
Software and Systems Verification (VIMIMA01)

Dependability Analysis

Kristóf Marussy, István Majzik

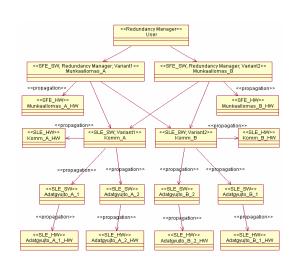
Budapest University of Technology and Economics Fault Tolerant Systems Research Group

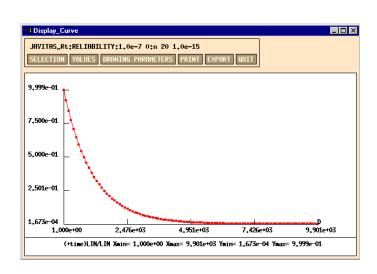
Main topics of the course

- Overview (1.5)
 - Introduction, V&V techniques
- Static techniques (1.5)
 - Specification, Verifying source code
- Dynamic techniques: Testing (7)
 - Testing overview, Test design techniques
 - Test generation, Automation
- System-level verification (3)
 - Verifying architecture, Dependability analysis
 - Runtime verification

Table of Contents

- Attributes of dependability
 - Reliability, availability
 - Safety, integrity, maintainability
- Combinatorial models for dependability analysis
 - Reliability block diagrams
- Stochastic models for dependability analysis
 - Markov models (CTMC)


Learning outcomes

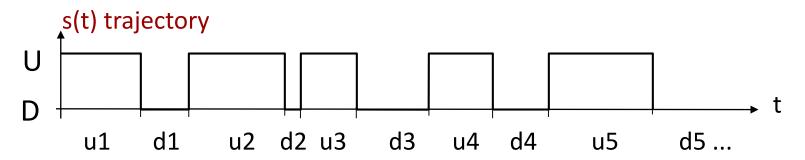

- Explain the attributes of dependability and the objectives of dependability analysis (K2)
- Perform dependability analysis with reliability block diagrams (K3)
- Perform dependability analysis of simple redundancy structures with Markov chains (K3)
- Identify how reward analysis can be used for dependability analysis (K1)

Attributes of dependability

Characterizing the system services

- Typical extra-functional characteristics
 - Reliability, availability, integrity, ...
 - Depend on the faults occurring during the use of the services
- Composite characteristic: Dependability
 - Definition: Ability to provide service in which reliance can justifiably be placed
 - Justifiably: based on analysis, evaluation, measurements
 - Reliance: the service satisfies the needs
- Role of dependability
 - Service Level Agreements (IT service providers)
 - Tolerable Hazard Rate (safety-critical systems)

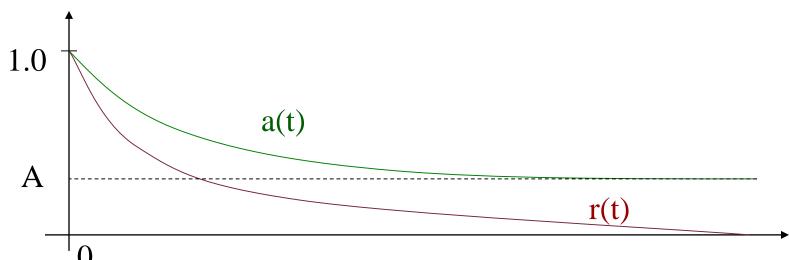
Attributes of dependability


Attribute	Definition
Availability	Probability of correct service (considering repairs and maintenance) "Availability of the web service shall be 95%"
Reliability	Probability of continuous correct service (until the first failure) "After departure, the flight control system shall function correctly for 12 hours"
Cofoty	·
Safety	Freedom from unacceptable risk of harm
Integrity	Avoidance of erroneous changes or alterations
Maintainability	Possibility of repairs and improvements

Dependability metrics: Mean values

- Basis: Partitioning the states of the system
 - Correct (U, up) and incorrect (D, down) state partitions

- Mean values:
 - O Mean Time to First Failure: MTFF = E{u1}
 - Mean Up Time: MUT = MTTF = E{ui}(Mean Time To Failure)
 - Mean Down Time: MDT = MTTR = E{di}(Mean Time To Repair)
 - Mean Time Between Failures: MTBF = MUT + MDT



