
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Model checking CTL:
Symbolic technique

Istvan Majzik
majzik@mit.bme.hu

1

Software Verification and Validation (VIMMD052)

Formal verification of TL properties

Formal model:
KS, LTS, automata

Formalized properties:
HML, LTL, CTL

Formal verification:
Model checking

OK Diagnostic trace

t f

“Informal”
design

“Informal”
properties

2

Recap: Techniques for model checking

 HML model checking: Tableau-based

 LTL model checking: Based on automata-theory

 CTL model checking: Iterative labeling

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

{P,Q}

PPP

E(P U Q)

E(P U Q)E(P U Q)

L(Ap)
L(AM)

T,s |– <a>p

T,s1 |– p T,sn |– p T,s1 |– p, T,s2|– p, …, T,sn|– p

T,s |– [a]p

s

s1

s2

sn

a

a

a

3

Problems

 The state space (e.g., Kripke structure) to traverse can be huge
o Concurrent systems exhibit a large state space: Combinatorial explosion in

the number of possible orderings of independent state transitions

 How can we analyze large state spaces?
o Promise: CTL model checking: 1020, sometimes even 10100 states

o What kind of technique can deliver this promise?

P1 P2 P3 Full state space

4

State space explosion

Direct product of automata, interleaving, synchronization

5

Operation of asynchronous automata

 System composed of two
(independent) automata

 States of the automata:

 A = {m1, m2}, B = {s1, s2}

 (Direct) product automaton:
state space of the system

 Set of states:

 C = A B

 C = {m1s1, m1s2 , m2s1 , m2s2}

m1 m2

s1 s2

m1s1 m2s1

m1s2 m2s2

A

B

C

6

The effects of synchronizations and guards

 Product automaton with
synchronization: Taking the
transitions at the same time

 E.g., A and B take their
transitions simultaneously if
their state index is the same:

 Product automaton with
guards: Disable certain
transitions

 E.g., B can only take the
transition if A is in state m2:

7

m1s1 m2s1

m1s2 m2s2

C”

m1s1 m2s1

m1s2 m2s2

C’

Data dependent states

T1 T2

x=1 y=1

g=g+2 g=g*2

(x,y,g)

(0,0,0)

(0,1,0) (1,0,0)

(1,0,2)

(1,1,2)

(0,1,0)

(1,1,0)

(1,1,4) (1,1,2)

(1,1,0)

x=1 y=1

x=1 y=1
g=g+2 g=g*2

y=1
g=g+2

x=1
g=g*2

g=g*2 g=g+2

Assigning actions to
transitions
Local variables: x and y
Global variable: g

9

Different end
states

Example for large state space: Dining philosophers

 Concurrent system with non-
trivial behavior
o May have deadlock, livelock

 State space grows fast

#Philosophers #States

16 4,7 1010

28 4,8 1018

… …

200 > 1040

1000 > 10200

… …

Source: wikipedia

With smart (but not task-specific)
state space representation:
~100 000 philosophers, i.e.
1062900 states can be checked! 264 = 1,8 1019

10

http://upload.wikimedia.org/wikipedia/commons/6/6a/Dining_philosophers.png

Techniques for handling large state space

 CTL model checking: Symbolic technique

 Model checking of invariants: Bounded model checking
o Searching satisfying valuations for Boolean formulas with SAT techniques

o Model checking to a given depth:
Searching for counterexamples with bounded length

• A detected counterexample is always valid

• Non-existing counterexample does not imply correctness

Semantics-based technique Symbolic technique

Sets of labeled states Characteristic functions
(Boolean functions):
ROBDD representation

Operations on sets of states Efficient operations on ROBDDs

11

Symbolic model checking

12

Recap: Model checking with set operations

 Set of states labeled with p is computed by set operations
o E(p U q): “At least one successor is labeled …”
o A(p U q): “All successors are labeled …”

 Notation: If the set of states labeled with p is Z then
o preE(Z) = {sS | there exists s’, such that (s,s’)R and s’Z}

 i.e., at least one successor is labeled (is in Z)

o preA(Z) = {sS | for all s’ where (s,s’)R: s’Z}
 i.e., all successors are labeled (are in Z)

