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Formal verification: Goals 
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Overview 

 Formalization of requirements 

 Temporal logics 

 HML: Hennessy-Milner logic 

o Temporal operators 

o Model checking: Tableau method 

 LTL: Linear Temporal Logic 

o Temporal operators 

o Syntax and semantics 

o Model checking: Automata based approach 
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Formalization of requirements 

Frequent patterns of requirements 
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Handling textual requirements 

 Specifying a requirement in natural language: 
 

 

 

 

 

 

 

o Is the textual description easy to understand and 
unambiguous? 

o Structure is not clear (conditions, sequence, …) 

If alarm is on and alert occurs, the output of safety should 
be true as long as alarm is on. 

If the switch is turned to AUTO, and the light intensity is 
LOW then the headlights should stay or turn immediately ON, 
afterwards the headlights should continue to stay ON in AUTO 
as long as the light intensity is not HIGH. 
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Requirements in critical systems: result of a survey 

A significant proportion of 
requirements match to 
certain patterns 

http://patterns.projects.cis.ksu.edu/documentation/patterns.shtml 

Figures: The distribution of matched 
patterns for requirements from two 
development teams 
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Groups of patterns 

Pattern: 

order or 
occurrence 

 

 

 

Scope: 
relative to 
further events 
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Patterns: Explanations 

Occurrence: 

 Absence: the referenced state/event never occurs 

 Universality: the referenced state/event is always present 

 Existence: the referenced state/event eventually occurs 

 Bounded existence: the referenced state/event occurs at least k times 

Order: 

 Precedence: the referenced state/event precedes another state/event 

 Response: the referenced state/event is followed by another state/event 

 Chain precedence: generalization of Precedence to sequences 

 Chain response: generalization of Response to sequences 
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Composition of patterns 

 Patterns can be composed 

o Boolean operators (and, or, implication) 

o Embedding patterns in other patterns 

 Example: Patterns in textual form 

When …, Ensure … 
… = … …, after … occurs 

When  

Ensure   

 ,  after  occurs 

… within … 

 within  0.1 [sec] safety 

alarm = ON alert 
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Outcome 

 The majority of properties match certain patterns 
o If … then …,  Never …,  After …, Before … 

o Occurrence/order of states/events 

o More complex requirements composed from simpler ones 

 These properties can be formalized if the basic patterns can 
be captured using a formal language 
o Absence, universality, existence, precedence, response 

o Temporal scope (globally, after, before) 

 Formalization of requirements helps 
o Verification of design: exhaustive analysis of executions 

o Test evaluation, runtime monitoring: components can be 
automatically generated 

 Applied formalism: Temporal logic 
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Preview: Formalization of properties in LTL 
Universality within scope Property in LTL Meaning of LTL expressions 

Event P occurs in each step of the 
execution globally. 

G P Globally P 

Event P occurs in each step of the 
execution before event Q. 

F Q  (P U Q) (Eventually Q) implies (P Until Q) 

Event P occurs in each step of the 
execution after event Q. 

G (Q  G P) Globally (Q implies Globally P) 

Event P occurs in each step of the 
execution between events Q and R. 

G ((Q  R  F R)   
(P U R)) 

Globally ((Q and not R and 
Eventually R) implies (P Until R)) 

Existence within scope Property in LTL 

Event P occurs in the execution 
globally. 

F P 

Event P occurs in the execution 
before event Q. 

 Q W (P   Q) 

Event P occurs in the execution after 
event Q. 

G (Q)  F (Q  F P)) 

Event P occurs in the execution 
between events Q and R. 

G (((Q  R)  (F R))  
(R W (P  R))) 
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Temporal requirements 
and temporal logics 

Classification of temporal logics 
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Formalization of reachability properties 

 Goal: Formalizing state reachability properties 

o Important in state based, event driven systems 

o Occurrence: based on local properties of states 
• Name, valuation of variables, mode of operation, … 

o Ordering: logical time 
• “Current” point in time: active state 

• “Subsequent” points in time: next state(s) 

o Typical reachability properties 
• Safety properties: Absence of “bad” state (universal) 

• Liveness properties: Eventual occurrence of “good” state  
(existential property) 

 Language used for formalization: Temporal logics 

o Formal system for evaluating changes in logical time 

o Temporal operators: “always”, “eventually”, “before”, “while”, … 
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Checking reachability properties 
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Classification of temporal logics 

 Linear:  
o We consider individual executions of the system  

o Each state has exactly one subsequent state 

o Logical time along a linear timeline (trace) 

