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Software Verification and Validation (VIMMD052) 



Formal verification of TL properties 

Formal model: 
KS, LTS, automata 

Formalized properties: 
HML, LTL, CTL 

Formal verification: 
Model checking 

OK Diagnostic trace 
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Recap: Techniques for model checking 

 HML model checking: Tableau-based 

 

 
 

 LTL model checking: Based on automata-theory 

 
 

 CTL model checking: Iterative labeling 
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Problems 

 The state space (e.g., Kripke structure) to traverse can be huge 
o Concurrent systems exhibit a large state space: Combinatorial explosion in 

the number of possible orderings of independent state transitions 

 

 

 

 

 

 

 How can we analyze large state spaces? 
o Promise: CTL model checking: 1020, sometimes even 10100 states 

o What kind of technique can deliver this promise? 

P1 P2 P3 Full state space 
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State space explosion 

Direct product of automata, interleaving, synchronization 
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Operation of asynchronous automata 

 System composed of two 
(independent) automata 

 

 

 

 

 

 

 

 States of the automata: 

 A = {m1, m2}, B = {s1, s2} 

 (Direct) product automaton: 
state space of the system 

 

 

 

 

 

 

 

 Set of states: 

 C = A  B 

 C = {m1s1, m1s2 , m2s1 , m2s2} 

m1 m2 

s1 s2 

m1s1 m2s1 

m1s2 m2s2 

A 

B 

C 
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The effects of synchronizations and guards 

 Product automaton with 
synchronization: Taking the 
transitions at the same time 

 E.g., A and B take their 
transitions simultaneously if 
their state index is the same: 

 Product automaton with 
guards: Disable certain 
transitions 

 E.g., B can only take the 
transition if A is in state m2: 
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m1s1 m2s1 

m1s2 m2s2 

C” 
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Data dependent states 

T1 T2 

x=1 y=1 

g=g+2 g=g*2 

(x,y,g) 

(0,0,0) 

(0,1,0) (1,0,0) 

(1,0,2) 

(1,1,2) 

(0,1,0) 

(1,1,0) 

(1,1,4) (1,1,2) 

(1,1,0) 

x=1 y=1 

x=1 y=1 
g=g+2 g=g*2 

y=1 
g=g+2 

x=1 
g=g*2 

g=g*2 g=g+2 

Assigning actions to 
transitions 
Local variables: x and y 
Global variable: g 
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Example for large state space: Dining philosophers 

 Concurrent system with non-
trivial behavior 
o May have deadlock, livelock 

 State space grows fast 

#Philosophers #States 

16 4,7  1010 

28 4,8  1018  

… … 

200 > 1040 

1000 > 10200 

… … 

Source: wikipedia 

With smart (but not task-specific)  
state space representation: 
~100 000 philosophers, i.e. 
1062900 states can be checked! 264 = 1,8  1019 
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Techniques for handling large state space 

 CTL model checking: Symbolic technique 

 

 

 

 

 
 

 Model checking of invariants: Bounded model checking 
o Searching satisfying valuations for Boolean formulas with SAT techniques 

o Model checking to a given depth: 
Searching for counterexamples with bounded length 

• A detected counterexample is always valid 

• Non-existing counterexample does not imply correctness 

Semantics-based technique Symbolic technique 

Sets of labeled states Characteristic functions 
(Boolean functions): 
ROBDD representation 

Operations on sets of states Efficient operations on ROBDDs 
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Symbolic model checking 
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Recap: Model checking with set operations 

 Set of states labeled with p is computed by set operations 
o E(p U q): “At least one successor is labeled …” 
o A(p U q): “All successors are labeled …” 

 Notation: If the set of states labeled with p is Z then  
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z} 

 i.e., at least one successor is labeled (is in Z) 

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z} 
 i.e., all successors are labeled (are in Z) 

 Example: Iterative labeling with E(P U Q) 
o Initial set:   X0    = {s | QL(s)} 

o Next iteration:   Xi+1= Xi  (preE(Xi)  {s | PL(s)})  
 

 

 

o End of iteration: If Xi+1= Xi, the set is not increased 

States labeled so far, 
plus …  

… their predecessor states 
that … 

… are labeled 
with P 
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Main idea 

