Software and Systems Verification (VIMIMAO1)

Overview of V&YV techniques

Istvan Majzik, Zoltan Micskei

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Budapest University of Technology and Economics

Department of Measurement and Information Systems

Administration

= LABO sessions:
o G1:2019-09-19 14:15-16:00
o GA: 2019-09-26 14:15-16:00
0 G2:2019-09-26 16:15-18:00

= | ABO exercises: https://github.com/FTSRG/swsv-
labs/wiki/0Oa-Home-assisnment-infrastructure

= Home assignment teams:

o Form published (Github classroom)

https://github.com/FTSRG/swsv-labs/wiki/0a-Home-assignment-infrastructure

Main topics of the course

= Qverview (1.5)
o Introduction, V&V techniques
= Static techniques (1.5)
o Specification, Verifying source code
= Dynamic techniques: Testing (7)
o Testing overview, Test design techniques
o Test generation, Automation
= System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification

Learning outcomes

= List typical V&YV activities (K1)

= Classify the different verification techniques
according to their place in the lifecycle (K2)

RECAP: V&V TECHNIQUES

EXERCISE: Collect V&V techniques

What V&V techniques do you know?
(Tell: Why? Who? When?)

How can we categorize these techniques?

Continuous Verification and Feedback

Feature e A/L Reviewer

1 / =% 7
v

/Versmn control
n‘ system \

Developer E » Production

— <
</> —j Continuous
integration —u
Coding Static Unit tests Operation
guidelines analysis \/\\
] &
System test E2E test

Icons: icons8.com

https://www.mit.bme.hu/eng/eng/node/9675/lectures-0

V&YV in the V-model (examples)

e nrl Monitoring

Checklists maintenance i TN
FMEA tolerance
Requirement | o Systemval. | _____________ System
analysis design validation

Revi \ / Real-world
eviews

: , Acceptance
Simulation System | ,| Systemtest | System P
specification design verification

Fault tree Architecture | ,| Integrationtest | ______ System

ETA, RBD design design integration SIL / HIL / PIL
Model checking Module | __,| Moduletest | ___| Module
Rapid prototyping design design verification

Coding guidelines st design (EP, BVA)
. . odule
Static analysis implementation Code coverage

See: https://inf.mit.bme.hu/edu/courses/rete/materials

RECAP: MOTIVATION

Different kinds of faults

Development phase Operational phase

 Specification faults « Hardware faults
* Design faults Configuration faults
* Implementation faults « Operator faults

V&V during Fault tolerance
design (e.g. redundancy)

How many bugs do we have to expect?

DB Networks

Logistics

How many ,,Bugs® do we have to expect?

—

= Typical production type SW has 1... 10 bugs per 1.000 lines of code (LOC).
= Very mature, long-term, well proven software: 0,5 bugs per 1.000 LOC

= Highest software quality ever reported :
» Less than 1 bug per 10.000 LOC
. At cost of more than 1.000 US$ per LoC (1977)
» US Space Shuttle with 3 m LOC costing 3b US$ (out of 12b$ total R&D)
=» Cost level not typical for the railway sector (< 100€/LoC)

= Typical ETCS OBU kernel software size is about 100.000 LOC or more

» That means: 100 ... 1.000 undisclosed defects per ETCS OBU
» Disclosure time of defects can vary between a few days thousands of years

Source: K-R. Hase: ,,Open Proof in Railway Safety Software”, FORMS/FORMAT Conference, December 2-3, 2010, Braunschweig, Germany

Distribution and cost of bugs

i |
. Analysis Conceplual Programming Design Test System Test Operation
Design
50% - — e
L nr . L
40% - errors (in %) . '-_J’r cormection 7
/. [peremor
o

0% T

20% -

10%

—

0k

Early V&V reduces cost!

Time {non-linear)

V&V: Verification and Validation

Verification

Validation

»~Am I building the system right?”

»~Am I building the right system?”