 
 Branching:  

o We consider trees of executions 
of the system  

o Each state possibly has 
many subsequent state 

o Logical time along a branching timeline  
(so-called computation tree) 
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Model based verification by model checking 

Formal 
model 

Formalized 
requirements 

Model checking 

OK Diagnostic trace 

t f 

• Basic mathematical formalisms 
  (KS, LTS, KTS, TA) 
• Also from higher level formalisms 

Temporal logics: 
 HML, LTL, CTL, CTL* 
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Hennessy-Milner Logic  

Temporal operators 

Checking HML formula 
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The Hennessy-Milner logic 

 Simple logic interpreted on LTS T=(S, Act, ) 

 Finite action sequences (scenarios, traces) can be 
captured by HML 

 Syntax: Rules for composing well-formed HML formula  
(p and q are well-formed formula, a is an action): 
 HML ::= true | false | pq | pq | [a]p | <a>p 

 Informal semantics of temporal operators: 

s 
p 

<a>p 
a 

s 
p 

[a]p 

p 

p 
a 

a 

a 
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Semantics of the Hennessy-Milner logic 

Model of HML: LTS T=(S, Act, ) 

Semantic rules: Specify when p is true (satisfied) on state s of LTS T 

Notation: T,s |= p 

 T,s |= true,    T,s |= false 

 T,s |= pq   if and only if (iff) T,s |= p and T,s |= q  
T,s |= pq   iff  T,s |= p or T,s |= q 

 T,s |= [a]p   iff   s’ where s a s’:  T,s’ |= p  

 T,s |= <a>p  iff  s’: s a s’ and T,s’ |= p 

HML examples: 
o <a>true: satisfied if there exists an outgoing transition labeled with a 

o [a]false: satisfied if there is no outgoing transition labeled with a 

o <a><b><c>true: satisfied if there exists an action sequence a,b,c 

Model checking for HML expressions: Tableau method 
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Introduction: Tableau for Boolean logic 

 Goal: Determine the satisfiability of a logic formula 

o Decomposing the original formula in subformulas in a tree structure  

o In each node: a subformula of the original formula to be satisfied 

o Branches: determined by construction rules 

 Construction rules of the tableau for Boolean logic 

 

 

 

 

 

 Before decomposition, the formula shall be transformed  
to a negated normal form:  

o Negation () only before variables (literals) and not before a composite formula 

o De Morgan’s laws can be used 

p  q 

p, q  

p  q 

p q 

List of formula: 
All shall be satisfied 
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Evaluation of the tableau 

 Termination (closing) of a decomposition branch 
o Only a list of variables or negated variables is found in the current node 

o The satisfaction of the formula is given by assigning true or false (in case of 
negated variable) to variables 

• E.g., in case of p, q the assignment is: p is true, q is false 

 After the termination of a decomposition branch: 
o “Contradictory” branch: A variable is found both with and without negation 

(i.e., there is no valid assignment) 

• E.g., contradiction in case of p, p, q 

o ”Successful” branch: There is no contradiction, the valid assignment satisfies 
the original formula 

 The “successful” branches determine the satisfiability of the 
original formula 
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Example: Tableau for a Boolean logic formula 

 Original formula:     ((X  Y) → (X  Y)) 

 Implication resolved:    ((X  Y)  (X  Y)) 

 Negated normal form:      (X  Y)  (X  Y) 
         (X  Y)  ( X   Y) 

 Construction of the tableau: 

 
 

 

 

 

 

 

 

 One of the branches is contradictory, the other is not 
o The original formula can be satisfied 

(X  Y)  ( X   Y) 

X  Y,   X   Y 

X,  X,  Y  X,  Y 

Contradictory 
branch 
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Checking HML by tableau construction 

 Tableau construction rules in case of temporal operators: 
o Boolean operators: Branches as in case of Boolean tableau construction 
o Temporal operators: Shall be evaluated on the outgoing transitions of state s of the LTS T 

 
 

 
 

 
 
 
 
 

 The construction of the tableau is based on the model 
 Successful branches:  

o s |- true is reached 
o s |- [a]p is reached where there is no outgoing transition labeled with a 

 If the original formula is negated before the construction of the tableau:  
The successful branch is a counter-example 

T,s |– <a>p 

T,s2 |–  p T,s1 |–  p T,sn |–  p 

T,s1 |– p,   T,s2|– p, …,   T,sn|– p  

T,s |–  [a]p 
where  
{s1,s2,..,sn}={s’ | sa s’} 

s 

s1 

s2 

sn 

a 

a 

a 
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Linear Temporal Logic (LTL) 