Dependability metrics: Probability functions

- Availability: $a(t) = P\{s(t) \in U\}$
- Asymptotic availability: $A = \lim_{t \to \infty} a(t)$

$$A = \frac{MTTF}{MTTF + MTTR}$$

• Reliability: $r(t) = P\{s(t') \in U, \forall t' < t\}$

Availability related requirements

Availability	Failure period per year			
99%	~ 3,5 days			
99,9%	~ 9 hours			
99,99% ("4 nines")	~ 1 hour			
99,999% ("5 nines")	~ 5 minutes			
99,9999% ("6 nines")	~ 32 sec			
99,99999%	~ 3 sec			

Availability of a system built up from components, where the availability of single a component is 95%, all components are needed to perform the system function:

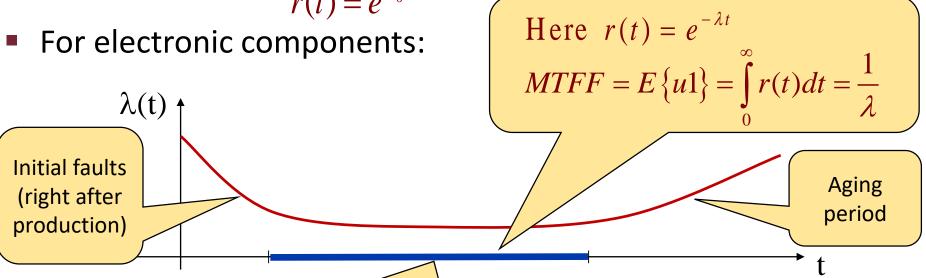
system built from 2 components: 90%

system built from 5 components : 77%

system built from 10 components: 60%

Attributes of components

• Fault rate: $\lambda(t)$


The probability that the component will fail in the interval Δt at time point t given that it has been correct until t is given by $\lambda(t)\Delta t$:

$$\lambda(t)\Delta t = P\{s(t+\Delta t) \in D \mid s(t) \in U\} \text{ while } \Delta t \to 0$$

Reliability of a component on the basis of this definition:

$$r(t) = e^{-\int_{0}^{t} \lambda(t)dt}$$

For electronic components:

Analysis techniques

- Qualitative analysis techniques:
 - Fault effects analysis: What are the component level failures (failure modes), that cause system level failure?
 - Identification of single points of failure
 - Techniques: Systematic causes and effects analysis
 - Fault tree analysis (FTA), Event tree analysis (ETA), Cause-consequence analysis (CCA), Failure modes and effects analysis (FMEA)
- Quantitative analysis techniques:
 - Dependability analysis: How can the system level dependability be calculated on the basis of component level fault properties?
 - System level reliability, availability, ...
 - Techniques: Construction and solution of dependability models
 - Reliability block diagrams (RBD)
 - Markov-chains (MC)
 - Stochastic Petri nets (SPN)

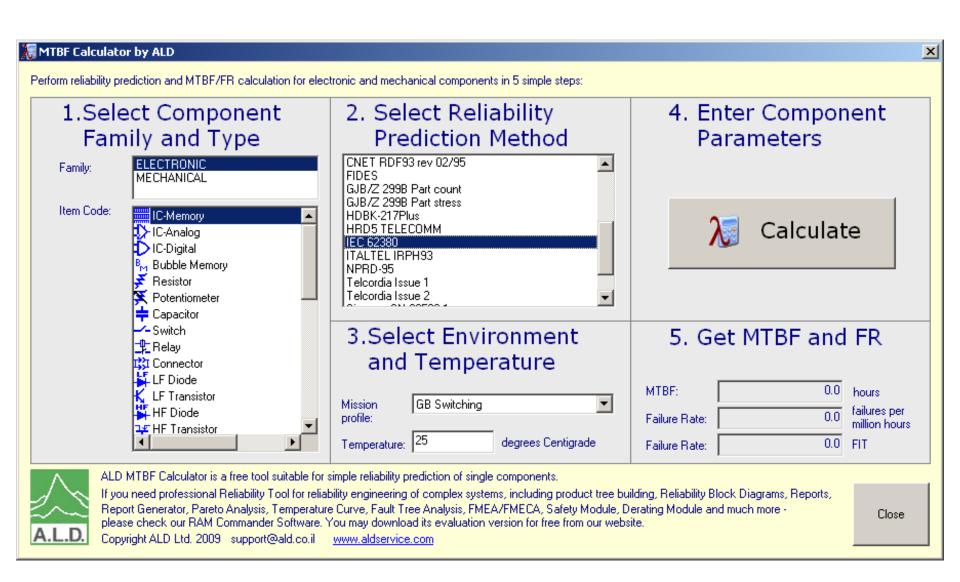
Goals of the dependability analysis

- On the basis of component characteristics
 - fault rate (in continuous operation),
 measured by FIT: 1 FIT = 10⁻⁹ faults/hour
 - fault probability (in on-demand operation)
 - reliability function
 - calculation of system level characteristics
 - reliability function
 - availability function
 - asymptotic availability
 - MTFF
 - safety

