
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Verification of the Detailed Design

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Overview

 Preparation of the detailed design

o Software construction

o Module (component) design

 Verification

o Verification criteria

o Techniques

 Formal verification

o Basic formalisms for representing the design

o Formalization of the requirements (to be continued)

2

Preparation of the detailed design

Software construction

Module (component) design

3

Software construction

Designing

software

construction

Software requirements

specification

Software construction

design

Software architecture

design

Software quality

assurance plan

Software integration

test plan

Software construction

verification report

“Local”

checking

For integration

testing

4

Software construction

 To be designed:
o System level algorithms for the interaction of modules

o Global data structures

 Design (description) language:
o Capturing interactions and information exchange (ordering, timeliness)

o Representing (abstract / concrete) data structures

o Characterized by modularity, abstraction, precision

 Available methods:
o Formal, semi-formal, structured methods

 Specific characteristics (in critical systems):
o Fully defined interfaces

o Module and parameter size / complexity limits

o Information hiding

5

Software module (component) design

Designing

software modules

Software requirements

specification Software module

design

Software architecture

design

Software construction

design

Software quality

assurance plan

Software module

test plan

Software module

verification report

“Local”

checking

For module

testing

6

Software module design

 Internal design of software modules

o Algorithms

o Data structures

 Design (description) language

o Languages closer to implementation

• E.g., pseudo-codes can be used

o Formal, semi-formal, structured languages

• Description of the behavior is important: control flow
automata, state machines, statecharts

7

Verification of the detailed design

Verification criteria

Techniques

8

Verification criteria for the detailed design

 Local characteristics of the design

o Completeness, consistency, verifiability, feasibility

 Conformance (to the outputs of previous steps)

o Behavioral properties specified earlier

• Safety properties: “Something bad never happens”

• Liveness properties: “Something good will eventually
happen”

o Conformance of abstract and refined behavior

• Simulation, bisimulation, refinement relations

 Completeness of test plans

9

Verification techniques for the detailed design

 Static checking
o Review: Checklist, error guessing
o Structure based analysis

• Control flow: complexity, structure, …
• Data flow: initialization and use of variables, ordering of access, …
• Border values: switching to different behavior

o Analysis of unwanted behavior
• Potential influences through reserving resources (CPU, memory), …

o Symbolic execution
• Checking inputs that cause parts of a program to execute

 Dynamic checking
o Prototype implementation and animation

• Detection of problematic cases requires particular care

o Simulation
• Can we simulate all possible executions?

o Formal verification
• For proving properties (“exhaustive” checking)

10

Formal verification

 Use of precise, mathematical techniques
(esp. discrete mathematics, mathematical logic)
o Formal language: Formal syntax and semantics

• Behavior description (design, implementation)

• Property description (property specification)

o Mathematical algorithm for verification
• Checking design properties (e.g., ambiguity)

• Checking changes (e.g., refinement)

• Conformance of behavior and property descriptions

 Crucial aspect: Formalization of the real problem
o Not automatized

o Simplification, abstraction is needed (it has to be validated)

11

Formal syntax

 Mathematical description:

 BNF: BL ::= true | false | pq | pq

 Metamodel:

o Abstract syntax:
grammar rules

o Concrete syntax:
representation

12

 1 2 3 n

(, ,) and AP, where

AP= P,Q,R,...

S= s ,s ,s ,...s

R S S

L: S 2AP

KS S R L

13

Formal semantics (overview)

The meaning of the model following the syntax:

 Operational semantics: “for programmers”
o Defines what happens during operation (computation)

o Builds on simple notions of execution: states, events, actions, …

o E.g., to describe the state space for verification

 Axiomatic semantics: “for correctness proofs”
o Predicate language + set of axioms + inference rules

o E.g., for automated theorem prover tools

 Denotational semantics: “for compilers”
o Mapping to a known domain, driven by the syntax

• Known mathematical domain, e.g., computation sequence, control-flow graph,
state set, … and their operations (concatenation, union, etc.)

