checked without expectations?

 Basic, generic errors (exception, segfault…)

 Failing assert statement for different inputs

 Manually extending assertions can improve this

 Reuse of already existing outputs

o Regression testing, different implementations

7

test case = input + test oracle

TECHNIQUES

8

Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

9

Example: Static symbolic execution

10

int fun1(int a, int b){
if (a == 0){

printf(ERROR_MSG);
return -1;

}
if (b > a)

return b*a + 5;
else
return (a+b) / 2;

}

1
2

3

4

a == 0

a: 0
b: 0

T

b > a

F

a: 1
b: 2

T

a: 2
b: 1

F

PC: Path
Constraint

Selected
inputs

Symbolic execution: the idea

 Static program analysis technique from the ’70s

 Application for test generation

o Symbolic variables instead of normal ones

o Constraints forming for each path with symb. variables

o Constraint solving (e.g., SMT solver)

o A solution yields an input to execute a given path

 New century, new progress:

o Enough computing power (e.g., for SMT solvers)

o New ideas, extensions, algorithms and tools

11

Extending static symbolic execution

 Static SE fails in several cases, e.g.

o Too long paths too many constraints

o Cannot decide if a path is really feasible or not

 Idea: mix symbolic with concrete executions

o Dynamic Symbolic Execution (DSE) or

o Concolic Testing

12

Dynamic symbolic execution

Code to generate inputs for:

Constraints to solve

a!=null

a!=null &&
a.Length>0

a!=null &&
a.Length>0 &&
a[0]==1234567890

void CoverMe(int[] a)
{

if (a == null) return;
if (a.Length > 0)

if (a[0] == 1234567890)
throw new Exception("bug");

}

Observed constraints

a==null
a!=null &&
!(a.Length>0)
a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

int[] a

null

{}

{0}

{123…}
a==null

a.Length>0

a[0]==123…
T

TF

T

F

F

Execute&MonitorSolve

Choose next path

Done: There is no path left.

Negated condition

Source: T. Xie, N. Tillmann, P. Lakshman:
Advances in Unit Testing: Theory and Practice

13

Tools available

Name Platform Language Notes

KLEE Linux C (LLVM bitcode)

Pex Windows .NET assembly Included in Visual Studio (IntelliTest)

SAGE Windows x86 binary Security testing, SaaS model

Jalangi - JavaScript

Symbolic
PathFinder

- Java

Other (discontinued) tools:

CATG, CREST, CUTE, Euclide, EXE, jCUTE, jFuzz, LCT, Palus, PET, etc.

14

More tools: http://mit.bme.hu/~micskeiz/pages/cbtg.html

http://mit.bme.hu/~micskeiz/pages/cbtg.html

EXERCISE Building a SE tree

16

public bool fun2(int a) {

int[] arr = new int[] { a, a*2, a*3 };

for(int i = 0; i < 3; i++) {

if(arr[i] > 10) {

return false;

}

}

return true;

}

Build the SE tree
of this method

F

F

F

T

a > 10

a <= 10 &&
a*2 > 10

a <= 10 &&
a*2 <=10 &&

a*3 > 10

a <= 10 &&
a*2 <=10 &&

a*3 <= 10

Pex for fun / Code Hunt
http://pexforfun.com

http://codehunt.com

17

Parameterized Unit Testing

 Idea: Using tests as specifications

o Easy to understand, easy to check, etc.

o But: too specific (used for a code unit), verbose, etc.

 Parameterized Unit Test (PUT)

o Wrapper method for method/unit under test

oMain elements

• Inputs of the unit

• Assumptions for input space restriction

• Call to the unit

• Assertions for expected results

o Serves as a specification Test generators can use it

18

Example: Parameterized Unit Testing

19

void ReduceQuantityPUT(Product prod, int soldCount) {
// Assumptions
Assume.IsTrue(prod != null);
Assume.IsTrue(soldCount > 0);
// Calling the UUT
int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
// Assertions
Assert.IsTrue(newQuantity >= 0);
int oldQuantity = StorageManager.GetQuantityFor(prod);
Assert.IsTrue(newQuantity < oldQuantity);

}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }

Example: Parameterized Unit Testing

20

void ReduceQuantityPUT(Product prod, int soldCount) {
// Assumptions
Assume.IsTrue(prod != null);
Assume.IsTrue(soldCount > 0);
// Calling the UUT
int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
// Assertions
Assert.IsTrue(newQuantity >= 0);
int oldQuantity = StorageManager.GetQuantityFor(prod);
Assert.IsTrue(newQuantity < oldQuantity);

}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }

Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

26

Random test generation

Random selection from input domain

 Advantage:

o Very fast

o Very cheap

 Ideas:

o If no error found: trying different parts of domain

o Selection based on: ”diff”, ”distance”, etc.