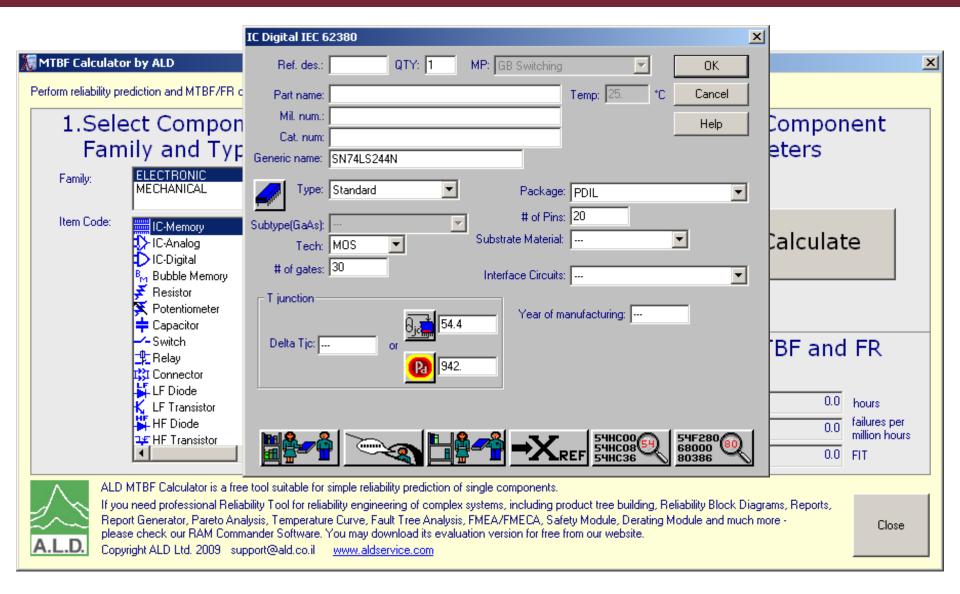
Calculations are based on the system architecture and the failure modes

Using the results of the analysis

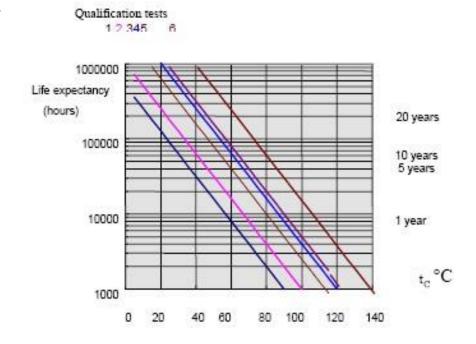
- Design: Comparison of alternative architectures
 - Having the same components, which architecture guarantees better dependability attributes?
- Design, maintenance: Sensitivity analysis
 - What are the effects of selecting another component?
 - Which components have to be changed in case of inappropriate attributes?
 - Which component characteristics have to be investigated in more detail? → Fault injection and measurements
- Handover: Justification of dependability attributes
 - Approval and startup of services
 - Certification (for safety critical systems)


How to estimate component fault rate?

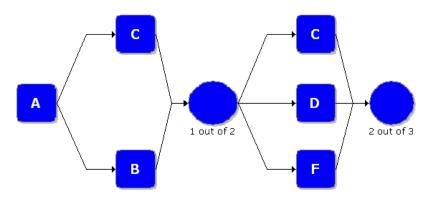
- Component level fault rates are available in handbooks
 - MIL-HDBK-217: The Military Handbook Reliability Prediction of Electronic Equipment (for military applications. pessimistic)
 - Telcordia SR-332: Reliability Prediction Procedure for Electronic Equipment (for telco applications)
 - IEC TR 62380: Reliability Data Handbook Universal Model for Reliability Prediction of Electronic Components, PCBs, and Equipment (less pessimistic, supporting new component types)
- Dependencies of component level reliability data:
 - Temperature, weather conditions, shocking (e.g., in vehicles), height, ...
 - Operational profiles
 - Ground; stationary; weather protected (e.g., in rooms)
 - Ground; non stationary; moderate (e.g., in vehicles)


Tool example: The ALD MTBF Calculator

Tool example: The ALD MTBF Calculator



Estimation of life expectancy


- What is the lifetime of electronic components?
 - When does the fault rate start increasing?
 - At this time scheduled maintenance (replacement) is required
- IEC 62380: "Life expectancy"
- Especially limited: In case of electrolyte capacitors
 - Depends on temperature
 - Depends on qualification
 - Example: at 25°C,~ 100 000 hours (~ 11 years)