 Representation of sets of states and operations on 
sets of states with Boolean functions 
o States are not explicitly enumerated 

o Encoding a state: with a bit-vector 
• To encode each state in S we need at least n=log2|S| bits,  

so choose n such that 2n|S| 

o Encoding a set of states: n-ary Boolean function called 
characteristic function 

• Characteristic function: C: {0,1}n{0,1} 

• The characteristic function should be true for a bit-vector iff  the 
state encoded by the bit-vector is in the given set of states 

o We will perform operations on characteristic functions 
instead of sets 
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Construction of characteristic functions 

 For a state s: Cs(x1, x2, …, xn)  
Let the encoding of s be the bit-vector (u1, u2, …, un), where ui{0,1} 

Goal: Cs(x1, x2, …, xn) should return be true only for (u1, u2, …, un) 

Construction of Cs(x1, x2, …, xn): with operator  : 

•   xi is an operand if ui=1 

• xi is an operand if ui=0 

Example: for state s with encoding (0,1): Cs(x1, x2) =  x1  x2 

 For a set of states YS: CY(x1, x2, …, xn)  
Goal: CY(x1, x2, …, xn) should be true for (u1, u2, …, un) iff (u1,u2,…, un)Y 

Construction of CY(x1, x2, …, xn) with operator  : 

  CY(x1, x2, …, xn)=sYCs(x1, x2, …, xn) 

 For sets of states in general: 

   CYW= CY  CW,       CYW= CY  CW 
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Example: Characteristic function of states 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

Characteristic functions of states: 

State s1: 
  Cs1(x,y) = (x  y) 
State s2: 
  Cs2(x,y) = (x  y) 
State s3: 
  Cs3(x,y) = ( x  y) 

Characteristic function for a set of states: 

Set of states {s1,s2}: 
 C{s1,s2} = Cs1  Cs2 = (x  y)  (x  y) 

Variables: x, y 
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Construction of characteristic functions (cont’d) 

 For state transitions: Cr 

 

 

 

o For transition r=(s,t), where s=(u1, u2, …, un) and t=(v1, v2, …, vn) 

    characteristic function in the form Cr(x1, x2, …, xn, x’1, x’2, …, x’n) 
• „Primed” variables denote the target state 

  

o Goal: Cr   should be true iff  xi=ui and xi’=vi 

  Construction of Cr: 

   Cr = Cs (x1, x2, …, xn)  Ct(x’1, x’2, …, x’n) 

s t 

(u1, u2, …, un) (v1, v2, …, vn) 

r 
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Example: Characteristic functions of transitions 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

Transition relation R: 
R(x,y,x’,y’) = (xy   x’  y’)  
        (x  y      x’  y’)  
        (   x  y   x’  y’)  
        (   x  y   x’y’) 

State s1 encoded by (0,0): 
  Cs1(x,y) = (x  y) 
State s2 encoded by (0,1): 
  Cs2(x,y) = (x  y) 

Transition (s1,s2)R, i.e., (0,0)  (0,1): 
 C(s1,s2) = (x  y)  (x’  y’) 
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Construction of characteristic functions (cont’d) 

 Construction of preE(Z): preE(Z)={s | t: (s,t)R and tZ} 
Representation of Z: function CZ 

Representation of R: function CR=rRCr 

preE(Z): find predecessor states for states of Z 

 
 

 

where xC = C[1/x]  C[0/x] („existential abstraction”) 

 

 Model checking with set operations: 
reduced to operations with Boolean functions 

o Union of sets: Disjunction of functions () 

o Intersection of sets: Conjunction of functions () 

o Construction of preE(Z): Complex operation (existential abstraction) 

E 1 2

'

pre ( ) ' , ' ,..., 'nZ x x x R ZC C C  
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Representation of Boolean functions 

Canonic form: ROBDD 

 Reduced, Ordered Binary Decision Diagram 

  

Conceptual construction of ROBDD (overview): 

 Binary decision tree: Represents binary decisions 
given by the valuation of function variables 

