Model checking CTL: Symbolic technique

Istvan Majzik majzik@mit.bme.hu

Budapest University of Technology and Economics Dept. of Measurement and Information Systems

Budapest University of Technology and Economics Department of Measurement and Information Systems

Formal verification of TL properties

Recap: Techniques for model checking

HML model checking: Tableau-based

LTL model checking: Based on automata-theory

CTL model checking: Iterative labeling

Problems

- The state space (e.g., Kripke structure) to traverse can be huge
 - Concurrent systems exhibit a large state space: Combinatorial explosion in the number of possible orderings of independent state transitions

How can we analyze large state spaces?

- Promise: CTL model checking: 10²⁰, sometimes even 10¹⁰⁰ states
- What kind of technique can deliver this promise?

State space explosion

Direct product of automata, interleaving, synchronization

Operation of asynchronous automata

 System composed of two (independent) automata

• States of the automata: A = $\{m_1, m_2\}$, B = $\{s_1, s_2\}$ (Direct) product automaton: state space of the system

Set of states:

 $C = A \times B$

 $C = \{m_1s_1, \, m_1s_2 \, , \, m_2s_1 \, , \, m_2s_2 \}$

The effects of synchronizations and guards

- Product automaton with synchronization: Taking the transitions at the same time
- E.g., A and B take their transitions simultaneously if their state index is the same:
- Product automaton with guards: Disable certain transitions
- E.g., B can only take the transition if A is in state m₂:

Data dependent states

Example for large state space: Dining philosophers

- Concurrent system with nontrivial behavior
 - May have deadlock, livelock
- State space grows fast

#Philosophers	#States
16	4,7 · 10 ¹⁰
28	4,8 · 10 ¹⁸
	•••
200	> 10 ⁴⁰
1000	> 10 ²⁰⁰
•••	•••

$$2^{64} = 1,8 \cdot 10^{19}$$

With smart (but not task-specific) state space representation: ~100 000 philosophers, i.e. 10⁶²⁹⁰⁰ states can be checked!

Techniques for handling large state space

CTL model checking: Symbolic technique

Semantics-based technique	Symbolic technique
Sets of labeled states	Characteristic functions (Boolean functions): ROBDD representation
Operations on sets of states	Efficient operations on ROBDDs

- Model checking of invariants: Bounded model checking
 - Searching satisfying valuations for Boolean formulas with SAT techniques
 - Model checking to a given depth:
 Searching for counterexamples with bounded length
 - A detected counterexample is always valid
 - Non-existing counterexample does not imply correctness

Symbolic model checking

Recap: Model checking with set operations

- Set of states labeled with p is computed by set operations
 E(p U q): "At least one successor is labeled ..."
 A(p U q): "All successors are labeled ..."
- Notation: If the set of states labeled with p is Z then
 - $pre_{E}(Z) = \{s \in S \mid \text{there exists } s', \text{ such that } (s,s') \in R \text{ and } s' \in Z\}$
 - i.e., at least one successor is labeled (is in Z)
 - $pre_A(Z) = \{s \in S \mid \text{ for all } s' \text{ where } (s,s') \in R: s' \in Z\}$ i.e., all successors are labeled (are in Z)
- Example: Iterative labeling with E(P U Q)
 - Initial set: $X_0 = \{s \mid Q \in L(s)\}$
 - Next iteration: $X_{i+1} = X_i \cup (pre_E(X_i) \cap \{s | P \in L(s)\})$

 \circ End of iteration: If $X_{i+1} = X_i$, the set is not increased

Main idea

- Representation of sets of states and operations on sets of states with Boolean functions
 - States are not explicitly enumerated
 - Encoding a state: with a bit-vector
 - To encode each state in S we need at least n= log₂ |S| bits, so choose n such that 2ⁿ≥|S|
 - Encoding a set of states: n-ary Boolean function called characteristic function
 - Characteristic function: C: $\{0,1\}^n \rightarrow \{0,1\}$
 - The characteristic function should be true for a bit-vector *iff* the state encoded by the bit-vector is in the given set of states
 - We will perform operations on characteristic functions instead of sets

Construction of characteristic functions

For a state s: C_s(x₁, x₂, ..., x_n)