Check consistency of
development phases

Check the result of the
development

Conformance of designs/models
and their specification

Conformance of the finished
system and the user requirements

Objective; can be automated

Subjective; checking acceptance

Fault model: Design and
implementation faults

Fault model: problems in the
requirements

Not needed if implementation is
automatically generated from
specification

Not needed if the specification is
correct (very simple)

V&YV techniques

e \What: any artefact
(documentation, model, code)

e How: without execution
e E.g.: review, static analysis

e \What: executable artefacts
(model, code...)

e How: with execution
e E.g.: simulation, testing

Dynamic

RECAP: REQUIREMENTS

Learning outcomes

= Explain the properties and good practices of
textual requirements (K2)

Requirement and specification

Requirement Specification
= Vision, request, = Request transformed for
expectation from designer and developers
o Users = Result of analysis
o Stakeholders (authority, (abstraction, structuring)

management, operator...)

= Basis for validation = Basis for verification

Definition of a requirement

“A condition or capability needed by a user to solve a
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or
possessed by a system, system component, product, or
service to satisfy an agreement, standard, specification,
or other formally imposed documents” (IEEE)

Properties of good requirements

Identifiable + Unique (unique IDs)
Consistent (no contradiction)
Unambiguous (one interpretation)
Verifiable (e.g. testable to decide if met)

Captured with special statements and vocabulary

Good practices for writing textual requirements

a short description (stand-alone sentence / paragraph)

of the problem and not the solution

" English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions

o E.g.: The system shall monitor the room’s temperature
when turned on.

= Use of auxiliaries (see RFC 2119)

o Positive: SHALL / MUST > SHOULD > MAY
o Negative: MUST NOT > SHOULD NOT
o They specify priorities!

https://www.ietf.org/rfc/rfc2119.txt

The Concept of Traceability

= Traceability is a core m\ p
certification concept .
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

VALUE
" rb_ary push(VALUE ary, VALUE item)

{

rb ary modify(ary);
return rb_ary push_l(ary, item);

= Forward traceability: }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

The Concept of Traceability

" Traceability is a core
certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

VALUE
" rb_ary push(VALUE ary, VALUE item)
{

rb ary modify(ary);

:, return rb_ary push_l(ary, item);
" Forward traceability: . }
o From each requirement to the static VALUE |
. . rb_ary push 1(VALUE ary, VALUE 1tem)
corresponding lines of source (
code (and object code) long idx = RARRAY LEN(ary);

o Show responsibility

= Backward traceability:

o From any lines of source code
to one ore more
corresponding requirements

o No extra functionality

if (idx >= ARY CAPA(ary)) {
ary_double capa(ary, idx);

}

RARRAY PTR(ary)[idx] = item;

ARY SET LEN(ary, idx + 1);

return ary;

Anti-patterns

The system should be safe Too general / high-level

The system shall use Fast
Fourier Transformation to
calculate signal value.

Describes a solution
(and not only the problem)

The system shall continue
normal operation soon
after a failure.

Imprecise
(how to verify ,soon”?)

Sensor data shall be logged

, Passive should be avoided!
by a timestamp

Unauthorized personnel
could not access the
system

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

24

Example requirements: ETCS

= European Rail Traffic Management System (ERTMS)
o European Train Control System (ETCS) + GSM-R

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

GSM-R antenna

Interlocking

Signal control

Eurocab

ETCS computer,
driver's console

Eurobalise

reports position, signal state Track release

reporting

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System

Example requirements: ETCS

3.4.1 Balise Configurations — Balise Group Definition

I 3411 I A balise gmupnsist of between one and eight balises.

3.4.1.2 In every balise shall at least be stored:
a) The internal number (from 1 to 8) of the balise
b) The number of balises inside the group
¢) The balise group identity.

