Software Verification and Validation (VIMMDO052)

Verification of the Detailed Design

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

(g gy
MUEGYETEM 1782

Overview

= Preparation of the detailed design
o Software construction
o Module (component) design

= \erification
o Verification criteria
o Techniques

" Formal verification
o Basic formalisms for representing the design

o Formalization of the requirements (to be continued)

Preparation of the detailed design

Software construction
Module (component) design

Software construction

Software requirements Software construction
specification design

Designing

Software construction
software

verification report

Software architecture
design

construction -
Software quality “Local” Software integration
assurance plan checking test plan

testing

{For integration

Software construction

= To be designed:
o System level algorithms for the interaction of modules
o Global data structures
= Design (description) language:
o Capturing interactions and information exchange (ordering, timeliness)
o Representing (abstract / concrete) data structures
o Characterized by modularity, abstraction, precision
= Available methods:

o Formal, semi-formal, structured methods

= Specific characteristics (in critical systems):
o Fully defined interfaces
o Module and parameter size / complexity limits

o Information hiding

Software module (component) design

Software requirements

specification
Software architecture
design \

Software module
design

Software module
verification report

Designing
software modules

Software construction L~
design

“Local” Software module
Software quality checking test plan
assurance plan —

testing

{For module

Software module design

" |Internal design of software modules
o Algorithms
o Data structures

= Design (description) language
o Languages closer to implementation

* E.g., pseudo-codes can be used

o Formal, semi-formal, structured languages

* Description of the behavior is important: control flow
automata, state machines, statecharts

Verification of the detailed design

Verification criteria
Techniques

Verification criteria for the detailed design

" |ocal characteristics of the design
o Completeness, consistency, verifiability, feasibility

= Conformance (to the outputs of previous steps)
o Behavioral properties specified earlier

» Safety properties: “Something bad never happens”

* Liveness properties: “Something good will eventually
happen”

o Conformance of abstract and refined behavior

e Simulation, bisimulation, refinement relations

"= Completeness of test plans

Verification techniques for the detailed design

= Static checking
o Review: Checklist, error guessing

o Structure based analysis
* Control flow: complexity, structure, ...
e Data flow: initialization and use of variables, ordering of access, ...
e Border values: switching to different behavior

o Analysis of unwanted behavior
* Potential influences through reserving resources (CPU, memory), ...

o Symbolic execution
* Checking inputs that cause parts of a program to execute

= Dynamic checking
o Prototype implementation and animation
* Detection of problematic cases requires particular care

o Simulation
* Can we simulate all possible executions?

o Formal verification
* For proving properties (“exhaustive” checking)

Formal verification

= Use of precise, mathematical techniques
(esp. discrete mathematics, mathematical logic)

o Formal language: Formal syntax and semantics
» Behavior description (design, implementation)
* Property description (property specification)
o Mathematical algorithm for verification
* Checking design properties (e.g., ambiguity)
* Checking changes (e.g., refinement)
e Conformance of behavior and property descriptions

= Crucial aspect: Formalization of the real problem
o Not automatized
o Simplification, abstraction is needed (it has to be validated)

Formal syntax

= Mathematical description: KS =(S,R,L) and AP, where
AP={P,QR,..}
S={s.,5,,5;,-5, |
R cSxS
L:S— 2%

= BNF: BL ::=true | false | pAq | pvq

= Metamodel: 2 ceept Automaton

o Abstract syntax:
grammar rules initial <currentl l states \lransitions

o Concrete syntax: " State e
representation @ame:Stringj_ to

Formal semantics (overview)

The meaning of the model following the syntax:

= (QOperational semantics: “for programmers”
o Defines what happens during operation (computation)
o Builds on simple notions of execution: states, events, actions, ...
o E.g., to describe the state space for verification

= Axiomatic semantics: “for correctness proofs”

o Predicate language + set of axioms + inference rules
o E.g., for automated theorem prover tools

= Denotational semantics: “for compilers”

o Mapping to a known domain, driven by the syntax

* Known mathematical domain, e.g., computation sequence, control-flow graph,
state set, ... and their operations (concatenation, union, etc.)