Temporal operators 

Syntax and semantics 

Examples 
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Illustration of linear and branching timelines 

s5   

  

s 2   s1   s 3   s4   

{Green}   {Yellow}   {Red}   {Red, Yellow}   

{Blinking}   

  

s 2   s1 s 3   

{Green}   {Yellow}   {Red} 

s4   

  {Red, Yellow}     

s1 

{Green} 

s5 

{Blinking} 

s2 

{Yellow} 

s3 

{Red} 

s5 

{Blinking} 

s3 s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

s3 

{Red} 

s4 

{Red,Yellow} 

s5 

{Blinking} 

Branching 

Linear 

Logical time on a time line (a concrete run) 

Logical time  

on branching  

timelines (all 

possible runs) 

33 



Linear temporal logic – Formulas 

Construction of formulas: p, q, r, ... 
 Atomic propositions (elements of AP): P, Q, ... 
 Boolean operators: , , ,    

 : conjunction, : disjunction, : negation , : implication 

 Temporal operators: X, F, G, U informally: 
o X p: “neXt p” 

p holds in the next state 
o F p: “Future p” 

p holds eventually  
  on the subsequent path 

o G p: “Globally p” 
p holds in all states  
  on the subsequent path 

o p U q: “p Until q” 
p holds at least until q,  
  which holds at the subsequent path 
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LTL examples 

 p  Fq  
 If p holds in the initial state, then eventually q holds. 

• Example: Start  F End  

 G(p  Fq) 
 For all states, if p holds, then eventually q holds. 

• Example: G (Request  F Reply); for a request, a reply always arrives 

 p U (q  r)  
 Starting from the initial state, p holds until q or r eventually holds. 

• Example: Requested U (Accept  Refuse) 
A continuous request either gets accepted or refused 

 GF p  
 Globally along the path (after any states), p will eventually hold 

• There is no state after which p does not hold eventually 
• Example: GF Start; the Start state is reached from all states 

 FG p  
 Eventually (after some states), p will continuously hold. 

• Example: FG Normal 
After an initial transient the system operates normally 
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LTL syntax 

Syntax: What are the well-formed formulas (wff)? 

The set of well-formed formulas in LTL are given by 
three syntax rules: 

 

Let P ∈ AP and p and q be wffs. Then 

 L1: P is a wff 

 L2: p ∧ q and ¬p are wffs 

 L3: p 𝗨 q and  𝗫 q are wffs 

 

Precedence rules: 

X, U >  >  >  >  >  
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Derived operators 

 true  holds for all states 
false holds in no state 

 p  q  means  (p  q) 
p  q means p  q 
p  q  means  p  q  q  p 

 Fp means true U p 
Gp means F(p) 

 “Before” operator: 
p WB q = ((p) U q)          (weak before) 
p B q = ((p) U q)  F q    (strong before) 
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Informally:  
It is not true that p does 

not occur until q 

In any case, q shall occur 



LTL semantics – Notation 

Rationale of having formal semantics: 
 When does a given formula hold for a given model? 

o The semantics of LTL defines when a wff holds over a path 

 Allows deciding “tricky” questions: 
o Does F p hold if p holds in the first state of a path? 
o Does p U q hold if q holds in the first state of a path? 

 

Notation: 
 M = (S, R, L) Kripke structure 
  = (s0, s1, s2,…) a path of M  

   where s0∈I   and i≥0: (si, si+1)R 

i = (si, si+1, si+2,…) the suffix of  from i 

 M, |= p denotes: 
in Kripke structure M, along path , property p holds 
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LTL semantics 

Defined recursively w.r.t. syntax rules: 
 

 L1: M, |= P iff PL(s0) 

 L2: M, |= pq iff M, |= p and M, |= q 
      M, |= q  iff not M, |= q. 