3.4.3.2 A balise may contain directional information, i.e. valid either for nominal or for reverse
direction, or may contain information valid for both directions. In level 1, this
information can be of the following type (please refer to section 3.8.5):

a) Mon-infill

II::} Intentionally deleted I

c) Infill,

Example requirements: AUTOSAR

AUTomotive Open System Architecture

AUTOSAR Interface AUTOSAR Interface AUTOSAR Interface

AUTOSAR Interface

Operatin: :) = Complex
gemysﬁam / Services Communication , C°. Device
: Drivers

Microcontroller
Abstraction

Interfaces
SiSSface ‘Standard = RTE ‘ VFB&RTE BSW
mn “_~ relevant relevant relevant

https://www.autosar.org/specifications/

UEGYETEM

https://www.autosar.org/specifications/

Example requirements: AUTOSAR

31 [RS_PO_00001] AUTOSAR shall support the transferability of

software.
. T High-level
Description: AUTOSAR shall enable OEMs and suppliers to transfer software across .
the vehicle network and o reuse software,
Rationale: Transferring software across the vehicle network allows overall systam re q u I re m e nt
scaling and optimization,
Redevelopment of software is expansive and error prone.
Use Case: Application software is reusable across different product lines and OEMs.
Scaling and optimizing of vehicle networks by transferring application
software.
Basic software is reusable across different ECUs and domains.,
Dependencies: RS PO 00003, RS PO 00004, RS PO 00007, RS PO 00008
Supporting Material: -

3 Requirements Tracing

The following table references the requirements specified in [RS_ProjectObjectives]
and links to the fulfilments of these.

Traceability

Requirement Description Satisfied by

RS_PO_00001 |AUTOSAR shall support the |RS_Main_00060, RS_Main_00100, RS_Main_00130,
transferability of software, RS_Main_00140, RS_Main_00150, RS_Main_00270,
RS Main_00310, RS_Main_00400, RS_Main_00410,
RS_Main_00440, RS_Main_00450, RS_Main_004860,
RS_Main_00480

[SWS_EcuM_03022][The SHUTDOWN phase handles the controlled shutdown of LOW—Ievel
basic software modules and finally results in the selected shutdown target OFF or

RESET.|(SRS_ModeMgm_09072) requirement

UEGYETEM 1782

Agile requirements: User stories

"As a <type of user>, | want <some goal>
so that <some reason>."

(Many different templates)

Index card format

“Just-in-time requirements”

Connected to acceptance tests (—BDD)

RECAP: REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus

Learning outcomes

= Recall the different types of review processes (K1)

Levels of formality in review

Informal
review

Walkthrough

Technical
review

Inspection

e No formal process
e Peer or technical lead reviewing

e Meeting led by author
e May be quite informal

e Documented process
e Review meeting with experts
* Pre-meeting preparations for reviewers

e Formal process
e Led by a trained moderator

Source: ISTQB CTFL

ANk

AL e L

Activities of a formal review

e Defining review criteria
e Allocating roles

Planning

. e Distributing documents
Kick-off >CHnG FOCH
e Explaining objectives

Individual e Reviewing artefacts
preparation e Noting potential defects, questions and comments

e Discussing and logging results

Review meeting * Noting defects, making decisions

e Fixing defects

Rework * Recording updated status

e Checking fixes

FoIIow-up e Checking on exit criteria

Source: ISTQB CTFL

Recommendations for reviews

" Thorough review is time consuming
o Usually 5-10 pages / hour
o Can be 1 page / hour

" |ncreasing the number of pages to review can
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages

Data on safety-critical projects

1200
1000
800
600
400
200

0 @
fs |fsrev| des des code code ut des| ut run int intrun| S5YS | SYS |engin
rev rev des des | run e

mcorrection | 10 | 133 | 109 | 332 | 78 46 | 149 | 123 7 64 7 24 13
@ cumulative|] 10 | 143 | 252 | 584 | 662 | 708 | 857 | 980 | 987 | 1051 | 1058 | 1082 | 1095