Let the encoding of s be the bit-vector $(u_1, u_2, ..., u_n)$, where $u_i \in \{0, 1\}$ Goal: $C_s(x_1, x_2, ..., x_n)$ should return be true only for $(u_1, u_2, ..., u_n)$ Construction of $C_s(x_1, x_2, ..., x_n)$: with operator \land :

- x_i is an operand if u_i=1
- $\neg x_i$ is an operand if $u_i=0$

Example: for state s with encoding (0,1): $C_s(x_1, x_2) = \neg x_1 \land x_2$

■ For a set of states $Y \subseteq S: C_Y(x_1, x_2, ..., x_n)$ Goal: $C_Y(x_1, x_2, ..., x_n)$ should be true for $(u_1, u_2, ..., u_n)$ iff $(u_1, u_2, ..., u_n) \in Y$ Construction of $C_Y(x_1, x_2, ..., x_n)$ with operator \vee :

$$C_{Y}(x_{1}, x_{2}, ..., x_{n}) = \bigvee_{s \in Y} C_{s}(x_{1}, x_{2}, ..., x_{n})$$

For sets of states in general:

$$C_{Y \cup W} = C_Y \vee C_W \qquad C_{Y \cap W} = C_Y \wedge C_W$$

Example: Characteristic function of states

Variables: x, y

Characteristic functions of states: State s1: $C_{s1}(x,y) = (\neg x \land \neg y)$ State s2: $C_{s2}(x,y) = (\neg x \land y)$ State s3: $C_{s3}(x,y) = (x \land y)$

Characteristic function for a set of states: Set of states {s1,s2}: $C_{\{s1,s2\}} = C_{s1} \lor C_{s2} = (\neg x \land \neg y) \lor (\neg x \land y)$

Construction of characteristic functions (cont'd)

For state transitions: C_r

- For transition r=(s,t), where s=(u_1 , u_2 , ..., u_n) and t=(v_1 , v_2 , ..., v_n) characteristic function in the form $C_r(x_1, x_2, ..., x_n, x'_1, x'_2, ..., x'_n)$
 - "Primed" variables denote the target state
- Goal: C_r should be true *iff* x_i=u_i and x_i'=v_i
 Construction of C_r:

$$C_r = C_s (x_1, x_2, ..., x_n) \land C_t (x'_1, x'_2, ..., x'_n)$$

Example: Characteristic functions of transitions

State s1 encoded by (0,0): $C_{s1}(x,y) = (\neg x \land \neg y)$ State s2 encoded by (0,1): $C_{s2}(x,y) = (\neg x \land y)$

Transition (s1,s2) \in R, i.e., (0,0) \rightarrow (0,1): C_(s1,s2) = ($\neg x \land \neg y$) \land ($\neg x' \land y'$)

Transition relation R: $R(x,y,x',y') = (\neg x \land \neg y \land \neg x' \land y') \lor \\ \lor (\neg x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land y') \lor \\ \lor (x \land y \land \neg x' \land \gamma') \lor \\ \lor (x \land y \land \neg x' \land \neg y')$

Construction of characteristic functions (cont'd)

Construction of pre_E(Z): pre_E(Z)={s | ∃t: (s,t)∈R and t∈Z} Representation of Z: function C_Z

Representation of R: function $C_R = \bigvee_{r \in R} C_r$ pre_E(Z): find predecessor states for states of Z

$$C_{\operatorname{pre}_{\mathrm{E}}(Z)} = \exists_{x'_{1}, x'_{2}, \dots, x'_{n}} C_{R} \wedge C_{Z}'$$

where $\exists_x C = C[1/x] \lor C[0/x]$ ("existential abstraction")

- Model checking with set operations: reduced to operations with Boolean functions
 - \circ Union of sets: Disjunction of functions (V)
 - Intersection of sets: Conjunction of functions (\land)
 - Construction of pre_E(Z): Complex operation (existential abstraction)

Representation of Boolean functions

Canonic form: ROBDD Reduced, Ordered Binary Decision Diagram

Conceptual construction of ROBDD (overview):

- Binary decision tree: Represents binary decisions given by the valuation of function variables
- BDD: Identical subtrees are merged
- OBDD: Evaluation of variables in the same order on every branch
- ROBDD: Reduction of redundant nodes
 - If both two outcomes (branches) lead to the same node

ROBDD in more detail

Types of decision trees

Decision tree for Boolean functions: Substitution (valuation) of a variable is a decision

