
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Overview of V&V techniques

Istvan Majzik, Zoltan Micskei

Software and Systems Verification (VIMIMA01)

Administration

▪ LAB0 sessions:

o G1: 2019-09-19 14:15-16:00

o GA: 2019-09-26 14:15-16:00

o G2: 2019-09-26 16:15-18:00

▪ LAB0 exercises: https://github.com/FTSRG/swsv-
labs/wiki/0a-Home-assignment-infrastructure

▪ Home assignment teams:

o Form published (Github classroom)

2

https://github.com/FTSRG/swsv-labs/wiki/0a-Home-assignment-infrastructure

Main topics of the course

▪ Overview (1.5)

o Introduction, V&V techniques

▪ Static techniques (1.5)

o Specification, Verifying source code

▪ Dynamic techniques: Testing (7)

o Testing overview, Test design techniques

o Test generation, Automation

▪ System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification

4

Learning outcomes

▪ List typical V&V activities (K1)

▪ Classify the different verification techniques
according to their place in the lifecycle (K2)

5

RECAP: V&V TECHNIQUES

6

EXERCISE: Collect V&V techniques

7

What V&V techniques do you know?

(Tell: Why? Who? When?)

How can we categorize these techniques?

Continuous Verification and Feedback

8

Version control
system

Continuous
integration

Developer

Unit tests

Feature Reviewer

E2E test

Production

System test

OperationCoding
guidelines

Static
analysis

Icons: icons8.com

See: https://www.mit.bme.hu/eng/eng/node/9675/lectures-0

https://www.mit.bme.hu/eng/eng/node/9675/lectures-0

V&V in the V-model (examples)

9

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val.
design

Checklists
FMEA

Reviews
Simulation

Fault tree
ETA, RBD

Model checking
Rapid prototyping

Coding guidelines
Static analysis

Test design (EP, BVA)
Code coverage

SIL / HIL / PIL

Monitoring
Fault

tolerance

Real-world
Acceptance

See: https://inf.mit.bme.hu/edu/courses/rete/materials

RECAP: MOTIVATION

10

Different kinds of faults

Development phase Operational phase

• Specification faults

• Design faults

• Implementation faults

• Hardware faults

• Configuration faults

• Operator faults

Fault tolerance

(e.g. redundancy)

V&V during

design

11

How many bugs do we have to expect?

12

Source: K-R. Hase: „Open Proof in Railway Safety Software”, FORMS/FORMAT Conference, December 2-3, 2010, Braunschweig, Germany

Distribution and cost of bugs

Early V&V reduces cost!

13

V&V: Verification and Validation

Verification Validation

„Am I building the system right?” „Am I building the right system?”

Check consistency of
development phases

Check the result of the
development

Conformance of designs/models
and their specification

Conformance of the finished
system and the user requirements

Objective; can be automated Subjective; checking acceptance

Fault model: Design and
implementation faults

Fault model: problems in the
requirements

Not needed if implementation is
automatically generated from
specification

Not needed if the specification is
correct (very simple)

14

V&V techniques

• What: any artefact
(documentation, model, code)

• How: without execution

• E.g.: review, static analysis

Static

• What: executable artefacts
(model, code…)

• How: with execution

• E.g.: simulation, testing

Dynamic

RECAP: REQUIREMENTS

16

Learning outcomes

▪ Explain the properties and good practices of
textual requirements (K2)

17

Requirement and specification

Requirement

▪ Vision, request,
expectation from

o Users

o Stakeholders (authority,
management, operator…)

▪ Basis for validation

Specification

▪ Request transformed for
designer and developers

▪ Result of analysis
(abstraction, structuring)

▪ Basis for verification

18

Definition of a requirement

19

“A condition or capability needed by a user to solve a
problem or achieve an objective” (IEEE)

“A condition or capability that must be met or
possessed by a system, system component, product, or
service to satisfy an agreement, standard, specification,
or other formally imposed documents” (IEEE)

Properties of good requirements

▪ Identifiable + Unique (unique IDs)

▪ Consistent (no contradiction)

▪ Unambiguous (one interpretation)

▪ Verifiable (e.g. testable to decide if met)

20

Captured with special statements and vocabulary

Good practices for writing textual requirements

▪ English phrasing:
o Pattern: Subject Auxiliary Verb Object Conditions
o E.g.: The system shall monitor the room’s temperature

when turned on.

▪ Use of auxiliaries (see RFC 2119)
o Positive: SHALL / MUST > SHOULD > MAY
o Negative: MUST NOT > SHOULD NOT
o They specify priorities!