Combinatorial models for dependability analysis

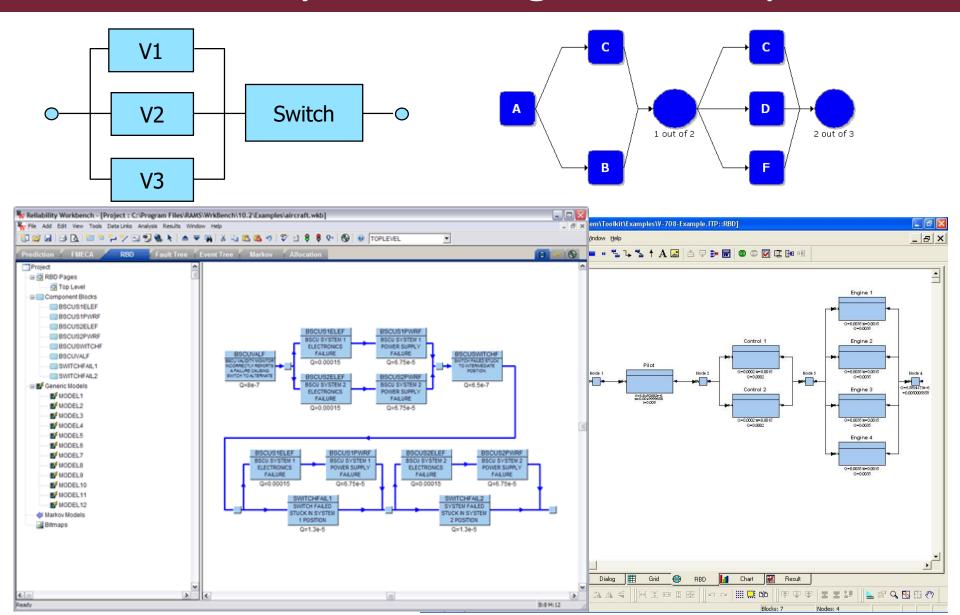
Boolean models for calculating dependability

- Two states of components: Fault-free or faulty
- There are no dependences among the components
 - Neither from the point of view of fault occurrences
 - Nor from the point of view of repairs
- "Interconnection" of components from the point of view of dependability: What kind of redundancy is used?
 - Serial connection: The components are not redundant
 - If all components are necessary for the system operation
 - Parallel connection: The components are redundant
 - If the components may replace each other

Reliability block diagram

Blocks: Components (with failure modes)

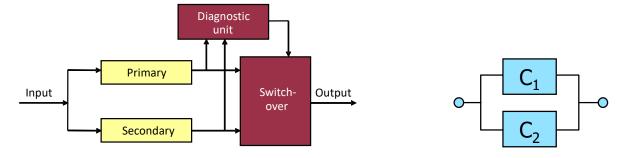
Connection: Serial or parallel connection

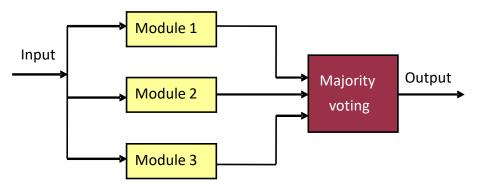

Paths: System configurations

 The system is operational (correct) if there is a path from the start point to the end point of the diagram through fault-free components

Serial: Parallel: C_1 C_1 C_2 C_3

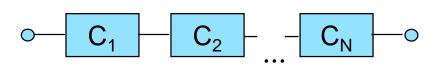
Reliability block diagram examples

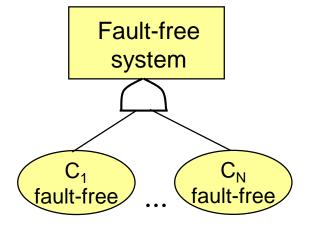


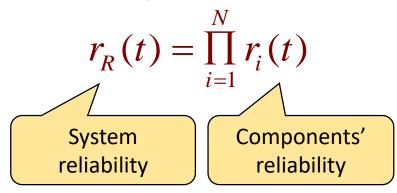


Overview: Typical system configurations

- Serial system model: No redundancy
- Parallel system model: Redundancy (replication)


- Complex canonical system: Redundant subsystems
- M out of N components: Majority voting (TMR)




Serial system model

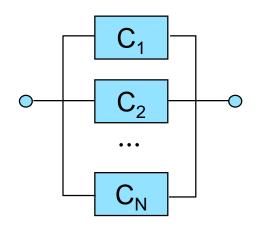
 $P(A \land B) = P(A) \cdot P(B)$ If independent