* Analysis of the model: analysis of the underlying domain

o E.g., for synthesis tasks

Models for formal verification

= Design models (with operational semantics)
o Engineering (design) models:
e E.g., DSL, UML with (semi-)formal semantics

o Higher-level formal models: . =
* Control-oriented: automata, Petri nets, ...
* Data processing-oriented: dataflow networks, ...
 Communication-oriented: process algebra, ...

o Basic mathematical models: d £
e KS, KTS, LTS, finite state automata, Blichi automata
" Property descriptions
o Higher level:
* Time diagram, message sequence chart (MSC)
o Base level:

* First order logic, temporal logic, reference automaton

Typical formal verification techniques

Models /
techniques

Behavior description
(basic model)

Property description
(basic property)

Model checking

Kripke structure (KS),

Kripke transition system (KTS)

Temporal logics,
first order logics

Equivalence /

Labeled transition system (LTS),

LTS, automata

refinement finite automata (as reference
checking behavior)

Theorem Deduction system Theorem to be proved
proving (first order logic)

Static analysis
(abstract
Interpretation)

Kripke transition system

(extracted from the program)

Assertion
(first order logic)

Advantages and limitations of the techniques

= Model checking, equivalence/refinement checking
© Fully automated, exhaustive checking
© Construction of diagnostic trace (for debugging)
@ State space exploration (handled partially)

= Theorem proving
© Scalable for complex systems (e.g., by induction)
© High expressive power
@ Interactive (need hints, e.g., to find a proof strategy)
@ There is no diagnostic trace (counter-example)

= Static analysis (abstract interpretation)

© Handling state space explosion by abstraction
@ Abstraction is hard to automate

The role of formal verification techniques

Operation,
maintenance

A

Requirement System
analysis validation
\ Model Theorem /
checking proving
System e System
specification verification
Architecture System
design integration
Equivalence/ \ /
refinement
checking Module Module
design verification
Theorem
proving
Abstract
Module interpretation

implementation

“Informal” “Informal”
design properties
Formal Formalized
model properties

Formal verification

OK Diagnostic trace

Formalization of the design:

Basic formalisms

/ \
[“Informal” : “Informal”
l design : properties
|
N T '
|

I
: Formal l Formalized
\ model ' properties

~

-_ e - - - = .

OK Diagnostic trace

Basic formalisms (overview)

= Kripke structure (KS)
o States, transitions
o Local properties of states as labels
= Labeled transition system (LTS)
o States, transitions, actions
o Local properties of transitions as labels
= Kripke transition system (KTS)
o States, transitions
o Local properties of states and transitions as labels
= Finite state automata (FSA)
o Accepting and rejecting runs on finite input sequences
o Blichi acceptance criteria on infinite input sequences
= Timed automata (TA)
o Extensions: variables, clocks, synchronization

1. Kripke structure

Basic characteristics:

= Expresses properties of states: labeling by atomic propositions
= Possibly more than one labels per state

= Application: description of behavior or algorithm

Definition:
A Kripke structure KS over a set of atomic propositions
AP ={P,0Q,R, ...} isatuple (S,R,L) where
= S ={s4,Sy,..,5,}is afinite set of states,
[€ S is the set of initial states,

= RC S XSisthesetof transitions and
= [:S — 24P s the labeling of states by atomic propositions

Example: Kripke structure

Traffic light controller
= AP = {Green, Yellow, Red, Blinking}
= 5= {51,52,53,54,55}

{Green} { } {Red} {Redq, }

{Blinking}

2. Labeled transition system

Basic characteristics:

= Expresses properties of transitions: labeling by actions
= Exactly one action per transition

= Application: modeling of communication and protocols

Definition:
A labeled transition system LTS over a set of actions
Act ={a,b,c, ...} is atriple (S, Act,—>) where
= S =1{sq,5,,..,S,} is afinite set of states,
I € S is the set of initial states,
= —:S5 X Act X Sis the set of transitions

a
We denote by s > s iff (s,a,s’) € —.

Example: Labeled transition system

Vending machine

= Act = {coin, coffe, tea}

T1 T2

coffee tea

3. Kripke transition system

Basic characteristics:

= Expresses properties of both states and transitions:
labeling by atomic propositions and actions

= Possibly more than one labels per state,
exactly one action per transition

Definition:
A Kripke transition system KTS over a set of atomic propositions
AP and set of actions Act is a tuple (S, —, L) where

= (S,Act,>)isan LTS
= [: S — 24P s the labeling of states by atomic propositions

Example: Kripke transition system

Vending machine with state labeling
= Act = {coin, coffee, tea}
= AP = {Start, Choose, Stop}