Fig. 2 Corrections found at each phase and cumulative totals

fs — functional specification des — design ut des — unit test design int —integration test

fs rev — fs review des rev —review ut run — ut execution sys — system test

Source: The Economics of Unit Testing, ESE 11: 5-31, 2006

http://dx.doi.org/10.1007/s10664-006-5964-9

REVIEW CRITERIA

Learning outcomes

= List typical review criteria for requirements and
specifications (K1)

= Perform review of requirements and
specifications (K3)

Typical review criteria

e Functions
e References

Completeness

¢ Internal and external

ConSIStenCy e Traceability
|mp|ement_ e Resources
. e Usability, Maintainability
d b| I |ty e Risks: budget, technical, environmental
e Specific

Verifiability [EUSLCENE

e Measurable

Criteria from |IEEE Std 830-1998

Correct

e Every requirement stated therein is one that the software shall meet
¢ Consistent with external sources (e.g. standards)

Unambiguous

e Every requirement has only one interpretation
e Formal or semi-formal specification languages can help

Complete

e For every (valid, invalid) input there is specifies behavior
e TBD only possible resolution

Consistent

¢ No internal contradiction, terminology

Ranked for importance and/or stability

* Necessity of requirements

Verifiable

® Can be checked whether the requirement is met

Modifiable

¢ Not redundant, structured

Traceable

¢ Source is clear, effect can be referenced

: RN RN AN
2 IS 39 e a @ =

MUEGYETEM 1782 AL WSV WL

Criteria from IEEE Std 29148-2011

Necessary

e If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

¢ Avoids placing unnecessary constraints on the design

Unambiguous

e |t can be interpreted in only one way; is simple and easy to understand

Consistent

¢ |s free of conflicts with other requirements

Complete

* Needs no further amplification (measurable and sufficiently describes the capability)

Singular

e Includes only one requirement with no use of conjunctions

Feasible

e Technically achievable, fits within system constraints (cost, schedule, regulatory...)

Traceable

e Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

* Has the means to prove that the system satisfies the specified requirement

A A R YR YR
T AT 40 e a @ Y.

MUEGYETEM 1782 AL WSV WL

Quality criteria for agile requirements

Quality Criteria for Agile
Requirements

I I I

Completeness I I Uniformity I I AR
Correctness
— Priority (B14, D01, 5505, PROS, HZ14) — Story card structure (Prog) — No contradiction/conflict (pros, Hz14)
— Unique ID (Fo4, PRO9, HZ14) — [Tool-based) template (Fo4, HZ14) — Concise (D01, PROY)
— Functional processes (D11, DT14) — Functionality in story name (o714} = INVEST (Pro3, HZ14)
— Data modeling artifacts (oT14) — Only relevant comments (Hz12) — Independent (ssos)

— Small/simple (pa1o, oT14, L14a/b, 5505)

— Product version (Do1, HZ14) Verifiable (oo, p14)

— Non-funct. regs. (DQio, FM13, P14, 5505, PRO9 .
gs- |) — Understandability

— Six elements of user story (GG10) — Customer language (paio, 5505)

— Acceptance criteria (P14, PROS, HZ14) — Consistent/defined terminology (DT14, PRO3, HZ14)
— Dependencies (p14) — Unambiguous (D01, FM13, FO4, 5L09, PRO9)

| Size (p14) — Correct language (Hz14)

— Forward traceable (po1o, Loz, HZ14)

— Rationale (Hz14)
— Mo duplicates (Hz14)

— Mavigable and explained links (Hz14)

Source: Heck, P. & Zaidman, A. A systematic literature review on quality criteria for agile requirements specifications.
Software Qual J (2016). DOI: 10.1007/s11219-016-9336-4

TEM 1782

https://doi.org/10.1007/s11219-016-9336-4

V&V TECHNIQUES IN

CRITICAL SYSTEMS

Learning outcomes

= Recall the safety concepts of critical systems (K1)

= List typical activities required by standards (K1)

Safety-critical systems

Safety: “The expectation that a system does not,
under defined conditions, lead to a state in which

human life, health, property, or the environment is
endangered.” [IEEE]