 Example: Iterative labeling with E(P U Q)
o Initial set: X0 = {s | QL(s)}

o Next iteration: Xi+1= Xi (preE(Xi) {s | PL(s)})

o End of iteration: If Xi+1= Xi, the set is not increased

States labeled so far,
plus …

… their predecessor states
that …

… are labeled
with P

15

Main idea

 Representation of sets of states and operations on
sets of states with Boolean functions
o States are not explicitly enumerated

o Encoding a state: with a bit-vector
• To encode each state in S we need at least n=log2|S| bits,

so choose n such that 2n|S|

o Encoding a set of states: n-ary Boolean function called
characteristic function

• Characteristic function: C: {0,1}n{0,1}

• The characteristic function should be true for a bit-vector iff the
state encoded by the bit-vector is in the given set of states

o We will perform operations on characteristic functions
instead of sets

16

Construction of characteristic functions

 For a state s: Cs(x1, x2, …, xn)
Let the encoding of s be the bit-vector (u1, u2, …, un), where ui{0,1}

Goal: Cs(x1, x2, …, xn) should return be true only for (u1, u2, …, un)

Construction of Cs(x1, x2, …, xn): with operator :

• xi is an operand if ui=1

• xi is an operand if ui=0

Example: for state s with encoding (0,1): Cs(x1, x2) = x1 x2

 For a set of states YS: CY(x1, x2, …, xn)
Goal: CY(x1, x2, …, xn) should be true for (u1, u2, …, un) iff (u1,u2,…, un)Y

Construction of CY(x1, x2, …, xn) with operator :

 CY(x1, x2, …, xn)=sYCs(x1, x2, …, xn)

 For sets of states in general:

 CYW= CY CW, CYW= CY CW

17

Example: Characteristic function of states

s1

s2

s3

(0,0)

(0,1)

(1,1)

Characteristic functions of states:

State s1:
 Cs1(x,y) = (x y)
State s2:
 Cs2(x,y) = (x y)
State s3:
 Cs3(x,y) = (x y)

Characteristic function for a set of states:

Set of states {s1,s2}:
 C{s1,s2} = Cs1 Cs2 = (x y) (x y)

Variables: x, y

18

Construction of characteristic functions (cont’d)

 For state transitions: Cr

o For transition r=(s,t), where s=(u1, u2, …, un) and t=(v1, v2, …, vn)

 characteristic function in the form Cr(x1, x2, …, xn, x’1, x’2, …, x’n)
• „Primed” variables denote the target state

o Goal: Cr should be true iff xi=ui and xi’=vi

 Construction of Cr:

 Cr = Cs (x1, x2, …, xn) Ct(x’1, x’2, …, x’n)

s t

(u1, u2, …, un) (v1, v2, …, vn)

r

19

Example: Characteristic functions of transitions

s1

s2

s3

(0,0)

(0,1)

(1,1)

Transition relation R:
R(x,y,x’,y’) = (xy x’ y’)
 (x y x’ y’)
 (x y x’ y’)
 (x y x’y’)

State s1 encoded by (0,0):
 Cs1(x,y) = (x y)
State s2 encoded by (0,1):
 Cs2(x,y) = (x y)

Transition (s1,s2)R, i.e., (0,0) (0,1):
 C(s1,s2) = (x y) (x’ y’)

20

Construction of characteristic functions (cont’d)

 Construction of preE(Z): preE(Z)={s | t: (s,t)R and tZ}
Representation of Z: function CZ

Representation of R: function CR=rRCr

preE(Z): find predecessor states for states of Z

where xC = C[1/x] C[0/x] („existential abstraction”)

 Model checking with set operations:
reduced to operations with Boolean functions

o Union of sets: Disjunction of functions ()

o Intersection of sets: Conjunction of functions ()

o Construction of preE(Z): Complex operation (existential abstraction)

E 1 2

'

pre () ' , ' ,..., 'nZ x x x R ZC C C

21

Representation of Boolean functions

Canonic form: ROBDD

 Reduced, Ordered Binary Decision Diagram

Conceptual construction of ROBDD (overview):