- Example: f(x,y)
- Valuation of all variables results in 1 or 0 in leaf nodes

- We get a binary decision diagram (BDD), if we merge all identical subtrees
- We get an ordered binary decision diagram (OBDD), if we substitute the variables in the same order during decomposition
- We get a reduced ordered binary decision diagram (ROBDD), if we remove redundant nodes (where both decisions lead to the same node)

Example: From binary decision tree to ROBDD

<u>M Ű EGYETEM</u>

ROBDD properties

- Directed, acyclic graph with one root and two leaves
 - Values of the two leaves are 1 and 0 (true and false)
 - Every node is assigned a test variable
- From every node, two edges leave
 - One for the value
 0 (notation: dashed arrow)
 - The other for the value 1 (notation: solid arrow)
- On every path, substituted variables are in the same order
- Isomorphic subgraphs are merged
- Nodes from with both edges would point to the same node are reduced

For a given function, two ROBDDs with the same variable ordering are isomorphic

Variable ordering for ROBDDs

Size of ROBDD

- For some functions it is very compact
- For others (such as XOR) it may have an exponential size
- The order of variables has a great impact on the ROBDD size
 - A different order may cause an order of magnitude difference
 - \circ Problem of finding an optimal ordering is NP-complete (\rightarrow heuristics)
- Memory requirements:
 - If the ROBDD is built by combining functions (e.g., representing product automata), intermediate nodes may appear which can be reduced later

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
 - Variables of the functions should be the same in the same order
 - (Recursive) construction of the f op t ROBDD using f and t ROBDDs (here op is a Boolean operator)

Summary: Model checking with ROBDDs

- Implementing model checking:
 - Model checking algorithm: Operations on sets of states (labeling)
 - Symbolic technique: Instead of sets, use Boolean characteristic functions
 - Efficient implementation: Boolean functions handled as ROBDDs
- Benefits
 - ROBDD is a canonical form (equivalence of functions is easy to check)
 - Algorithms can be accelerated (with caching)
 - Reduced storage requirements (depends on variable ordering!)

	Dining philosoph	ers:	
\mathbf{i}	Number of Philosophers	Size of state space	Number of ROBDD nodes
	16	4,7 ·10 ¹⁰	747
	28	4,8 ·10 ¹⁸	1347

Instead of storing 10¹⁸ states the ROBDD needs ~21kB!

Supplementary material: Construction and operations on ROBDD

Boolean functions as binary decision trees

- Substitution (valuation) of a variable is a decision
- Notation: if-then-else

 $x \rightarrow f_1, f_0 = (x \land f_1) \lor (\neg x \land f_0)$

- The result is the value of f_1 if x is true (1)
- The result is the value of f_0 if x is false (0)
- x is called the test variable, checking its value is a test
- Shannon decomposition of Boolean functions:

$$\left. \begin{array}{c} f = x \rightarrow f\left[1/x\right], f\left[0/x\right] \\ & \text{let } f_x = f\left[1/x\right]; f_{\underline{x}} = f\left[0/x\right] \end{array} \right\} \quad f = x \rightarrow f_x \text{, } f_{\underline{x}} \text{, } f$$

- The function is decomposed with if-then-else
- \circ The test variable is substituted, it will not appear in f_x , f_x
- Repeat until there is a variable left

Example: Manual construction of an ROBDD

Let

 $f = (a \Leftrightarrow b) \land (c \Leftrightarrow d)$ Variable ordering: a, b, c, d

Storing an ROBDD in memory

- Nodes of the ROBDD are identified by Ids (indices)
- The ROBDD is stored in a table
 T: u → (i,l,h):
 - o u: index of node

low

high

- i: index of variable (x_i, i=1...n)
- I: index of the node reachable through
 edge corresponding to 0
- h: index of the node reachable through
 edge corresponding to 1

Storing an ROBDD in memory

EGYETEM

u	i	I	h
0			
1			
2	4	1	0
3	4	0	1
4	3	2	3
5	2	4	0
6	2	0	4
7	1	5	6

Handling ROBDDs 1.

- Defined operations:
 o init(T)
 - Initializes table T
 - Only the terminal nodes 0 and 1 are in the table
 - o add(T,i,l,h):u
 - Creates a new node in T with the provided parameters
 - Returns its index u
 - var(T,u):i
 - Returns from T the index i of the node u
 - o low(T,u):l and high(T,u):h
 - Returns the index I (or h) of the node reachable from the node with index u through the edge corresponding to 0 (or 1, respectively)

Handling ROBDDs 2.