{Sta rt}

{Stop} {Stop}

4. Automata on finite words

= A=(%, S, S,, p, F) where
o 2 alphabet, S states, S, initial states
o p state transition relation, p: S x X — 2°
o F set of accepting states

= Run of an automaton

o State sequence r=(s,, S;, S,, ..- S,,) on the incoming word
w=(a,, a,, a,, ... a,)

o ris an accepting runifs_ eF

o A word w is accepted by the automaton,
if there is an accepting run over w

= Language L accepted by the automaton A:

L(A)={ we X* | w accepted}

Automata on infinite words

= The accepting state (at the end of an input word)
cannot be checked

= Bulchi acceptance criterion:

o On the incoming infinite word w=(a,, a,, a,, ...
there is an r=(s,, s;, s,, ...) infinite state sequence

o lim(r)={s | s occurs infinitely often,
i.e., there is no j, such that Vk>j:s#s,}

o Accepting run: lim(r) " F#0

o A word w is accepted by the automaton,
if there is an accepting run over w
(i.e., accepting state occurs infinitely often)

= Language L accepted by the automaton A:
L(A)={ we X* | w accepted}

T e e 29
TEM 1782

Timed Automata:

Finite State Automata with Time

Timed Automata in the UPPAAL model checker

Timed Automata: Extension with variables

= Basic formalism: Finite state automaton (FSA)
o Control locations (named)
o Edges

= Language extension: integer variables
o Variables with restricted domain (e.g. int[0O, 1] id)
o Constants
o Integer arithmetic

= Use of variables: on transitions

o Guard: predicate over variables
* The transition can fire only if predicate holds

o Action: variable assignment

Timed automata: Extension with clock variables

" Goal: modeling time-dependent behavior
o Time passes in given states of the component

o Relative time measurement by resetting and reading timers,
behavior depends on timer value (e.g., timeout)

= Language extension: clock variables

o Measuring time elapse by a constant rate

= Use of clock variables on transitions
o Guard: predicate over clock variables
o Action: resetting clocks to zero

= Use of clock variables on locations

o Location invariant: predicate over clock variables, being in a
location is valid until its invariant holds

Timed automata in UPPAAL

. x
Example: revolving door T5E5665] Comments |

Marme: Iwait

[Location }\ CIOCk X, Ireariant:
idle o |
activated = true
@) >
éD wait [Inikial
[Guard J; . [~ Urgent

[T Committed

ITI Cancel |
opening x|

R
we=h

Seleck;

. =0 . =
[ACtlon % activated=false x=U Guar 6

Swnc:

o —
i —
Eat X

[]
w5
Mo (D

1l =0
oo

closing O< ¥ =/
K<=h

Update: .=

(8] I Cancel

Role of guards and invariants

clock x;
O activated = frue
% é) wait
K

idle

closed apening
x<=5 QQ e

x==6 Ff; [Guard }

=0,
activated=false

_—] Invariant }
closing x==4 x=0 é open
O- <=8

.
X<=h X<=o

Upon exiting location open, the value of clock is in interval [4, 8]

4 8 t

Extensions for concurrency

= Goal: modeling networks of automata
o Interaction: Synchronization between automata transitions

o Synchronous communication (handshake)
* Sending and receiving a message occurs at the same time
* Modeling of asynchronous behavior: by modeling channels

= Language extension: synchronized actions Q
o Channels for sending messages 3l

o Sending a message: | operator
Receiving a message: ? operator

o E.g.: synchronization labels a! and a? for channel a chan a

" Parameterization

o Arrays of channels: E.g. channel a[id] for a variable id

Example for clocks and synchronization

Declarations: “Receiving a message”
clock t. u: (interaction)
14 4
chan press;
Switch:
Off
@
press?
User: oress! =0 LightOn “Sending a message”
>er g (interaction)
Think press! u=3
press! u=0 ToBright press BrightOn
>/ ==

press

Further extensions: broadcast channel

= Broadcast channel: one-to-many communication

o Sending a message unconditionally
* No handshake needed

o All processes that are ready to receive the message will synchronize

* Receiving edge can only be taken upon receiving message

o Restriction: no guard on receiving edge

broadcast chan a;

| L
O

Further extensions: Urgent channel

= Urgent channel: prohibit time delay (waiting for synchronization)

o The synchronization is executed without delay,
(other edges might be traversed before, but only instantly)

o Restrictions:
* No guard is allowed on an edge labeled with the name of an urgent channel

* Noinvariant is allowed on a location that is the source of an edge labeled with
the name of an urgent channel

l urgent chan a;