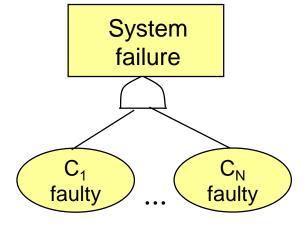
Reliability for N components:

$$\lambda_R = \sum_{i=1}^N \lambda_i$$

MTFF:

$$MTFF = \frac{1}{\sum_{i=1}^{N} \lambda_i}$$


Example: Reliability of a module (serial system)


Component name	Туре	Additional	data	IEC 62380 referei	nce	Fault rate	Quantity
Panduit D461612	Connector	Rectangular		Default value		0,003625	1
Panduit D461612	Connector	Rectangular		Default value		0,007200	1
74AHCT14	IC-Digital	Standard		Substituted with - SN74AHCT14D		0,014200	3
74HC/HCT540	IC-Digital	Standard		Substituted with - CD74HC540E		0,019000	2
74HC/HCT541	IC-Digital	Standard		Substituted with - SN74AHCT541DW		0,014000	3
PALCE16V8	IC-Digital	PAL		Exact matching		0,036000	1
HMA124	Optoelectronic	Optocoupler		Default value		0,011600	16
MB6S	IC-Digital	Standard		Default value		0,012700	16
Resistor	Resistor	General purpose		Default value		0,000232	32
Resistor	Resistor	Fixed, high dissipation film		Default value		0,001047	32
Capacitor	Capacitor	Tantalum - solid electrolyte		Default value		0,000725	17
Capacitor	Capacitor	Ceramic class II.		Default value		0,000223	41
SMD led	Optoelectronic	Solid State				0,002000	16
U22-DI016-C3	PWB		Sum	of component		0,003403	1
SOD80 BZV55C	LF Diode	Zener	fault r	rate * quantity		0,011500	64
Module fault rate:					1,	392021 faults pe	r million hours

Parallel system model

 $P(A \land B) = P(A) \cdot P(B)$ if independent

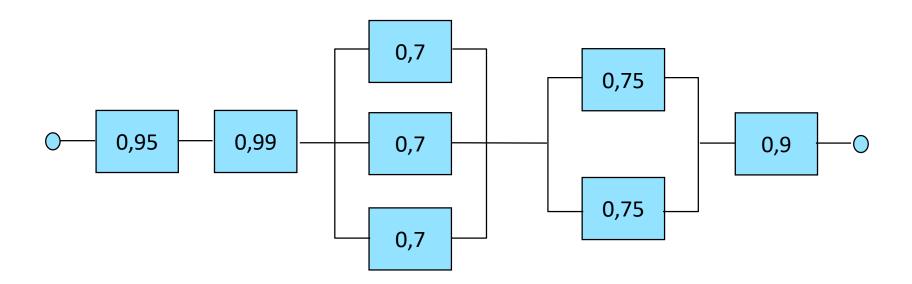
Reliability:

$$1 - r_R(t) = \prod_{i=1}^{N} (1 - r_i(t))$$

Identical N components:

$$r_R(t) = 1 - (1 - r_C(t))^N$$

MTFF:


$$MTFF = \frac{1}{\lambda} \sum_{i=1}^{N} \frac{1}{i}$$

Complex canonical system

- Calculation on the basis of parts with basic connections
 - Example: Calculation of asymptotic availability

$$K_R = 0.95 \cdot 0.99 \cdot \left[1 - (1 - 0.7)^3\right] \cdot \left[1 - (1 - 0.75)^2\right] \cdot 0.9$$

M faulty out of N components

N replicated components; If M or more components are faulty: the system is faulty

$$r_R = \sum_{i=0}^{M-1} P\{\text{"there are i faulty components"}\}$$

$$r_{R} = \sum_{i=0}^{M-1} {N \choose i} (1-r)^{i} \cdot r^{N-i}$$

Application: Majority voting (TMR): N=3, M=2

$$r_{R} = \sum_{i=0}^{1} {3 \choose i} (1-r)^{i} \cdot r^{3-i} = {3 \choose 0} (1-r)^{0} \cdot r^{3} + {3 \choose 1} (1-r)^{1} \cdot r^{2} = 3r^{2} - 2r^{3}$$

$$MTFF = \int_{0}^{\infty} r_R(t)dt = \int_{0}^{\infty} (3r^2 - 2r^3)dt = \frac{5}{6} \cdot \frac{1}{\lambda}$$
 Less than in case of a single component!

