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Motivation: Service quality properties

" Properties beyond state reachability
o QoS: Quality of Service
o SLA: Service Level Agreement

= Examples for complex QoS properties:

o It happens with probability less than 0.2 that the recovery after
an error needs more than 15 time units

o It happens with probability less than 0.5 that after start in 85
time units the service level decreases below Minimum

o Its probability is more than 0.7 that reaching the service level
Minimum it is possible to deliver service level Premium in 5
time units

= Characteristics of QoS properties:
o Probabilities of states / scenarios (e.g., service levels, recovery)
o Time to reach states / execute scenarios (e.g., repair)




Extensions of “classic” temporal logics

/Stochastic logics:

= Probability and timing related requirements:

o E.g.:if the current state is Error then the probability
that this condition holds after 2 time units as well, is less than 0.3

= Extension of CTL:

o Probability criteria for state reachability (steady state), path execution

o Timing criteria (time intervals) for operators X and U

N

o Interpreted over Continuous-time Markov chains (not a Kripke structure)

Real-time logics:

= Requirements of real-time systems
o The logic can reference clock variables

o Handling of time intervals




Modeling stochastic processes




Formal verification of stochastic properties

/- —

“Informa “Informal”
design properties
Stochastic model: Stochastic logic:

CTMC CSL
\o /

Formal verification:
Model checking

OK Error




Stochastic models (overview)

= Used to model performance and dependability
o Stochastic Petri-nets Assigning timing (with

o Stochastic process algebra fg‘;ﬁg‘;:ﬂi'it?g”b“tions)
o Stochastic activity networks
= Underlying lower-level mathematical formalism:
Continuous time Markov chains
o Steady state analysis

Continuous time
Discrete states

o Transient analysis Transition rates

= Solution techniques
o Analytical (,,symbolic formulas”)
o Numerical (,iterations”)
o Simulation based (,,collecting data”)




Stochastic processes

= Stochastic process:

o Mathematical model of a system or phenomena that changes in time
in a random manner — characterized by a set of random variables

o A stochastic process is characterized by its possible trajectories
o IT systems: Typically, holding times of states are represented by random

variables
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Markov processes

= Markov process with S(t) state is a stochastic process such that
P{S(t)=s | S(t,)=s,, S(t,.1)=S,.1, ---, S(tg)=so} = P{S(t)=s | S(t,)=s,}
forallt>t >t ;> ..>t,

o l.e., the conditional probability distribution of future states (conditional on
both past and present states) depends only on the present state

o “Memoryless property” of the stochastic process

= Markov processes with discrete states: Markov chains
o Behaviour can be given by the holding times of discrete states

o Holding times of states are characterized by random variables
of negative exponential distributions

* This is the only distribution that satisfies the Markov property

* In each time point, the distribution of the remaining time in the given state is
statistically independent from the time the process has spent in that state

@/\@ P{holding s fort} =e™*




Continuous Time Markov chains

= CTMC: Continuous Time Markov Chain

o Continuous time, discrete state space

= Notations and properties
o Discrete states: s, s, ..., S,,, state of the CTMC is S(t)
o Probability of a transition: Q;(t, ;,t,) = P{S(t,)=s; | S(t,1)=s;}
o In case of time homogenous process: Q;(t,t+At)= Q;(At)
* The transition probability does not depend on time

R, (1) = lim =Q, (A1)

o Transition rates:

o Rate of leaving a state:




Model: Continuous Time Markov Chain

= Definition: CTMC = (S, R)

o S set of discrete states:

Sgs S1s +++» Sp

o R: SXS—R,, state transition rates

= Notation:
o Q = R—diag(E) infinitesimal generator matrix
0 G =5y, ty, Sy, ty, ... path (s isleftatt)
o0 c@t the state attime t
o Path(s) set of paths from s
o P(s, o) the probability of traversing a path o from s




Application of CTMC: Dependability model

= CTMC states

o System level states: Combination of component states
(fault-free, or failed)

= CTMC transitions

o Component level fault occurrence:
Rate of the transition is the component failure rate (A)

o Component level repair:
Rate of the transition is the component repair rate (),
which is the reciprocal of the repair time

A
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o System level repair:

Rate of the transition is the system repair rate
(which is the reciprocal of the system repair time)




Example: CTMC dependability model

= System consisting of two servers, A and B:
o The servers may independently fail
o The servers can be repaired independently of together

= System states: Combination of the server states (good/faulty)
= Transition rates:

o Failure of server A: A, failure rate
o Failure of server B: Ag failure rate
o Repair of a server: L, repair rate
o Repair of both servers: L, repair rate

M4




Solution of a CTMC

" Transient state probabilities:

o T(Sy, S, t) = P{oePath(s,) | c@t=s} probability that
starting from s, the system is in state s at time t

o 1(sy, t) starting from s,, the probabilities of the states at t
o Transient state probabilities obtained by solving:

dz(S,,t) _
dt = Z(Smt)g

= Steady state probabilities (if exist):
n(s,,S,t) state probabilities (starting from s,)

o T(Sq, S) = lim,_,

o 1t(sy) steady state probabilities (vector)
o Steady state probabilities obtained by solving:

7(s,)Q=0 where > 7(s,,s)=1




Elements of the solution of a Markov chain

= Probability of the holding time of a state:
P {holding s for t} = ="
" Probability of leaving a state:
P{leaving sint} =1—-e ¢
" Probability of a state transition:

P {transition from s to s'in t} =1—e "¢

= Expected value of the time spent in a state:

E {time spent in s} = 1

E(s)




Formalizing properties




Formal verification of stochastic properties
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How to formalize QoS properties?

= Modeling: CTMC, simple state-based formalism
o Extension: Labeling states with atomic propositions

{Mlnlmum}
Bgood

Failure
A good { ;

M|n|mum}

o For states: Computing steady state or transient probabilities
o For paths: Computing path traversing probabilities

" Properties: Formalized on the analogy of CTL
o Specifying probabilities and time intervals for states or paths
o Result: Continuous Stochastic Logic (CSL)




Continuous Stochastic Logic

= Extensions with regard to CTL

o Probability related operators:

* For steady state: Probability of being in a state partition (set of states)
characterized by a state formula

* For (transient) paths: Probability of executing paths characterized by a
path formula

o Time interval related operators:

* Extending the operators X and U with time intervals: Occurrence of
state(s) characterized by state formula in the given time interval

= Notation:

o | timeinterval, e.g., [0, 12), [15,0)

o p probability

o ~ operator for comparison, e.g., >, <, <, >

o O state formula (to be evaluated in state of the CTMC)
o ¢ path formula (to be evaluated on paths of the CTMC)




CSL state formula

= The well-formed CSL expressions are the state
formula

" Syntax: @ :=P | =@ | OvD [ S. (D) | P. (o)
" Informal semantics of the new operators

o S.,(®) specifies that the steady-state probability of being in
state partition characterized by @ is ~p

P{being in state where ® holds} ~ p

* Example: S_; g(MinimumvPremium)

o P.,(¢) specifies that the probability of executing a path
characterized by ¢ is ~p

P{executing a path on which ¢ holds} ~p

* Example: P_,,(true U Premium)




CSL path formula

* Syntax: @ ::=X'D | DU D
" Informal semantics of operators

o X' @ specifies that in the next state reached at time tel the
state formula @ holds

e Example: XI%0lpremium

o @, U' @, specifies that in tel a state is reached in which @,
holds and until that state in each preceding state @, holds
* Example: Minimum UB0 premium
= Operators introduced as abbreviations:

O E (p: P>O((P)

o A@=P,(0)

o F'® =true U' ®

oXP=XD, O, UD,=P, U D, wherel=[0,x)




CSL semantics (1)

= M=(S,R,L) is a CTMC with state labeling
o L: S = 2%7 [abeling function
= Basic operators:

oM, =P iff PeL(s)
oM, |==D iff M,s |= D does not hold
oM,s |=DO,vO,iff M,s |=D, or M,s |=O
= Probability related operators Starting from s, A
d babil
o M,s |=5.(®) iff n(s, Sat(®)) ~ p, ot satos In Wich @
holds is ~p )
i.e., M,s |=5. (D) iff Z ~
s'eSat(d
o M,s [=P.y(¢) iff P(s, o | ol- =0) ~ oronablity of paths on
|\/| | P ot Z S - which ¢ holds is ~p
i.e., M,s |=P., | o)

oePath(s)
ol=¢




CSL semantics (2)