Q\ invariant

not allowed
|

a guard

— not allowed

Further extensions: special locations

= Urgent location: prohibit time delay (waiting in location)
o Time is not allowed to progress in the location
o Equivalent model:

* |ntroduce a clock variable: clock x
* Reset clock on all incoming edges: x:=0
e Add invariant: x<=0

= Committed location: even more restrictive
o A committed location is urgent

o Committed state: at least one committed location is active

o The next transition from a committed state must involve at
least one out-edge of an active committed location

The UPPAAL model checker

= Development (1999-):
o Uppsala University, Sweden
o Aalborg University, Denmark
= Web page (information, examples, download):
http://www.uppaal.org/

= Related tools:
o UPPAAL CoVer: Test generation
o UPPAAL TRON: On-line testing
o UPPAAL PORT: Component based modeling
O ...

= Commercial version:
http://www.uppaal.com/

& E:/Tools/Uppaal/demo/2doors.xml - UPPAAL & |D| 5]

File Edit View Tools Options Help

0 |DaM A& R@so
© Editor | simulator | Verifier |
O Drag out |: Mame; IDoor Parameters: Ibool &activated, urgent chan &pushed, urgent chan &closed1, urgent chan &closed2
E . | Project
- # Declarations
C S B pushed?
) R ;’SE’t’ o closed1! activated = true
=4 System declarations / ; closed|
S O @ o=
E idle wait
(@) closed2?
= o =
I closed1!
@ closed CS opening
% {:5 e ¥ <::,3
X==0 X ___.I'.
%=0, x=0
activated=false
closing h_ D open
X<=6 ~ & ¥<=8
X=0

£ E:/Tools/Uppaal/demo/2doors.xml - UPPAAL
File Edit View Tools Options Help

|IBalaa s R@-»o

Editol I verifier |

4 4
Drag out I, Drag out N &
- activated] = 1 Door1 Door2
Enabled Transitions sctivated? = 0
R e pushed1? pushed2?

User2 Doorl.x >= closzd1! activated1 = true closed2! activated2 = true :
closed2: Door2 -~ Doorl Door2.x >=0 M doszd1! M dosed?!
Userl.w=0 iclle wait idle vait

Simulator

Userz,w >=0 T o "
Doorl.x = Door2, x =5 x=0 =5 x=0
Door2.x = User2.w
X cosed1! dosed2!
B dossd T opening 4 dosad G 5 opening
__I &7 x<=5 (x<=R & ye=5 (7/ w<=R
o
Mext | Reset | y==Ff ==0 X==6 ¥==0
x=0, x=0 x=0, =0
Simulation Trace activated=falss activatec=falss
(idle, idle, idle, idle)

dosing dosing —
Userl x<=6 x<=h
(idle, idle, -, idle)
pushed1: Userl --> Doorl User1 User2
{wait, idle, idle, idle) idlle idle

pushed1! pushed2!

lacti vated! lact vatec2
we0 w=0

-x

Door1 Door2 User1 User2

Trace File: |
0

reyv [dext Repla
i X pushed1

Open Save Random

idle

II_-!!I F:/FTapps/Uppaal/demo/2doors.xml - UPPAAL - | Ellﬂ

File Edit Wiew Tools Options Help

[ba@maaage-:ms

Eu:litu:url Simulatar Yerifier I

— Cetyie
CU Check
o &[] not (Doorl.open and DoorE. open)
. s— Insert
A[] (Doorl.opening imply Userl.w<=31) and (Doord.opehing inply UserZ.w<=31) .
) : E<> Doorl.open o Remaoye
q) E<> Doori.open . Camments
> -

Quety
Al not (Doort.open and Door2. open)

Commenkt

Mutex: The two doors are never open atthe same time.

.]

Skatus

Established direct connection to local server,

(Academic) UPPAAL version 40,7 (rey. 41400, November 2008 -- server,
Disconnecked,

Established direct connection to local server,

(Academic) UPPAAL version 40,7 (rey. 41400, November 2008 -- server,
A[] not {Doorl .open and Door 2, open)

Property is satisfied,

&[] (Door1 opening imply Userl,w<=311 and (Doorz, opening imply Users w<=31
Property is satisfied,

E <> Doors,open

Property is satisfied,

a[] not deadlock.

Property is satisfied,

ook, waik --= DoorZ, apen

Property is satisfied,

Dioorl waik --= Doorl . open

Property is satisfied,