 BDD: Identical subtrees are merged 

 OBDD: Evaluation of variables in the same order  
       on every branch 

 ROBDD: Reduction of redundant nodes 
o If both two outcomes (branches) lead to the same node 
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ROBDD in more detail 
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Types of decision trees 

 We get a binary decision diagram (BDD),  

if we merge all identical subtrees 

 We get an ordered binary decision diagram (OBDD),  

if we substitute the variables in the same order during decomposition 

 We get a reduced ordered binary decision diagram (ROBDD),  

if we remove redundant nodes (where both decisions lead to the same node) 

Decision tree for Boolean 
functions: 
Substitution (valuation) of a 
variable is a decision 
 

• Example: f(x,y) 
• Valuation of all variables 

results in 1 or 0 in leaf nodes 

x 

y y 

0 / 1 0 / 1 0 / 1 0 / 1 

f [ x = 1 ,  y = 1 ] f [ x = 1 ,  y = 0 ] f [ x = 0 ,  y = 1 ] f [ x = 0 ,  y = 0 ] 

f [ x = 1 ] f [ x = 0 ] 

f(x,y) 
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Example: From binary decision tree to ROBDD 
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Binary 
decision tree 

Reduced 
decision tree 

BDD 
 

ROBDD 
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ROBDD properties 

 Directed, acyclic graph with one root and two leaves 
o Values of the two leaves are 1 and 0 (true and false) 

o Every node is assigned a test variable 

 From every node, two edges leave 
o One for the value     0   (notation: dashed arrow) 

o The other for the value  1   (notation: solid arrow)  

 On every path, substituted variables are in the same order 

 Isomorphic subgraphs are merged 

 Nodes from with both edges would point to the same node are 
reduced 

 

For a given function, two ROBDDs  
with the same variable ordering are isomorphic 
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Variable ordering for ROBDDs 

 Size of ROBDD 
o For some functions it is very compact 

o For others (such as XOR) it may have an exponential size 

 The order of variables has a great impact on the ROBDD size 
o A different order may cause an order of magnitude difference 

o Problem of finding an optimal ordering is NP-complete (heuristics) 

 Memory requirements:  
o If the ROBDD is built by combining functions (e.g., representing product 

automata), intermediate nodes may appear which can be reduced later 

ROBDD
méret

Építés
lépései

ROBDD
méret

Építés
lépései

Size of 
ROBDD 

Steps of 
construction 
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Operations on ROBDDs 

 Boolean operators can be evaluated directly on ROBDDs 

o Variables of the functions should be the same in the same order 

o (Recursive) construction of the f op t ROBDD using f and t ROBDDs  

(here op is a Boolean operator). 

op 
= 

x 

y y 

f 

fx 
fx 

x 

y y 

t 

tx 
tx 

x 

y y 

f op t 

fx op tx 
fx op tx 
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Summary: Model checking with ROBDDs 

 Implementing model checking: 
o Model checking algorithm: Operations on sets of states (labeling) 

o Symbolic technique: Instead of sets, use Boolean characteristic functions 

o Efficient implementation: Boolean functions handled as ROBDDs 

 Benefits 
o ROBDD is a canonical form (equivalence of functions is easy to check) 

o Algorithms can be accelerated (with caching) 

o Reduced storage requirements (depends on variable ordering!) 

   Dining philosophers: 
 
 
 
 
 
 
  Instead of storing 1018 states the ROBDD needs ~21kB! 

Number of 
Philosophers 

Size of state 
space 

Number of 
ROBDD nodes 

16 4,7 1010 747 

28 4,8 1018 1347 
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Supplementary material: 
Construction and operations on ROBDD 
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Boolean functions as binary decision trees 

 Substitution (valuation) of a variable is a decision 

 Notation: if-then-else 

 

o The result is the value of f1 if x is true (1) 

o The result is the value of f0 if x is false (0) 

o x is called the test variable, checking its value is a test 

 Shannon decomposition of Boolean functions: 

 

 
o The function is decomposed with if-then-else 

o The test variable is substituted, it will not appear in fx , fx 

o Repeat until there is a variable left 

x  f1, f0 = (x  f1)  (x  f0) 

f = x  f [1/x], f [0/x] 
let fx = f [1/x] ; fx = f [0/x] 

f = x  fx , fx 
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Example: Manual construction of an ROBDD 