 Binary decision tree: Represents binary decisions
given by the valuation of function variables

 BDD: Identical subtrees are merged

 OBDD: Evaluation of variables in the same order
 on every branch

 ROBDD: Reduction of redundant nodes
o If both two outcomes (branches) lead to the same node

22

ROBDD in more detail

23

Types of decision trees

 We get a binary decision diagram (BDD),

if we merge all identical subtrees

 We get an ordered binary decision diagram (OBDD),

if we substitute the variables in the same order during decomposition

 We get a reduced ordered binary decision diagram (ROBDD),

if we remove redundant nodes (where both decisions lead to the same node)

Decision tree for Boolean
functions:
Substitution (valuation) of a
variable is a decision

• Example: f(x,y)
• Valuation of all variables

results in 1 or 0 in leaf nodes

x

y y

0 / 1 0 / 1 0 / 1 0 / 1

f [x = 1 , y = 1] f [x = 1 , y = 0] f [x = 0 , y = 1] f [x = 0 , y = 0]

f [x = 1] f [x = 0]

f(x,y)

25

Example: From binary decision tree to ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

a

b b

cc c c

1 0 0110 0 1

Bináris

döntési fa
a

b b

cc c c

1 0 0110 0 1

Redukált

döntési fa

a

b b

c c

0 1

BDD a

b

c c

0 1

ROBDD

Binary
decision tree

Reduced
decision tree

BDD

ROBDD

26

ROBDD properties

 Directed, acyclic graph with one root and two leaves
o Values of the two leaves are 1 and 0 (true and false)

o Every node is assigned a test variable

 From every node, two edges leave
o One for the value 0 (notation: dashed arrow)

o The other for the value 1 (notation: solid arrow)

 On every path, substituted variables are in the same order

 Isomorphic subgraphs are merged

 Nodes from with both edges would point to the same node are
reduced

For a given function, two ROBDDs
with the same variable ordering are isomorphic

27

Variable ordering for ROBDDs

 Size of ROBDD
o For some functions it is very compact

o For others (such as XOR) it may have an exponential size

 The order of variables has a great impact on the ROBDD size
o A different order may cause an order of magnitude difference

o Problem of finding an optimal ordering is NP-complete (heuristics)

 Memory requirements:
o If the ROBDD is built by combining functions (e.g., representing product

automata), intermediate nodes may appear which can be reduced later

ROBDD
méret

Építés
lépései

ROBDD
méret

Építés
lépései

Size of
ROBDD

Steps of
construction

28

Operations on ROBDDs

 Boolean operators can be evaluated directly on ROBDDs

o Variables of the functions should be the same in the same order

o (Recursive) construction of the f op t ROBDD using f and t ROBDDs

(here op is a Boolean operator).

op
=

x

y y

f

fx
fx

x

y y

t

tx
tx

x

y y

f op t

fx op tx
fx op tx

29

Summary: Model checking with ROBDDs

 Implementing model checking:
o Model checking algorithm: Operations on sets of states (labeling)

o Symbolic technique: Instead of sets, use Boolean characteristic functions

o Efficient implementation: Boolean functions handled as ROBDDs

 Benefits
o ROBDD is a canonical form (equivalence of functions is easy to check)

o Algorithms can be accelerated (with caching)

o Reduced storage requirements (depends on variable ordering!)

 Dining philosophers:

 Instead of storing 1018 states the ROBDD needs ~21kB!

Number of
Philosophers

Size of state
space

Number of
ROBDD nodes

16 4,7 1010 747

28 4,8 1018 1347

30

Supplementary material:
Construction and operations on ROBDD

31

Boolean functions as binary decision trees

 Substitution (valuation) of a variable is a decision

 Notation: if-then-else

o The result is the value of f1 if x is true (1)

o The result is the value of f0 if x is false (0)

o x is called the test variable, checking its value is a test

 Shannon decomposition of Boolean functions:

o The function is decomposed with if-then-else

o The test variable is substituted, it will not appear in fx , fx

o Repeat until there is a variable left

x f1, f0 = (x f1) (x f0)

f = x f [1/x], f [0/x]
let fx = f [1/x] ; fx = f [0/x]

f = x fx , fx

32

Example: Manual construction of an ROBDD

Let

f = (a b) (c d)