Cold redundant system

A new component is switched on to replace a faulty component:

$$MTFF = \sum_{i=1}^{N} MTFF_i$$

In case of identical replicated components, the system reliability function:

$$r_{R}(t) = \sum_{i=0}^{N-1} \frac{\left(\lambda t\right)^{i}}{i!} e^{-\lambda t}$$

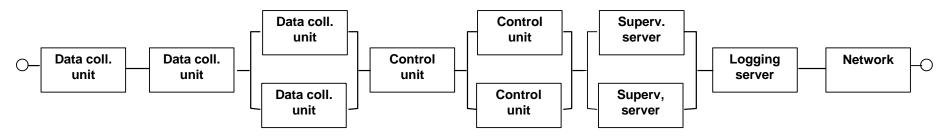
EXERCISE

Reliability block diagram

A SCADA system consists of the following components:

- 4 data collector units, 3 control units, 2 supervisory servers, 1 logging server and the corresponding network
- The 2 supervisory servers are in a hot redundancy structure.
- 2 data collector units and 2 control units are hot redundant units
- The reliability data of the system components are given as follows (measured in hours, with independent repairs in case of faults):

	Data coll. unit	Control unit	Superv. server	Logging server	Network
MTTF	9000	12000	4500	2000	30000
MTTR	2	3	5	1	2


- Evaluate the system level availability using a reliability block diagram.
- Compute the asymptotic availability of the system using the above given parameters of the system components.
- In average, how many hours is the system out of service in a year?

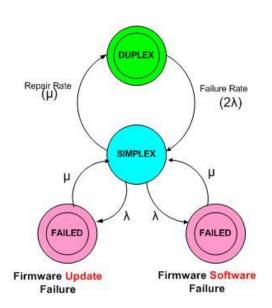
EXERCISE Solution

Reliability block diagram:

Component level asymptotic availability: K = MTTF / (MTTF+MTTR)

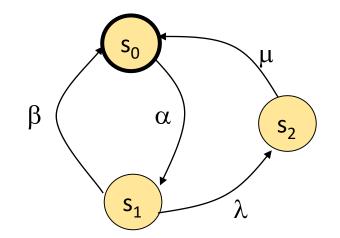
	Data coll. unit (D)	Control unit (C)	Superv. server (S)	Logging server (L)	Network (N)
MTTF	9000	12000	4500	2000	30000
MTTR	2	3	5	1	2
K	KD=0.99977	KC=0.99975	KS=0.99889	KL=0.9995	KN=0.99993

System level asymptotic availability:


$$KD*KD*(1-(1-KD)^2) * KC*(1-(1-KC)^2) * (1-(1-KS)^2) * KL * KN = 0.9987362$$

Approx. 11 hours out of service per year

Markov models for dependability analysis



Model: Continuous Time Markov Chain

- Definition: CTMC = (S, R)
 - S set of discrete states:

 $\circ \underline{\mathbb{R}}: S \times S \longrightarrow \mathbb{R}_{\geq 0}$ state transition rates

- Notation:
 - Rate of leaving a state: $E(s) = \sum_{s' \in S, s \neq s'} R_{s,s'}$
 - \bigcirc **Q** = **R**-diag(**E**) infinitesimal generator matrix
 - $\circ \sigma = s_0, t_0, s_1, t_1, \dots$ path $(s_i \text{ is left at } t_i)$
 - o σ@t the state at time t
 - Path(s) set of paths from s

Solution of a CTMC

- Transient state probabilities:
 - $\pi(s_0, s, t) = P\{\sigma \in Path(s_0) \mid \sigma@t=s\}$ probability that starting from s_0 the system is in state s at time t
 - $\circ \underline{\pi}(s_0, t)$ starting from s_0 , the probabilities of the states at t
 - o CTMC transient solution:

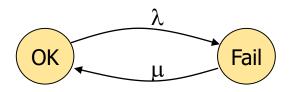
$$\frac{d\underline{\pi}(s_0,t)}{dt} = \underline{\pi}(s_0,t)\underline{Q}$$

$$P\{\text{being in } s \text{ for } t\} = e^{-E(s)t}$$

$$E\{\text{time spent in } s\} = \frac{1}{E(s)}$$

- Steady state probabilities:
 - $\pi(s_0, s) = \lim_{t \to \infty} \pi(s_0, s, t)$ state probabilities, starting from s_0
 - $\circ \underline{\pi}(s_0)$ state probabilities (vector)
 - CTMC steady state solution:

$$\underline{\pi}(s_0) \underline{\underline{Q}} = 0$$
 where $\sum_{s} \pi(s_0, s) = 1$