21

a short description (stand-alone sentence / paragraph)

of the problem and not the solution

https://www.ietf.org/rfc/rfc2119.txt

The Concept of Traceability
▪ Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

▪ Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

▪ Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R2.1

R3.2

R1.2 ?

22

The Concept of Traceability
▪ Traceability is a core

certification concept
o For safety-critical systems

o See safety standards (DO-
178C, ISO 26262, EN 50126)

▪ Forward traceability:
o From each requirement to the

corresponding lines of source
code (and object code)

o Show responsibility

▪ Backward traceability:
o From any lines of source code

to one ore more
corresponding requirements

o No extra functionality

R1.1

R3.2

?

R2.1

23

Anti-patterns

1. The system should be safe

2. The system shall use Fast
Fourier Transformation to
calculate signal value.

3. The system shall continue
normal operation soon
after a failure.

4. Sensor data shall be logged
by a timestamp

5. Unauthorized personnel
could not access the
system

Too general / high-level

Describes a solution
(and not only the problem)

Imprecise
(how to verify „soon”?)

Passive should be avoided!

Use specific auxiliaries!

How to identify missing or
inconsistent requirements?

24

Example requirements: ETCS

▪ European Rail Traffic Management System (ERTMS)

o European Train Control System (ETCS) + GSM-R
http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx

25

Source: https://en.wikipedia.org/wiki/European_Train_Control_System

http://www.era.europa.eu/Core-Activities/ERTMS/Pages/Set-of-specifications-3.aspx
https://en.wikipedia.org/wiki/European_Train_Control_System

Example requirements: ETCS

26

Example requirements: AUTOSAR

AUTomotive Open System Architecture

27

https://www.autosar.org/specifications/

https://www.autosar.org/specifications/

Example requirements: AUTOSAR

28

High-level
requirement

Traceability

Low-level
requirement

Agile requirements: User stories

"As a <type of user>, I want <some goal>
so that <some reason>."

▪ (Many different templates)

▪ Index card format

▪ “Just-in-time requirements”

▪ Connected to acceptance tests (→BDD)

29

RECAP: REVIEW PROCESS

Based on ISTQB Foundation Level Syllabus

30

Learning outcomes

▪ Recall the different types of review processes (K1)

31

Levels of formality in review

• No formal process

• Peer or technical lead reviewing

Informal
review

• Meeting led by author

• May be quite informalWalkthrough

• Documented process

• Review meeting with experts

• Pre-meeting preparations for reviewers

Technical
review

• Formal process

• Led by a trained moderatorInspection

32

Source: ISTQB CTFL

Activities of a formal review
• Defining review criteria

• Allocating roles
Planning

• Distributing documents

• Explaining objectives
Kick-off

• Reviewing artefacts

• Noting potential defects, questions and comments

Individual
preparation

• Discussing and logging results

• Noting defects, making decisions
Review meeting

• Fixing defects

• Recording updated status
Rework

• Checking fixes

• Checking on exit criteria
Follow-up

33

Source: ISTQB CTFL

Recommendations for reviews

▪ Thorough review is time consuming

o Usually 5-10 pages / hour

o Can be 1 page / hour

▪ Increasing the number of pages to review can
greatly reduce the defects found

o Practical limits: meeting is 2 hours, max 40 pages

34

Data on safety-critical projects

35

fs – functional specification des – design ut des – unit test design int – integration test

fs rev – fs review des rev – review ut run – ut execution sys – system test

Source: The Economics of Unit Testing, ESE 11: 5–31, 2006

http://dx.doi.org/10.1007/s10664-006-5964-9

REVIEW CRITERIA

36

Learning outcomes

▪ List typical review criteria for requirements and
specifications (K1)

▪ Perform review of requirements and
specifications (K3)

37

Typical review criteria

• Functions

• ReferencesCompleteness

• Internal and external

• TraceabilityConsistency

• Resources

• Usability, Maintainability

• Risks: budget, technical, environmental

Implement-
ability

• Specific

• Unambiguous

• Measurable
Verifiability

38

Criteria from IEEE Std 830-1998

Correct

• Every requirement stated therein is one that the software shall meet

• Consistent with external sources (e.g. standards)

Unambiguous

• Every requirement has only one interpretation

• Formal or semi-formal specification languages can help

Complete

• For every (valid, invalid) input there is specifies behavior

• TBD only possible resolution

Consistent

• No internal contradiction, terminology

Ranked for importance and/or stability

• Necessity of requirements

Verifiable

• Can be checked whether the requirement is met

Modifiable

• Not redundant, structured

Traceable

• Source is clear, effect can be referenced

39

Criteria from IEEE Std 29148-2011
Necessary

• If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities

Implementation Free

• Avoids placing unnecessary constraints on the design

Unambiguous

• It can be interpreted in only one way; is simple and easy to understand

Consistent

• Is free of conflicts with other requirements

Complete

• Needs no further amplification (measurable and sufficiently describes the capability)