• Analysis of the model: analysis of the underlying domain

o E.g., for synthesis tasks

14

Models for formal verification

 Design models (with operational semantics)
o Engineering (design) models:

• E.g., DSL, UML with (semi-)formal semantics

o Higher-level formal models:
• Control-oriented: automata, Petri nets, …
• Data processing-oriented: dataflow networks, …
• Communication-oriented: process algebra, …

o Basic mathematical models:
• KS, KTS, LTS, finite state automata, Büchi automata

 Property descriptions
o Higher level:

• Time diagram, message sequence chart (MSC)

o Base level:
• First order logic, temporal logic, reference automaton

Typical formal verification techniques

Models /

techniques

Behavior description

(basic model)

Property description

(basic property)

Model checking Kripke structure (KS),

Kripke transition system (KTS)

Temporal logics,

first order logics

Equivalence /

refinement

checking

Labeled transition system (LTS),

finite automata

LTS, automata

(as reference

behavior)

Theorem

proving

Deduction system Theorem to be proved

(first order logic)

Static analysis

(abstract

interpretation)

Kripke transition system

(extracted from the program)

Assertion

(first order logic)

15

Advantages and limitations of the techniques

 Model checking, equivalence/refinement checking
 Fully automated, exhaustive checking

 Construction of diagnostic trace (for debugging)

 State space exploration (handled partially)

 Theorem proving
 Scalable for complex systems (e.g., by induction)

 High expressive power

 Interactive (need hints, e.g., to find a proof strategy)

 There is no diagnostic trace (counter-example)

 Static analysis (abstract interpretation)
 Handling state space explosion by abstraction

 Abstraction is hard to automate

16

The role of formal verification techniques

Model

checking

Equivalence/

refinement

checking

Abstract

interpretation

Theorem

proving

Theorem

proving

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

17

18

Our goal

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

Formalization of the design:
Basic formalisms

19

20

Our goal

Formal
model

Formalized
properties

Formal verification

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

21

Basic formalisms (overview)

 Kripke structure (KS)
o States, transitions
o Local properties of states as labels

 Labeled transition system (LTS)
o States, transitions, actions
o Local properties of transitions as labels

 Kripke transition system (KTS)
o States, transitions
o Local properties of states and transitions as labels

 Finite state automata (FSA)
o Accepting and rejecting runs on finite input sequences
o Büchi acceptance criteria on infinite input sequences

 Timed automata (TA)
o Extensions: variables, clocks, synchronization

1. Kripke structure

Basic characteristics:

 Expresses properties of states: labeling by atomic propositions

 Possibly more than one labels per state

 Application: description of behavior or algorithm

Definition:

A Kripke structure 𝐾𝑆 over a set of atomic propositions
𝐴𝑃 = 𝑃, 𝑄, 𝑅, … is a tuple 𝑆, 𝑅, 𝐿 where

 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

 𝐼 ⊆ 𝑆 is the set of initial states,

 𝑅 ⊆ 𝑆 × 𝑆 is the set of transitions and

 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

22

Example: Kripke structure

Traffic light controller
 AP = Green, Yellow, Red, Blinking

 𝑆 = 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5

23

s2 s1 s3 s4

s5

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

2. Labeled transition system

Basic characteristics:

 Expresses properties of transitions: labeling by actions

 Exactly one action per transition

 Application: modeling of communication and protocols

Definition:

A labeled transition system 𝐿𝑇𝑆 over a set of actions
𝐴𝑐𝑡 = 𝑎, 𝑏, 𝑐, … is a triple 𝑆, 𝐴𝑐𝑡, → where

 𝑆 = 𝑠1, 𝑠2, … , 𝑠𝑛 is a finite set of states,

 𝐼 ⊆ 𝑆 is the set of initial states,

 → ∶ 𝑆 × 𝐴𝑐𝑡 × 𝑆 is the set of transitions

We denote by 𝑠
𝑎
→ 𝑠′ iff 𝑠, 𝑎, 𝑠′ ∈ →.

24

Example: Labeled transition system

Vending machine
 Act = coin, coffe, tea

25

T1 T2

coin

coffee tea

coin coin

coffee tea

3. Kripke transition system

Basic characteristics:

 Expresses properties of both states and transitions:
labeling by atomic propositions and actions

 Possibly more than one labels per state,
exactly one action per transition

Definition:

A Kripke transition system 𝐾𝑇𝑆 over a set of atomic propositions
𝐴𝑃 and set of actions 𝐴𝑐𝑡 is a tuple 𝑆, →, 𝐿 where

 𝑆, 𝐴𝑐𝑡, → is an 𝐿𝑇𝑆

 𝐿 ∶ 𝑆 → 2𝐴𝑃 is the labeling of states by atomic propositions

26

Example: Kripke transition system

Vending machine with state labeling
 𝐴𝑐𝑡 = coin, coffee, tea

 𝐴𝑃 = Start, Choose, Stop

27

coin

coffee tea

{Start}

{Choose}

{Stop} {Stop}

4. Automata on finite words

 A=(, S, S0, , F) where
o alphabet, S states, S0 initial states

o state transition relation, : S 2S

o F set of accepting states

 Run of an automaton
o State sequence r=(s0, s1, s2, … sn) on the incoming word

w=(a0, a1, a2, … an)

o r is an accepting run if snF

o A word w is accepted by the automaton,
if there is an accepting run over w

 Language L accepted by the automaton A:

 L(A)={ w * | w accepted}

28

Automata on infinite words

 The accepting state (at the end of an input word)
cannot be checked

 Büchi acceptance criterion:
o On the incoming infinite word w=(a0, a1, a2, …)

there is an r=(s0, s1, s2, …) infinite state sequence

o lim(r)={s | s occurs infinitely often,
 i.e., there is no j, such that k>j:ssk}

o Accepting run: lim(r) F 0

o A word w is accepted by the automaton,
if there is an accepting run over w
(i.e., accepting state occurs infinitely often)

 Language L accepted by the automaton A:

 L(A)={ w * | w accepted}
29

Timed Automata:
Finite State Automata with Time

Timed Automata in the UPPAAL model checker

30

Timed Automata: Extension with variables

 Basic formalism: Finite state automaton (FSA)

o Control locations (named)

o Edges

 Language extension: integer variables

o Variables with restricted domain (e.g. int[0, 1] id)

o Constants

o Integer arithmetic

 Use of variables: on transitions

o Guard: predicate over variables
• The transition can fire only if predicate holds

o Action: variable assignment

31

Timed automata: Extension with clock variables

 Goal: modeling time-dependent behavior

o Time passes in given states of the component

o Relative time measurement by resetting and reading timers,
behavior depends on timer value (e.g., timeout)

 Language extension: clock variables

o Measuring time elapse by a constant rate

 Use of clock variables on transitions

o Guard: predicate over clock variables

o Action: resetting clocks to zero

 Use of clock variables on locations

o Location invariant: predicate over clock variables, being in a
location is valid until its invariant holds

32

33

Timed automata in UPPAAL

Location

Guard

Invariant

Action

clock x;

Example: revolving door

34

Role of guards and invariants

Guard

Invariant

clock x;

Upon exiting location open, the value of clock is in interval [4, 8]

4 8 t

Extensions for concurrency

 Goal: modeling networks of automata
o Interaction: Synchronization between automata transitions

o Synchronous communication (handshake)

• Sending and receiving a message occurs at the same time

• Modeling of asynchronous behavior: by modeling channels

 Language extension: synchronized actions
o Channels for sending messages

o Sending a message: ! operator
Receiving a message: ? operator

o E.g.: synchronization labels a! and a? for channel a

 Parameterization
o Arrays of channels: E.g. channel a[id] for a variable id

35

a! a?

chan a

Example for clocks and synchronization

Declarations:

 clock t, u;

 chan press;

Switch:

User:

“Receiving a message”
(interaction)

“Sending a message”
(interaction)

36

Further extensions: broadcast channel

 Broadcast channel: one-to-many communication

o Sending a message unconditionally
• No handshake needed

o All processes that are ready to receive the message will synchronize
• Receiving edge can only be taken upon receiving message

o Restriction: no guard on receiving edge

37

a!

broadcast chan a;

a? a? a?

Further extensions: Urgent channel

 Urgent channel: prohibit time delay (waiting for synchronization)

o The synchronization is executed without delay,
(other edges might be traversed before, but only instantly)

o Restrictions:
• No guard is allowed on an edge labeled with the name of an urgent channel

• No invariant is allowed on a location that is the source of an edge labeled with
the name of an urgent channel

38 38

a!

invariant

not allowed

guard

not allowed

urgent chan a;

Further extensions: special locations

 Urgent location: prohibit time delay (waiting in location)

o Time is not allowed to progress in the location

o Equivalent model:
• Introduce a clock variable: clock x

• Reset clock on all incoming edges: x:=0

• Add invariant: x<=0

 Committed location: even more restrictive

o A committed location is urgent

o Committed state: at least one committed location is active

o The next transition from a committed state must involve at
least one out-edge of an active committed location

U

C

39

40

The UPPAAL model checker

 Development (1999-):
o Uppsala University, Sweden
o Aalborg University, Denmark

 Web page (information, examples, download):
 http://www.uppaal.org/

 Related tools:
o UPPAAL CoVer: Test generation
o UPPAAL TRON: On-line testing
o UPPAAL PORT: Component based modeling
o…

 Commercial version:
http://www.uppaal.com/

41

A
u
to

m
a

to
n
 m

o
d
e

l

42

S
im

u
la

to
r

43 43

V
e

ri
fi
c
a

ti
o

n