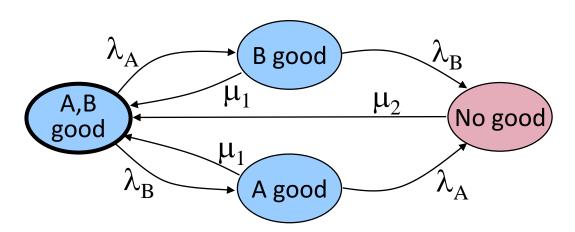
CTMC dependability model

CTMC states

- System level states: Combination of component states (fault-free, or faulty according to a failure mode)
- CTMC transitions
 - \circ Component level fault occurrence: Rate of the transition is the component fault rate λ
 - \circ Component level repair: Rate of the transition is the component repair rate μ , which is the reciprocal of the repair time

System level repair:
 Rate of the transition is the system repair rate
 (which is the reciprocal of the system repair time)

Example: CTMC dependability model


- System consisting of two servers, A and B:
 - The servers may independently fail
 - The servers can be repaired independently or together
- System states: Combination of the server states (good/faulty)
- Transition rates:

 \circ Fault of server A: λ_{Δ} failure rate

 \circ Fault of server B: λ_{R} failure rate

 \circ Repair of a server: μ_1 repair rate

 \circ Repair of both servers: μ_2 repair rate

Computation of system level attributes

- Identifying state partitions
 - System level "up" state partition U and "down" partition D
- Solution of the CTMC model:
 - \circ Transient solution: $\pi(s_0, s, t)$ time functions
 - \circ Steady state solution: $\pi(s_0, s)$ probabilities
- Availability: $a(t) = \sum_{s \in U} \pi(s_0, s_i, t)$
- Asymptotic availability: $A = \sum_{s_i \in U} \pi(s_0, s_i)$
- Reliability: $r(t) = \sum_{s_i \in U} \pi(s_0, s_i, t)$

Here: Before the solution the model shall be modified: transitions from partition D to U shall be deleted

Example: CTMC dependability model

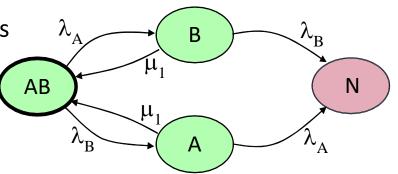
- System consisting of two servers, A and B:
 - The servers may independently fail
 - The servers can be repaired independently of together
- State partitions:

$$O = \{s_{AB}, s_{A}, s_{B}\}, s_{O} = s_{AB}$$

$$O$$
 D = $\{s_N\}$

Availability:

$$a(t) = \pi(s_0, s_{AB}, t) + \pi(s_0, s_{A}, t) + \pi(s_0, s_{B}, t)$$

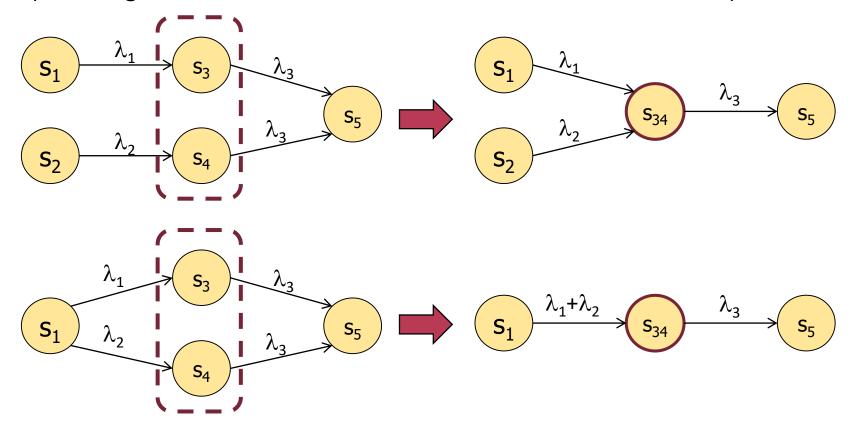

Asymptotic availability:

$$K = A = \pi(s_0, s_{AB}) + \pi(s_0, s_{A}) + \pi(s_0, s_{B})$$

AB

- Reliability:
 - Modifying the model: Deleting transitions from D = {s_N} partition to U
 - Solution of the modified model:

$$r(t) = \pi(s_0, s_{AB}, t) + \pi(s_0, s_A, t) + \pi(s_0, s_B, t)$$



N

Reducing CTMC models

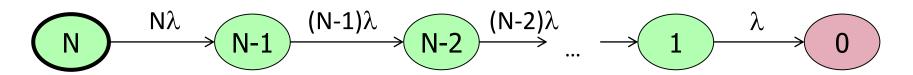
Merging states

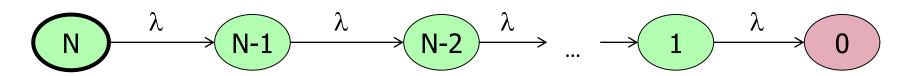
- Condition: Have transitions to the same states with the same rates (outgoing transitions and rates do not distinguish these states)
- After merging, the outgoing rate and the incoming rates remain the same (incoming transitions from the same state: rates are summarized)