Let 

f = ( a  b )  ( c  d ) 

Variable ordering: a, b, c, d 

 f = afa, fa 

  fa=(1b)(cd), fa=(0b)(cd) 

 fa = bfa,b, fa,b 

 fa,b= (11)(cd) = (cd)  

 fa,b=(10)(cd) = 0 

 fa = bfa,b, fa,b 

 fa,b = (01)(cd) = 0 

 fa,b = (00)(cd) = (cd) 

 fa,b = cfa,b,c, fa,b,c 

 fa,b,c = (1d), fa,b,c=(0d) 

 fa,b,c = dfa,b,c,d, fa,b,c,d 

 fa,b,c,d = (11) = 1,  

 fa,b,c,d = (10) = 0 

 fa,b,c = dfa,b,c,d, fa,b,c,d 

  fa,b,c,d = (01)=0, , fa,b,c,d=(00)=1 

fa,b and fa,b are  
isomorphic 

1 0 

d d 

a 
f 

b 
f 
a 

b 
f a 

c 
f a,b 

fa,b,c 
fa,b,c 
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Storing an ROBDD in memory 

 Nodes of the ROBDD are identified 
by Ids (indices) 

 The ROBDD is stored in a table  
T: u  (i,l,h): 
o u: index of node 

o i: index of variable (xi, i=1…n) 

o l: index of the node reachable through 
edge corresponding to 0 

o h: index of the node reachable through 
edge corresponding to 1 

u i l h 

0 

1 

2 4 1 0 

3 4 0 1 

4 3 2 3 

5 2 4 0 

6 2 0 4 

7 1 5 6 

xi 

u 

h l 

low 

high 
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Storing an ROBDD in memory 

u i l h 

0 

1 

2 4 1 0 

3 4 0 1 

4 3 2 3 

5 2 4 0 

6 2 0 4 

7 1 5 6 

x
4 

x
4 

x
3 

x
2 x

2 

x
1 

2 3 

4 

5 
6 

7 
x1 

x2 

x2 

x3 

1 0 

x4 
x4 

f 

f a 
f a 

f a,b 

1 0 
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Handling ROBDDs 1. 

 Defined operations: 
o init(T) 

• Initializes table T 

• Only the terminal nodes 0 and 1 are in the table 

o add(T,i,l,h):u 
• Creates a new node in T with the provided parameters 

• Returns its index u 

o var(T,u):i 
• Returns from T the index i of the node u 

o low(T,u):l and high(T,u):h 
• Returns the index l (or h) of the node reachable from the 

node with index u through the edge corresponding to 0  
(or 1, respectively) 
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Handling ROBDDs 2. 

 To look up ROBDD nodes, we use another table 
H: (i,l,h)  u 

 Operations: 
o init(H) 

• Initializes an empty H 

o member(H,i,l,h):t 
• Checks if the triple (i,l,h) is in H; t is a Boolean value 

o lookup(H,i,l,h):u 
• Looks up the triple (i,l,h) from table H 

• Returns the index u of the matching node 

o insert(H,i,l,h,u) 
• Inserts a new entry into the table 
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Handling ROBDDs 3. 

Creating nodes: Mk(i,l,h) 

 Where i is the index of variable,  
l and h are the branches 

 If l=h, i.e. the branches would 
lead to the same node 
o then we don’t need a new node 

o we can return any branches 

 If H already contains a triple 
(i,l,h) 
o then we don’t need a new node 

 there exists an isomorphic subtree, 
return that 

 If H does not contain such a 
triple (i,l,h) 
o then we need to create it and 

return its index 

Mk(i,l,h){ 

 if l=h then 

  return l; 

 else if member(H,i,l,h) then 

  return lookup(H,i,l,h); 

 else { 

  u=add(T,i,l,h); 

  insert(H,i,l,h,u); 

  return u; 

 } 

} 
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Handling ROBDDs 4. 