Variable ordering: a, b, c, d

 f = afa, fa

 fa=(1b)(cd), fa=(0b)(cd)

 fa = bfa,b, fa,b

 fa,b= (11)(cd) = (cd)

 fa,b=(10)(cd) = 0

 fa = bfa,b, fa,b

 fa,b = (01)(cd) = 0

 fa,b = (00)(cd) = (cd)

 fa,b = cfa,b,c, fa,b,c

 fa,b,c = (1d), fa,b,c=(0d)

 fa,b,c = dfa,b,c,d, fa,b,c,d

 fa,b,c,d = (11) = 1,

 fa,b,c,d = (10) = 0

 fa,b,c = dfa,b,c,d, fa,b,c,d

 fa,b,c,d = (01)=0, , fa,b,c,d=(00)=1

fa,b and fa,b are
isomorphic

1 0

d d

a
f

b
f
a

b
f a

c
f a,b

fa,b,c
fa,b,c

33

Storing an ROBDD in memory

 Nodes of the ROBDD are identified
by Ids (indices)

 The ROBDD is stored in a table
T: u (i,l,h):
o u: index of node

o i: index of variable (xi, i=1…n)

o l: index of the node reachable through
edge corresponding to 0

o h: index of the node reachable through
edge corresponding to 1

u i l h

0

1

2 4 1 0

3 4 0 1

4 3 2 3

5 2 4 0

6 2 0 4

7 1 5 6

xi

u

h l

low

high

34

Storing an ROBDD in memory

u i l h

0

1

2 4 1 0

3 4 0 1

4 3 2 3

5 2 4 0

6 2 0 4

7 1 5 6

x
4

x
4

x
3

x
2 x

2

x
1

2 3

4

5
6

7
x1

x2

x2

x3

1 0

x4
x4

f

f a
f a

f a,b

1 0

35

Handling ROBDDs 1.

 Defined operations:
o init(T)

• Initializes table T

• Only the terminal nodes 0 and 1 are in the table

o add(T,i,l,h):u
• Creates a new node in T with the provided parameters

• Returns its index u

o var(T,u):i
• Returns from T the index i of the node u

o low(T,u):l and high(T,u):h
• Returns the index l (or h) of the node reachable from the

node with index u through the edge corresponding to 0
(or 1, respectively)

36

Handling ROBDDs 2.

 To look up ROBDD nodes, we use another table
H: (i,l,h) u

 Operations:
o init(H)

• Initializes an empty H

o member(H,i,l,h):t
• Checks if the triple (i,l,h) is in H; t is a Boolean value

o lookup(H,i,l,h):u
• Looks up the triple (i,l,h) from table H

• Returns the index u of the matching node

o insert(H,i,l,h,u)
• Inserts a new entry into the table

37

Handling ROBDDs 3.

Creating nodes: Mk(i,l,h)

 Where i is the index of variable,
l and h are the branches

 If l=h, i.e. the branches would
lead to the same node
o then we don’t need a new node

o we can return any branches

 If H already contains a triple
(i,l,h)
o then we don’t need a new node

 there exists an isomorphic subtree,
return that

 If H does not contain such a
triple (i,l,h)
o then we need to create it and

return its index

Mk(i,l,h){

 if l=h then

 return l;

 else if member(H,i,l,h) then

 return lookup(H,i,l,h);

 else {

 u=add(T,i,l,h);

 insert(H,i,l,h,u);

 return u;

 }

}

38

Handling ROBDDs 4.