Singular

• Includes only one requirement with no use of conjunctions

Feasible

• Technically achievable, fits within system constraints (cost, schedule, regulatory…)

Traceable

• Upwards traceable to the stakeholder statements; downwards traceable to other documents

Verifiable

• Has the means to prove that the system satisfies the specified requirement

40

Quality criteria for agile requirements

41

Source: Heck, P. & Zaidman, A. A systematic literature review on quality criteria for agile requirements specifications.
Software Qual J (2016). DOI: 10.1007/s11219-016-9336-4

https://doi.org/10.1007/s11219-016-9336-4

V&V TECHNIQUES IN
CRITICAL SYSTEMS

42

Learning outcomes

▪ Recall the safety concepts of critical systems (K1)

▪ List typical activities required by standards (K1)

43

Safety-critical systems

Safety: “The expectation that a system does not,
under defined conditions, lead to a state in which
human life, health, property, or the environment is
endangered.” [IEEE]

44

Certification

▪ Certification by safety authorities

▪ Basis of certification: Standards

o IEC 61508: Generic standard (for electrical, electronic
or programmable electronic systems)

o DO178B/C: Software in airborne systems

o EN50128: Railway (software)

o ISO26262: Automotive

45

Safety concepts

▪ Safety function

o Intended to achieve or maintain a safe state

▪ Safety integrity

o Probability of a safety-related system satisfactorily
performing the required safety functions under all
stated conditions and within a stated period of time

▪ Safety Integrity Level (SIL)

o Based on risk analysis

o Tolerable Hazard Rate (THR)

46

Basics of determining SIL

Risk analysis -> THR -> SIL

47

Frequency of

hazardous event

Consequence of

hazardous event

Risk

System

safety

integrity

level

Software

safety

integrity

level

4

3

2

1

0

4

3

2

1

0

THR SIL

SIL Probability of dangerous failure per
hour per safety function

1 10-6  THR < 10-5

2 10-7  THR < 10-6

3 10-8  THR < 10-7

4 10-9  THR < 10-8

15 years lifetime:
1 failure in case

of 750 equipment

Demonstrating SIL requirements

Different approaches for types of failures

▪ Random failures (e.g. HW)

o Qualitative analysis (statistics, experiments…)

▪ Systematic failures (e.g. SW)

o Rigor in the engineering

o Recommendations for each SIL

o Process, techniques, documentation, responsibilities

48

Example: Process (V model)

49

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val.
design

Well-defined
phases

Verification of
each step

Example: Techniques (EN 50128)

oM: Mandatory

o HR: Highly recommended (rationale behind not using
it should be detailed and agreed with the assessor)

o R: Recommended

o ---: No recommendation for or against being used

o NR: Not recommended

50

Example: Document structure (EN50128)

30 documents in a
systematic structure

▪ Specification
▪ Design
▪ Verification

Software Planning Phase

Software Development Plan

Software Quality Assurance Plan

Software Configuration Management Plan

Software Verification Plan

Software Integration Test Plan

Software/hardware Integration Test Plan

Software Validation Plan

Software Maintenance Plan

System Development Phase

System Requirements Specification

System Safety Requirements Specification

System Architecture Description

System Safety Plan

Software Maintenance Phase

Software Maintenance Records

Software Change Records

Software Assessment Phase

Software Assessment Report

Software Requirements Spec. Phase

Software Requirements Specification

Software Requirements Test Specification

Software Requirements Verification Report

Software Validation Phase

Software Validation Report

Software/hardware Integration Phase

Software/hardware Integration Test Report

Software Architecture & Design Phase

Software Architecture Specification

Software Design Specification

Software Architecture and Design Verification Report

Software Integration Phase

Software Integration Test Report

Software Module Design Phase

Software Module Design Specification

Software Module Test Specification

Software Module Verification Report

Software Module Testing Phase

Software Module Test Report

Coding Phase

Software Source Code & Supporting Documentation

Software Source Code Verification Report

51

Example: Responsibilities (EN 50128)

DES, VER, VAL

DES VER, VAL

DES

MAN

VER, VAL

MAN

DES VER VAL

ASS

ASS

ASS

ASS

SIL 0:

SIL 1 or 2:

SIL 3 or 4:

or:

Organization Person

DES: Designer (analyst,
architect, coder, unit
tester)
VER: Verifier
VAL: Validator
ASS: Assessor
MAN: Project manager

52