Certification

= Certification by safety authorities

= Basis of certification: Standards

o |[EC 61508: Generic standard (for electrical, electronic
or programmable electronic systems)

o DO178B/C: Software in airborne systems
o EN50128: Railway (software)
0 1S026262: Automotive

Safety concepts

= Safety function
o Intended to achieve or maintain a safe state
= Safety integrity

o Probability of a safety-related system satisfactorily
performing the required safety functions under all
stated conditions and within a stated period of time

= Safety Integrity Level (SIL)

o Based on risk analysis
o Tolerable Hazard Rate (THR)

Basics of determining SIL

Risk analysis -> THR -> SIL

Frequency of
hazardous event System Software
safety safety
integrity integrity
level level
4 4
Risk THR —|(SIL > 3 3
Consequence of T 1 T ’ ’
hazardous event ! !
F 0 0
| SIL Probability of dangerous failure per
hour per safety function

10°<THR < 107

15 years lifetime: 107 <THR <10°
1 failure in case 108 < THR < 1077
of 750 equipment 10°<THR < 108

Demonstrating SIL requirements

Different approaches for types of failures

= Random failures (e.g. HW)
o Qualitative analysis (statistics, experiments...)

= Systematic failures (e.g. SW)
o Rigor in the engineering
o Recommendations for each SIL

o Process, techniques, documentation, responsibilities

Example: Process (V model)

Requirement
analysis

\

System
specification

\

Architecture

System val.
design

System test
design

Operation,
maintenance

A

System
validation

/

System
verification

/

Integration test

integ

System

ration

/

design design
Module L Module test
design design

Module

verification

\/

Module
implementation

Well-defined

WENES

Verification of
each step

Example: Techniques (EN 50128)

TECHNIQUE/MEASURE Ref | SWS | SWS | SWS | SWS | SWS
ILO IL1 IL2 IL3 L4
14, Functional/ Black-box Testing D.3 HR HR HR M M
15. Performance Testing D.6 - HR HR HR HR
16. Interface Testing B.37 | HR HR HR HR HR

o M: Mandatory

o HR: Highly recommended (rationale behind not using
it should be detailed and agreed with the assessor)

o R:

o ---: No recommendation for or against being used

Recommended

o NR: Not recommended

Example: Document structure (EN50128)

Software Planning Phase

Software Development Plan

Software Quality Assurance Plan
Software Configuration Management Plan
Software Verification Plan

Software Integration Test Plan
Software/hardware Integration Test Plan
Software Validation Plan

Software Maintenance Plan

30 documents in a
systematic structure

= Specification
= Design
= Verification

MUEGYETEM 178

System Development Phase

System Requirements Specification
System Safety Requirements Specification
System Architecture Description

System Safety Plan

Software Requirements Spec. Phase

Software Requirements Specification
Software Requirements Test Specification
Software Requirements Verification Report

Software Maintenance Phase

Software Maintenance Records
Software Change Records

|

Software Assessment Phase

Software Assessment Report

/

Software Validation Phase

Software Architecture & Design Phase

Software Architecture Specification
Software Design Specification

Software Architecture and Design Verification Report

Software Validation Report

/

Software/hardware Integration Phase

Software/hardware Integration Test Report

/

Software Integration Phase

\

Software Module Design Phase

Software Integration Test Report

Software Module Test Specification
Software Module Verification Report

Software Module Design Specification

Software Module Testing Phase

\

Software Module Test Report

Coding Phase

Software Source Code & Supporting Documentation
Software Source Code Verification Report

Example: Responsibilities (EN 50128)

SIL 3 or 4:

or.

1
1
:
: DES, VER, VAL
1
1
1

DES VER, VAL |!
1

1
BESERREREERERERRERRRRERRER
1 1
1 1
; MAN !
i I
1 1
i I
: DES VER, VAL |!
i I
i

MAN !

DES: Designer (analyst,
architect, coder, unit
tester)

VER: Verifier

VAL: Validator

ASS: Assessor

MAN: Project manager