Building an ROBDD: Build(f) and Build’(t,i) recursive helper function

Build(f) {

 init(T); init(H);

 return Build’(f,1);

}

Build’(t,i){

 if i>n then

 if t==false then return 0 else return 1

 else {v0 = Build’(t[0/xi],i+1);

 v1 = Build’(t[1/xi],i+1);

 return Mk(i,v0,v1)}

}

Reached a terminal node
(every variable substituted)

Recursive building;
Mk() will check

isomorphic subtrees

Will traverse variables
recursively

39

Operations on ROBDDs

 Boolean operators can be evaluated directly on ROBDDs

o Variables of the functions should be the same and in the same order

 Equivalence for functions f, t (op is a Boolean operator):

1) f op t = (x fx,fx) op (x tx,tx) = x (fx op tx), (fx op tx)

.

op
=

x

y y

f

fx
fx

x

y y

t

tx
tx

x

y y

f op t

fx op tx
fx op tx

40

Operations on ROBDDs (cont’d)

 Boolean operators can be evaluated directly on ROBDDs

o Variables of the functions should be the same in the same order

 Equivalence for functions f, t (op is a Boolean operator):

1) f op t = (x fx,fx) op (x tx,tx) = x (fx op tx), (fx op tx)

 Additional rules (in case of missing variables due to reduction):

2) f op t = (x fx,fx) op t = x (fx op t), (fx op t)

3) f op t = f op (x tx,tx) = x (f op tx), (f op tx)

 Based on these rules App(op,i,j) can be defined recursively

o where i, j: indices of the root nodes of operands

 Drawback: slow

o worst-case 2n exponential

41

Accelerated operation

 Let G(op,i,j) be a cache table that contains the
results of App(op,i,j) (these are nodes)

 The four cases of the algorithm:

o Both nodes are terminal: return a terminal based on the
Boolean operation (e.g. 0 1 = 0)

o If the variable indices for both operands are the same,
then call App(op,i,j) with the 0 branches and with the 1
branches based on equivalence (1)

o If one variable index is less, then that node is paired with
the 0 and 1 branches of the other node based on rules
(2) or (3)

42

Pseudo-code of the operation

Apply(op,f,t){

 init(G);

 return App(op,f,t);

}

App(op,u1,u2) {

 if (G(op,u1,u2) != empty) then return G(op,u1,u2);

 else if (u1 in {0,1} and u2 in {0,1}) then u = op(u1,u2);

 else if (var(u1) = var(u2)) then

 u=Mk(var(u1), App(op,low(u1),low(u2)),

 App(op,high(u1),high(u2)));

 else if (var(u1) < var(u2)) then

 u=Mk(var(u1), App(op,low(u1),u2),App(op,high(u1),u2));

 else (* if (var(u1) > var(u2)) then *)

 u=Mk(var(u2), App(op,u1,low(u2)),App(op,u1,high(u2)));

 G(op,u1,u2)=u;

 return u;

}

43

x5

x4

x3

x2

x1

Example: Performing operation (ft)

5

3 4

2

0 1

8

6 7

5

3 4

2

0 1

f t

44

Example: Performing operation (ft)

8

6 7

5

3 4

2

0 1

8

6 7

5

3 4

2

0 1

5

3 4

2

0 1

5

3 4

2

0 1

8 5

6 3 7 4

0 3
0

0 4
05 3

3 2

2 2

4 0
0

0 2
0

1 1
1

0 0
0

5 4

4 2

2 2

3 0
0

0 2
0

1 1
1

0 0
0

8 5

6 3 7 4

0 3
0

0 4
05 3

3 2

2 2

4 0
0

0 2
0

1 1
1

0 0
0

5 4

4 2

2 2

3 0
0

0 2
0

1 1
1

0 0
0

f t

ft

46

Example: Result of operation (ft)

x1

x2 x2

x3

x4 x4

x5

1 0

x3

=

x5

x4

x3

x2

x1 8

6 7

5

3 4

2

0 1

5

3 4

2

0 1

f t

47

Substiute a variable in an ROBDD

Substitute (bind) variables with constants (e.g. (x y)[y=1]= x):
 The value of xj should be b in the ROBDD rooted in u

Restrict(u,j,b) {

 return Res(u,j,b);

}

Res(u,j,b) {

 if var(u) > j then return u;

 else if var(u) < j then

 return Mk(var(u),

 Res(low(u),j,b),

 Res(high(u),j,b));

 else

 if b=0 then

 return Res(low(u),j,b)

 else

 return Res(high(u),j,b);

}

If we are lower than the variable
to substitute, then the original
subtree is returned

If we are higher, then we need
recursive building

If we are at the variable to
substitute, we process only the
branch b

48