 Tool for Java:

27

Randoop: feedback-driven generation

 Generation of method sequence calls

 Compound objects:

 Heuristics:

o Execution of selected case

o Throwing away invalid, redundant cases

28

Cases studies of robustness testing

 Robustness testing

o Fuzz: random inputs for console programs

• Unix (1990), Unix (1995), MacOS (2007)

o NASA: flash file system

• Simulating HW errors, comparison with references

• (Model checking did not scale well)

 Randoop

o JDK, .NET libraries: checks for basic attributes
(e.g.: o.equals(o) returns true)

o Comparison of JDK 1.5 and 1.6

o Was able to found bugs in well-tested components

29

Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

30

Using annotations for test generation

 If the code contains:

o pre- and post-conditions (e.g.: design by contract)

o other annotations

 These are able to guide test generation

31

/*@ requires amt > 0 && amt <= acc.bal;

@ assignable bal, acc.bal;

@ ensures bal == \old(bal) + amt

@ && acc.bal == \old(acc.bal - amt); @*/

public void transfer(int amt, Account acc) {

acc.withdraw(amt);

deposit(amt);

}

Tools for annotation-based test generation

 AutoTest

o Eiffel language, Design by Contract

o Input: „object pool”, random generation

• Idea: Include inputs that satisfy preconditions.

o Expected output: contracts

32

AutoTest: Bertrand Meyer et al., "Programs that Test Themselves", IEEE Computer 42:9, 2009.

http://ieeexplore.ieee.org/document/5233506/

Tools for property-based test generation
 QuickCheck

o Goal: replace manual values with generated ones

o Tries to cover laws of input domains

33

Methods to tests:
byte[] encrypt(byte[] plaintext, Key key)
byte[] decrypt(byte[] ciphertext, Key key)

Property:

@Property public decryptReversesEncrypt(String plaintext, Key key){
Crypto.encrypt(plaintext.getBytes("US-ASCII"), key);
assertEquals(plaintext,

new String(Crypto.decrypt(ciphertext, key)));
}

Claessen et al. "QuickCheck: a lightweight tool for random testing of Haskell programs"
ACM Sigplan Notices 46.4 (2011): 53-64

Techniques

Symbolic execution

Random generation

Annotation-based

Search-based

34

Search-based techniques

Search-based Software Engineering (SBSE)

 Metaheuristic algorithms

o genetic alg., simulated annealing, hill climbing…

 Representing a problem as a search:

o Search space:
program structure + possible inputs

o Objective function: reaching a test goal
(e.g., covering all decisions of a given condition)

35

A tool for search-based test generation

 „Whole test suite generation”

o All test goals are taken into account

o Searches based on multiple metrics

• E.g., high coverage with minimal test suite

 Specialties:

o Minimizes test code, maintains readability

o Uses sandbox for environment interaction

36

EVALUATIONS

37

Applying these techniques on real code?

 SF100 benchmark (Java)

o 100 projects selected from SourceForge

o EvoSuite reaches branch coverage of 48%

o Large deviations among projects

 A large-scale embedded system (C)

o Execution of CREST and KLEE on a project of ABB

o ~60% branch coverage reached

o Fails and issues in several cases

38

G. Fraser and A. Arcuri, “Sound Empirical Evidence in Software Testing,” ICSE 2013

X. Qu, B. Robinson: A Case Study of Concolic Testing Tools and Their Limitations, ESEM 2011

Sound Empirical Evidence in Software Testing
A Case Study of Concolic Testing Tools and Their Limitations

Are these techniques really that good?

 Does it help software developers?

o 49 participants wrote and generated tests

o Generated tests with high code coverage did not
discover more injected failures

 Finding real faults

o Defects4J: database of 357 issues from 5 projects

o Tools evaluated: EvoSuite, Randoop, Agitar

o Only found 55% of faults

39

G. Fraser et al., “Does Automated White-Box Test Generation Really Help Software Testers?,” ISSTA 2013

S. Shamshiri et al., „Do automatically generated unit tests find real faults? An empirical study of
effectiveness and challenges.” ASE 2015

https://doi.org/10.1145/2483760.2483774
https://doi.org/10.1109/ASE.2015.86

Comparison of test generator tools

 Various source code snippets to execute

o Covering most important features of languages

 363 Java/.NET snippets

o Executed on 6 different tools

 Experience:

o Huge difference in tools

o Some snippets challenging for all tools

40

L. Cseppentő, Z. Micskei: „Evaluating code-based test input generator tools,” STVR 2017

https://doi.org/10.1002/stvr.1627

41

Comparison of test generator tools

Current challenges

 Complex arithmetic operations (e.g., logarithms)

 Floating point numbers (e.g., equality)

 Non-trivial string operations

 Environment calls (e.g., files, native, external libs)

 Multithreading

 Compound data structures

 Pointer operations

 …

42

Summary

 Tests generation is possible based on code

 Various different techniques available

 Can find bugs in real-world software

 Further challenges (active research topic):

o Scalability

o Test oracle production

o etc.
43