= Operators for time intervals:
oM,c |=X O iff
ds;: M,s; |=® and t,el

oM,c |=®, U D, iff
dtel: (c@t |= D, és Vue[0,t): c@u |= D)




Outlook: CSL model checking (overview)

= 5.,(®@) formula:
o Utilizing the steady state solution of the CTMC

= X'®D formula:

o Utilizing the transient solution of the CTMC (to next state)
= P.(¢) or @, U' @, formula:

o Transient solution is needed + time intervals

o General: Solution of a Volterra integral equation

.t
/ Z R(s,s') - e EG T prob(s', & Y11 0) do
o

o Simplification: Transforming the CTMC and the property to be
checked in order to have a problem for which the transient
solution of the transformed CTMC is sufficient

* Transformation: M—M’, ® — @’
* To be proved: M,s |=® iff M’,s |= D’




Example: Simplification in case of @, U%Y ®,

= Goal: Checking ®, U%Y @, on model M
"= Transforming the model from M to M’:

o After reaching states in which @, holds (before t and through states in
which @, holds), the future behavior is irrelevant for the property;
thus all such states in which @, holds become sink state in M’

o In states for which — (®, v @,) holds, i.e., counter-example is found,
the future behavior is irrelevant for the property;
thus all such states become sink state in M’

= Transforming the property for M’:
o The following theorem can be proven:
M,s |= @, UOY @, holds if
M’,s |=true Ut @, holds (in the transformed model)
i.e., the transient solution of the transformed model is sufficient




CSL model checkers

= First implementation:
ETMCC: Erlangen-Twente Markov Chain Checker (E |-MC?)

o Supported models: CTMC, Stochastic process algebra
= PRISM: Probabilistic Symbolic Model Checker

o Supported models: Stochastic Petri nets (GreatSPN extension)
o Symbolic handling of the state space

= MRMC: Markov Reward Model Checker
o Discrete time Markov chains are also supported
o CSRL: CSL extended with reward function

o Reward: Cost/profit assignment
* To states: Rate reward (can be integrated for time intervals)

* To transitions: Impulse reward (can be summed for fired transitions)
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Using CSL to formalize QoS properties (1)

{Mlnlmum}
Bgood

Ho No good
{Failure}
A good

Mwmnum}

Labels to be used: Premium, Minimum, Failure

= Availability of service is greater than 0.99:
S-0.99(Premium v Minimum)

" |Inthe long run, the probability that the service level is
Premium is at least 0.9:

S.09(Premium)




Using CSL to formalize QoS properties (2)

It happens with probability less than 0.1, that in 85 time units
the service level falls below Minimum:

P_, .(FIO8I Failure) = P_, ,(true U9 Failure)
It is possible to reach Premium service level:
P.o(F Premium) = P_4(true U'%*) Premium)

If there is Failure at start, then it happens with probability less
than 0.3 that the failure will present after 2 time units:

Failure = P_, 5(F>?! Failure)

The probability that the recovery after an initial failure needs
more than 15 time units is at most 0.2:

Failure = P_, ,(Failure U'>*) (Minimum v Premium))




Using CSL to formalize QoS properties (3)

" |t happens with probability less than 0.01 that after 9

time units of fault-free operation the system will fail in 1
time unit:

P_o0:((Premium v Minimum) U0 Failure)

= Starting with Minimum service level, it happens with
probability more than 0.7 that in 5 time units (keeping at
least the Minimum service level) the Premium service
level will be provided:

Minimum = P_,5(Minimum U3 Premium)




= Motivation: Checking service quality and timeliness

o Typical in QoS, SLA
= Basic mathematical model: CTMC, with state labeling

o It can be mapped from higher-level models

o Solution: Computing steady state or transient state probabilities
" Formalizing properties: CSL

o Probability operators for states (in steady state) and executed
paths

o Time intervals for standard path operators

= Model checking
o Simplification by transforming both the model and the property

" Properties (examples)