Building an ROBDD: Build(f) and Build’(t,i) recursive helper function 

 

Build(f) { 

   init(T); init(H); 

   return Build’(f,1); 

} 

Build’(t,i){ 

   if i>n then 

   if t==false then return 0 else return 1 

   else {v0 = Build’(t[0/xi],i+1); 

         v1 = Build’(t[1/xi],i+1); 

         return Mk(i,v0,v1)} 

} 

Reached a terminal node 
(every variable substituted) 

Recursive building; 
Mk() will check 

isomorphic subtrees 

Will traverse variables 
recursively 
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Operations on ROBDDs 

 Boolean operators can be evaluated directly on ROBDDs 

o Variables of the functions should be the same and in the same order 

 Equivalence for functions f, t (op is a Boolean operator): 

1)  f op t = (x  fx,fx) op (x  tx,tx)   =   x  (fx op tx), (fx op tx) 

 

 

 

 

 

 

 

. 

op 
= 

x 

y y 

f 

fx 
fx 

x 

y y 

t 

tx 
tx 

x 

y y 

f op t 

fx op tx 
fx op tx 
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Operations on ROBDDs (cont’d) 

 Boolean operators can be evaluated directly on ROBDDs 

o Variables of the functions should be the same in the same order 

 Equivalence for functions f, t (op is a Boolean operator): 

1)  f op t = (x  fx,fx) op (x  tx,tx)   =   x  (fx op tx), (fx op tx) 

 

 Additional rules (in case of missing variables due to reduction): 

2)  f op t = (x  fx,fx) op t = x  (fx op t), (fx op t) 

3)  f op t = f op (x  tx,tx) = x  (f op tx), (f op tx) 

 Based on these rules App(op,i,j) can be defined recursively 

o where i, j: indices of the root nodes of operands 

 Drawback: slow 

o worst-case 2n exponential 
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Accelerated operation 

 Let G(op,i,j) be a cache table that contains the 
results of App(op,i,j) (these are nodes) 

 The four cases of the algorithm: 

o Both nodes are terminal: return a terminal based on the 
Boolean operation (e.g. 0  1 = 0) 

o If the variable indices for both operands are the same, 
then call App(op,i,j) with the 0 branches and with the 1 
branches based on equivalence (1) 

o If one variable index is less, then that node is paired with 
the 0 and 1 branches of the other node based on rules 
(2) or (3) 

42 



Pseudo-code of the operation 

Apply(op,f,t){ 

  init(G); 

  return App(op,f,t); 

} 

 

App(op,u1,u2) { 

   if (G(op,u1,u2) != empty) then return G(op,u1,u2); 

  else if (u1 in {0,1} and u2 in {0,1}) then u = op(u1,u2); 

   else if (var(u1) = var(u2)) then 

  u=Mk(var(u1), App(op,low(u1),low(u2)), 

         App(op,high(u1),high(u2))); 

   else if (var(u1) < var(u2)) then 

    u=Mk(var(u1), App(op,low(u1),u2),App(op,high(u1),u2)); 

 else (* if (var(u1) > var(u2)) then *) 

     u=Mk(var(u2), App(op,u1,low(u2)),App(op,u1,high(u2))); 

  G(op,u1,u2)=u; 

  return u; 

} 
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Example: Performing operation (ft) 
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Example: Performing operation (ft) 
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Example: Result of operation (ft) 

x1 

x2 x2 

x3 

x4 x4 

x5 

1 0 

x3 

= 

x5 

x4 

x3 

x2 

x1 8 

6 7 

5 

3 4 

2 

0 1 

5 

3 4 

2 

0 1 

 
f t 
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Substiute a variable in an ROBDD 

Substitute (bind) variables with constants (e.g. (x  y)[y=1]= x): 
  The value of xj should be b in the ROBDD rooted in u 
 

Restrict(u,j,b) { 

 return Res(u,j,b); 

} 

 

Res(u,j,b) { 

  if var(u) > j then return u; 

  else if var(u) < j then 

    return Mk(var(u), 

              Res(low(u),j,b), 

              Res(high(u),j,b)); 

  else  

    if b=0 then 

     return Res(low(u),j,b) 

    else 

  return Res(high(u),j,b); 

} 

If we are lower than the variable 
to substitute, then the original 
subtree is returned 

If we are higher, then we need 
recursive building 

If we are at the variable to 
substitute, we process only the 
branch b  
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