- To look up ROBDD nodes, we use another table
 H: (i,l,h) → u
- Operations:
 - o init(H)
 - Initializes an empty H
 - o member(H,i,l,h):t
 - Checks if the triple (i,l,h) is in H; t is a Boolean value
 - o lookup(H,i,l,h):u
 - Looks up the triple (i,l,h) from table H
 - Returns the index **u** of the matching node

o insert(H,i,l,h,u)

Inserts a new entry into the table

Handling ROBDDs 3.

Creating nodes: Mk(i,l,h)

- Where i is the index of variable,
 I and h are the branches
- If l=h, i.e. the branches would lead to the same node
 - \circ then we don't need a new node
 - $\circ~$ we can return any branches
- If H already contains a triple (i,l,h)
 - $\circ~$ then we don't need a new node
 - ⇒ there exists an isomorphic subtree, return that
- If H does not contain such a triple (i,l,h)
 - then we need to create it and return its index

```
Mk(i,l,h){
    if l=h then
        return l;
    else if member(H,i,l,h) then
        return lookup(H,i,l,h);
    else {
        u=add(T,i,l,h);
        insert(H,i,l,h,u);
        return u;
    }
}
```

Handling ROBDDs 4.

Building an ROBDD: Build(f) and Build'(t,i) recursive helper function

Operations on ROBDDs

- Boolean operators can be evaluated directly on ROBDDs
 - Variables of the functions should be the same and in the same order
- Equivalence for functions f, t (op is a Boolean operator):
 - 1) fop t = (x \rightarrow f_x, f_x) op (x \rightarrow t_x, t_x) = x \rightarrow (f_x op t_x), (f_x op t_x)

Operations on ROBDDs (cont'd)

- Boolean operators can be evaluated directly on ROBDDs
 Variables of the functions should be the same in the same order
- Equivalence for functions f, t (op is a Boolean operator):

1) fop t = (x \rightarrow f_x, f_x) op (x \rightarrow t_x, t_x) = x \rightarrow (f_x op t_x), (f_x op t_x)

- Additional rules (in case of missing variables due to reduction):
 - 2) fop t = (x \rightarrow f_x, f_x) op t = x \rightarrow (f_x op t), (f_x op t)
 - 3) fop t = f op (x \rightarrow t_x,t_x) = x \rightarrow (f op t_x), (f op t_x)
- Based on these rules App(op,i,j) can be defined recursively
 - where i, j: indices of the root nodes of operands
- Drawback: slow
 - worst-case 2ⁿ exponential

Accelerated operation

- Let G(op,i,j) be a cache table that contains the results of App(op,i,j) (these are nodes)
- The four cases of the algorithm:
 - Both nodes are terminal: return a terminal based on the Boolean operation (e.g. $0 \land 1 = 0$)
 - If the variable indices for both operands are the same, then call App(op,i,j) with the 0 branches and with the 1 branches based on equivalence (1)
 - If one variable index is less, then that node is paired with the 0 and 1 branches of the other node based on rules
 (2) or (3)

Pseudo-code of the operation

```
Apply(op,f,t) {
  init(G);
  return App(op,f,t);
}
App(op, u1, u2) {
  if (G(op,u1,u2) != empty) then return G(op,u1,u2);
  else if (u1 in \{0,1\} and u2 in \{0,1\}) then u = op(u1,u2);
  else if (var(u1) = var(u2)) then
       u=Mk(var(u1), App(op, low(u1), low(u2)))
                     App(op,high(u1),high(u2)));
  else if (var(u1) < var(u2)) then
       u=Mk(var(u1), App(op,low(u1),u2),App(op,high(u1),u2));
  else (* if (var(u1) > var(u2)) then *)
       u=Mk(var(u2), App(op,u1,low(u2)),App(op,u1,high(u2)));
  G(op,u1,u2) = u;
  return u;
}
```

Example: Performing operation (f^t)

Example: Performing operation (f < t)

м й е с у е т е м 1

Example: Result of operation (f^t)

Substiute a variable in an ROBDD

Substitute (bind) variables with constants (e.g. $(\neg x \land y)^{[y=1]} = \neg x$): The value of x_i should be b in the ROBDD rooted in u