 L3: M, |= (p U q) iff 
  j |= q for some j≥0 and 
  k |= p for all 0≤k<j 
 

         M, |= X p iff 1 |= p 
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Formalizing requirements: Example 

Consider an air conditioner with the following 
operating modes: 

AP={Off, On, Error, MildCooling, StrongCooling, 
Heating, Ventilating} 

 

 Concurrently more than one modes may be active 

o E.g. {On, Ventilating} 

 When formalizing requirements, we might not yet 
know the state space (all potential behaviors) 

o We use only the labels belonging to operating modes 
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Formalizing requirements: Example 

Air conditioner with the following operating modes: 
AP={Off, On, Error, MildCooling, StrongCooling, Heating, Ventilating} 
 
 The air conditioner can (and will) be turned on: 
  F On 
 At some point, the air conditioner always breaks down 
  GF Error 
 If the air conditioner breaks down, it eventually gets repaired 
  G (Error  F Error) 
 A broken air conditioner does not heat: 
  G (Error  Heating) 
 After heating, the air conditioner must ventilate: 
  G ((Heating  X Heating)  X Ventilate) 
 After ventilation the air conditioner must not cool strongly until it 

performs some mild cooling:  
  G ((Ventilating  X Ventilating)   

    X(StrongCooling U MildCooling)) 
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Extending LTL for LTS 

LTL: Transitions are labeled by actions 
A path now is an alternating sequence  

of states and actions: 
  = (s0, a1, s1, a2, s2, a3, …) 
 

Extending the syntax: 
 L1*: If aAct then (a) is a wff. 
 

The corresponding case in semantics: 
 L1*: M, |= (a) iff. a1=a 

where a1 is the first action in . 
 

This way we can describe requirements 
for action sequences  
o Example: G ((coin)  X ((coffee)  (tee))) 

coin coin

coffee tea
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Checking LTL properties 

Model checking problem 

The automata-based approach 
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Model based verification by model checking 

Formal 
model 

Formalized 
requirements 

Model checker: 
M, |= p 

OK Diagnostic trace 

t f 

• Basic mathematical formalisms 
  (KS, LTS, KTS) 
• By default, checked on all paths 

Temporal logic: 
  LTL 
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Automata based approach 

 A=(, S, S0, , F) automaton on finite words 
o Here:  is formed as letters from the 2AP alphabet 

• State labels L(s) are considered as letters 

• E.g., {Red, Yellow} is a letter from the alphabet above 

o The path =(s0, s1, s2, … sn) identifies a word as follows:  
  (L(s0), L(s1), L(s2), … L(sn)) 

 Two automata are needed: 
o Model automaton: Based on a model M=(S,R,L)  

an automaton AM is constructed that accepts and only 
accepts words that correspond to the paths of M 

o Property automaton: Based on the expression p  
an automaton Ap is constructed that accepts and only 
accepts words that correspond to paths on which p is true 
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Model checking using the automata 

 Model checking question: L(AM)  L(Ap) ? 
o I.e., is the language of the model automaton included  

in the language of the property automaton? 

o If yes, them M, |= p for all paths of M 

 Verifying L(AM)  L(Ap) by alternative ways 
o Is the intersection of the following languages empty: L(AM)L(Ap)c  

where L(Ap)c is the complement language of L(Ap) 

o Is the language that is accepted by the AMAp
c product automaton empty, 

where Ap
c is the complement of Ap 

• In case of finite words (finite behavior): The language is empty if there is 
no reachable accepting state in AM Ap

c 

• In case of infinite words (cyclic behavior): Büchi acceptance criteria can 
be used (looking for cycles with accepting states) 

• Ap
c construction (in fully defined and deterministic case):  

swapping accepting states with non-accepting states and vice versa 

L(Ap) 
L(AM) 
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automaton AM automaton 

(In the following: Basic ideas will be discussed, not a complete algorithm.) 
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Example: Checking F P  G Q 

M model 

AM 

automaton 

Assume: Ap 

automaton 

belonging to 

F P  G Q 

Ap
c 

automaton 

Synchronous 

product of 

automata 

AM and Ap
c 

There is no accepting 

state: No counter-

example for F P  G Q  
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automaton AM automaton 
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Constructing AM on the basis of M 

 Labels are moved to outgoing transitions 
 In case of finite behavior (finite words): 

o Accepting state sf is added 
o Transitions are added from the end states (without 

outgoing transition) to the accepting state sf  

 The automaton: 

   AM=(2AP, S{sf}, {s0}, , {sf}) 

 where the transitions relation is the following: 

  ={ (s,L(s),t) | (s,t)R }   
   {(s,L(s),sf) | no t, such that (s,t)R } 
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Overview of automata based model checking 

p LTL expression M=(S,R,L) model 

AMAp
c automaton 

Is the accepted 
language empty? 

