
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Test oracles

Zoltan Micskei

1

Software and Systems Verification (VIMIMA01)

Main topics of the course

▪ Overview (1.5)

o Introduction, V&V techniques

▪ Static techniques (1.5)

o Specification, Verifying source code

▪ Dynamic techniques: Testing (7)

o Testing overview, Test design techniques

o Test generation, Automation

▪ System-level verification (3)

o Verifying architecture, Dependability analysis

o Runtime verification

2

Learning outcomes

▪ Recall the definition of test oracle (K1)

▪ Explain different types of test oracles (K2)

3

Recap: Basic (simplified) concepts

▪ Test case
o a set of test inputs, execution conditions, and

expected results developed for a particular objective

▪ Test oracle
o A principle or mechanism that helps you decide

whether the program passed the test

▪ Verdict: result (pass / fail / error / inconclusive…)

Specification,
requirements

Test cases Verdicts
Test

execution

4

EXERCISE: Expected result

1. The tax for a vehicle is based on the volume of
the engine. Under 1000 cm3 the tax is 0.1 EUR /
cm3, otherwise 0.2 EUR / cm3. Hybrid cars qualify
for a 10% discount.

o Selected input #1: volume = 800 cm3, hybrid = no

o Expected result: ?

2. The software analyzes data from a particle
detector searching for the mass of a new, yet
unconfirmed particle.

o Expected result: ???

5

Specifying perfectly the expected results
is not realistic in many cases

Challenges with test oracles #1

“Non-testable programs”

6

“Programs which were written in order to determine the
answer in the first place. There would be no need to
write such programs, if the correct answer were known.”

Source: E. J. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25,
no. 4, pp. 465–470, Nov. 1982.

Challenges with test oracles #2

7

See also: Test Oracles; Oracle Problem

▪ The software can pass checking all expected
results in the tests, but still be incorrect, e.g.

o Returns the correct value, but way too slow, does not
use authentication, uses hard to read UI…

o The specification used as oracle also misses important
special conditions

▪ The test fails, but the software behaved correctly

o E.g. some rare external condition was not considered

http://softwarequalitymethods.com/paper_detail.php?id=566fab7a162c9
http://kaner.com/?p=190

How to think about test oracles?

▪ Incomplete: you can never specify fully the
expected outcome (~full state of computer)

▪ Partial: it works only for some part of input; it can
decide only if an outcome is bad…

▪ Fallible: can cause a wrong verdict

8

Oracles are incomplete, partial, fallible

Oracles are heuristics
(decision rule that is useful but not always correct)

TYPES OF TEST ORACLES

Heuristics, Techniques and Examples

9

Types of test oracles

Specified

Human

Model

..

Derived

Previous
version

Other
program

…

Implicit

Crash

Exception

…

10

Source: The Oracle Problem in Software Testing: A Survey

http://dx.doi.org/10.1109/TSE.2014.2372785

Specified oracles

11

• Humans
• Textual specification
• Models (FSM, UML…)

• Pre/post-conditions
(Design-by-Contract)

• -> see MBT lecture

Derived oracles

12

Derive verdict from various other artefacts, e.g.
• Compare output with the output of

• Previous program versions (Regression testing)
• Different implementations (N-version programming)
• Only difference can be detected (not pass/fail)!

• Assumptions, validity checks, invertible function

Examples for derived oracles

▪ Compare the actual output with the output from
a previous build/release

▪ Compare with a program implementing the same
specification or API (e.g. POSIX, C/C++)

▪ Metamorphic relations, e.g. if we add an AND
expression to a query, the number of results
should be <= number of results of original query

▪ Integration: calculating is hard, but a candidate
result can be checked easily with derivation

▪ Do not 4.556^4 exactly, but it should be >0

13

Implicit oracles

14

Use implicit knowledge to spot incorrect behavior
• Exceptions, crashes, security problems
• Methods: robustness testing, fuzzing

Examples for implicit oracles

▪ We may not know what the correct result is, but
it is definitely bad, if the program

o throws an unhandled exception to the UI

o terminates or even crashes the machine

o makes a buffer overflow possible

o uses too much HW resources / runs too long

▪ Typical methods:

o Fuzzing: generating random or guided random inputs

o See Code-based test generation lecture

15

Handling the lack of oracles

16

Try to minimize the work of human testers
• Reduce test suite size
• Simplify failing tests (see delta debugging)
• Input classification (group similar outputs)
• Machine learning

Summary of test oracles

17

Conclusion

18