Example: Merging states

- Model: 3 redundant (replicated) components
- The components (a, b, c) have the same fault rate λ

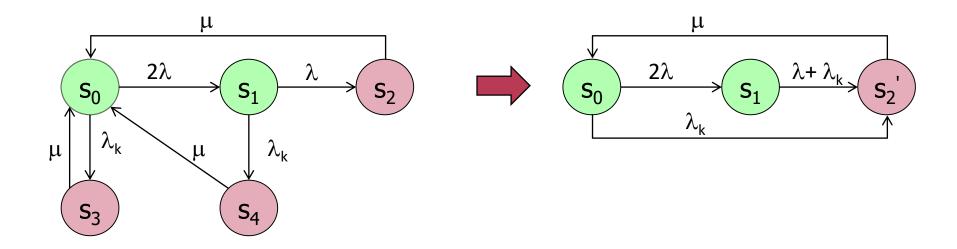




CTMC dependability models (1)

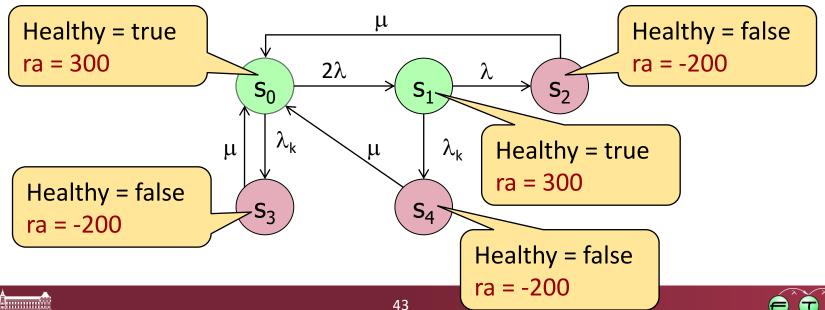
Hot redundancy, N components:

- Computing MTTF in case of hot redundancy
 - \circ Time spent in state where k components are good: $\frac{1}{k\lambda}$
- Cold redundancy, N components:



CTMC dependability models (2)

- Active redundancy scheme
 - \circ 2 components, each with λ failure rate
 - \circ Switch between components, with λ_k failure rate
 - \circ In case of a fault: complete repair, with μ repair rate



Rewards

- Reward: "Profit" or "cost" functions that can be assigned to markings or firings
- Rate reward
 - Assigned to states, reward/time value is given by a function
 - Example: If the server is healthy then the profit is 300 Ft/hour, otherwise the penalty is 200 Ft/hour:

if (Healthy) then ra=300 otherwise ra=-200

Rewards

- Reward: "Profit" or "cost" functions that can be assigned to markings or firings
- Rate reward
 - Assigned to states, reward/time value is given by a function
 - Example: If the server is healthy then the profit is 300 Ft/hour, otherwise the penalty is 200 Ft/hour:

```
if (Healthy) then ra=300 otherwise ra=-200
```

- Possible analysis questions
 - Accumulated reward (e.g., profit or penalty) for a time interval *Example:* Cost of operating the system throughout the first month
 - Transient instantaneous reward rate (of change) at a given time point Example: Operating cost for one hour at the end of the first month
 - Steady-state instantaneous reward rate: long-running average cost Example: Operating cost for one hour after a long time

Tools for dependability analysis

For both combinational dependability model

o Fault tree,

Reliability block diagram,

Event tree,

FME(C)A, ...

and Markov chains:

- Item Toolkit (<u>www.itemuk.com</u>)
- RAM Commander (<u>www.aldservice.com</u>)
- Functional Safety Suite

Open source tools:

- PRISM Model Checker (<u>www.prismmodelchecker.org</u>)
- Storm Model Checker (<u>www.stormchecker.org</u>)

Summary

- Attributes of dependability
 - Reliability, availability:
 Probability functions (in time)
- Combinational modeling: Reliability block diagram
 - Serial, parallel, majority voting structures
- State based models: Markov chains
 - Computation: Probability of state partitions
- Profits and costs in models: Rewards
 - Computation: Transient, accumulated and steady-state