Diagnostic 
trace 

n 
p is true 

y 

Ap, Ap
c automaton AM automaton 
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Basic idea: Constructing Ap on the basis of p (1) 

 Ap automaton: Represents those paths on which p is true 

 Basic idea: Decompose the expression similarly to the tableau 
method and this way identify the states and transitions of Ap 
o First decomposition: Identifies the initial state(s) of Ap 

• Labels of the state: Based on the atomic propositions without temporal 
operators, resulting from the decomposition 

• Outgoing transitions to next states: Identified by the (sub)expressions with 
temporal operators, that have to be true from the next state 

o New decomposition for each formula belonging to next state 

 Initial step: Construct the negated normal form of the expression 
o For Boolean operators: de Morgan laws 

o For temporal operators: 

 (X p) = X (p) 

 (p U q) can be handled by defining the R „release” operator:  

        (p U q) = (p) R (q), from which p R q = q  (p  X (p R q)) 
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Constructing Ap on the basis of p (2) 

 Data structure (record) to represent the decomposition: 

o New: expressions to be decomposed 

o Local: atomic propositions related to the current state 

o Next: expression that has to be true from the next state 

New: 

Local: 

Next: 

N, p 

List of formula may result 
from decomposition 
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Constructing Ap on the basis of p (3) 

 Decomposition rules for  and : 

New: 

Local: 

Next: 

N, pq 

N, p N, pq 

N, p, q 

N, q 
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Constructing Ap on the basis of p (4) 

 Decomposition rules for X and U: 

New: 

Local: 

Next: 

N, X p 

N, q N, p U q 

N 

p 

N, p 

p U q 

based on the rule p U q = q  (p  X(p U q)) 
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Constructing Ap on the basis of p (5) 

 Decomposition rule for R: 

New: 

Local: 

Next: 

N, q, p N, p R q 

N, q 

p R q 

based on the rule p R q = q  (p  X(p R q)) 
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Constructing Ap on the basis of p (6) 

 A state of the Ap automaton is identified from a node of the 
decomposition if: 
o There are only atomic propositions in the New field of the node; 

these are copied to the Local field and become state labels,  

o and there is no state in Ap that was identified based on a node with the 
same Local and Next fields (otherwise the same state is identified again) 

 If a state s of the Ap automaton is identified then: 
o A new decomposition is started from the expression that is in the Next field 

of the node (copying it to the New field of a new node),  
since it was related to the path starting from the next state 

o Transitions of Ap are drawn from the state s to the states that result from the 
new decomposition 

 Summary: 
o Ap states are identified when the decomposition results in atomic 

propositions (no further operator to be decomposed) 

o Ap transition is identified from a current node to the nodes that results from 
the decomposition of the formula in the Next field 
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Example: P U (Q  R) 
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Constructing Ap on the basis of p (7) 

 Further elements of Ap: 

o Initial state(s):  

• State(s) resulting from the first decomposition 

o Accepting states: 

• When the Next field is empty (no formula refers to the next state) 

o Labeling of a state: All subsets of AP that are compatible 
with the atomic propositions found in the Local field of the 
node belonging to the state: 

• Each atomic proposition is included that is listed in Local 

• There is no atomic proposition that is negated in Local 

 Since each behavior is to be included in Ap that is allowed 
by the propositions in the Local field 
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Example: P U (Q  R) with AP={P,Q,R} 
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Complexity of PLTL model checking 

 Worst-case time complexity of model checking the expression p on 
model M=(S,R,L): 

O(|S|2  2|p|), where 
o |S| is the number of states 

o |p| is the number of operators in the LTL formula 

o |S|2 is the number of transitions in the model automaton 
  (maximum number of transitions; typically only linear with S) 

o 2|p| is the number of transitions in the property automaton 
  (maximum number of sub-expressions to be  
  decomposed and resulting in new transitions) 

o |S|22|p| results from the state space of the product automaton  
  (in which accepting states or cycles shall be found) 

 The exponential complexity seems frightening, but 
o The LTL expressions are typically short (a few operators) 

o Complexity results from the size of the model automaton 
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The model checker SPIN 

Notation for LTL operators: 
  F is denoted by <> 
  G is denoted by [] 

Labels (atomic 
propositions) are 
defined using the 
variables of the model 

Handling paths in the model 

There is no X operator:  
It is not supported by the states space 
reduction that is applied in SPIN 
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Summary 

 Formalization of requirements 

 Temporal logics 

 HML: Hennessy-Milner logic 

o Temporal operators 

o Model checking: Tableau method 

 LTL: Linear Temporal Logic 

o Temporal operators 

o Syntax and semantics 

o Model checking: Automata based approach 
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