Software Verification and Validation (VIMMDO052)

Model checking time-dependent
behavior

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

‘ﬂ..||..ﬂ‘
MUEGYETEM 1782

Motivation: Verification of real-time controllers

* Time-dependent state-based event driven behavior
* Time is spent in states
e Conditions (guards) of transitions depend on time

e Typical implementation:
Timers measuring time by counting clock ticks

e Actions to reset timers

= Typical properties to be checked
 Satisfying deadlines:
Reaching a given state in a given time interval

* On request, a reply is received in given time
* Message that was sent is received in favorable time

 Satisfying safety properties:
A property holds in each state that is reachable in a given time interval

* The behavior is safe during a mission

Extensions of “classic” temporal logics

Stochastic logics:

= Probability and timing related requirements:

o E.g.:if the current state is Error then the probability
that this condition holds after 2 time units as well, is less than 30%

= Extension of CTL:

o Interpreted over Continuous-time Markov chains (not a Kripke structure)
o Probability criteria for state reachability (steady state), path execution
o Timing criteria (time intervals) for operators X and U

Timed temporal logics (“real-time” logics):

= Requirements of real-time systems
o The properties refer to clock variables

o Handling of time intervals

Goal: Formal verification of timed properties

“Informal” “Informal”
design properties
Timed model Timed temporal logic

Formal verification:
Model checking

OK Error

The modeling approach

= “Engineering” model — Low-level formal model

* The mapping to low-level formal model gives formal
semantics to the engineering model

* Model checking is performed on the formal model
= Similar approach:

 UML statecharts — Kripke structure (KS)
* Checking CTL properties on KS

= Model checking timed properties on timed model:
* Timed Automata (TA) > Timed Transition System (TTS)
e Timed CTL (TCTL) variant — Timed Temporal Logic (TL)

Models for time-dependent behavior

Overview of the approach

Timed Automata Timed CTL variant
(TA) (TCTL)
v v
Timed Transition Timed temporal logic
\ System (TTS) (TTL)

Formal verification:

Model checking

OK Error

Low-level model: Timed Transition System (TTS)

= Notation (properties of states and transitions):

e Atomic propositions: AP ={P, Q, ...}

* Atomic actions: Act={a, b, c, ...}

* Delay actions: A={e(d) | de R, }
= Definition of TTS: TTS = (S, s,, —, V) where

* Sset of states

* s, initial state

e — < SxLxS, where Le Act U A (delay action is included)
V: S—24" labeling of states

{} {Green} {Green} {Yellow}
€(25)

{P} {P.Q}
@i@ &(5)

g(15)

{PL— &) —~I{P}
- {Red} {Red} {Yellow}

Engineering model: Timed Automaton (TA)

= Automaton (states, transitions) + clock variables
e Concurrent (system) clocks
* These all increase with the same pace
* The clock value can be inspected in guards and invariants
* The clocks can be reset in actions, independently from
each other

= Notation for clocks:

e C={x,v, z, ...} clocks
* B(C) expressions on clocks, ge B(C) is a clock expression

e Syntax: g ::=x~n | x-y"n | gAg
where ~ e (£, 2, ==, <, >},
and n non-negative integer (constant)

Definition of Timed Automaton

= TA=(N, |,, E, Inv, V) with Act, AP, C where
* N control locations (will be parts of the state)

lo,eN initial location — here the value of clocks is O

E < NxB(C)xActx2“xN set of edges, where an edge is

| 22 5|
where
* g: clock expression —guard condition
* a:action — activity
* r: clock set — clocks that are reset

Inv: N —B(C) clock invariants
* Limiting the time spent in a control location

* V: N =247 |labeling (local conditions in control locations)

Example: Notations in a TA model

(Label eV \

Location
invariant Ilnv

1 Location name]

ﬁ Edge guard g J

Clock(s) to reset r]

{Q} = Timing condition for transition |,—>I,:
y=n m <x<m’ for clock x
C iy} = The delay in location |, could be
P,Q} @ I in the [m, m’] time period:
3 - "t

m m’

Recap: Timed automaton in UPPAAL

. x
Example: revolving door T Comments |

Marme: Iwait

[Location W/\ CIOCk X, Ineariant:
idle o |
activated = true
@ -
% éD wait [Inikial
[Guard J; . [~ Urgent
QK I Cancel |

[T Committed
: closed Ipening
OpEnng =)
[Invarlant % =5 é P S — -
‘Edge I Comments |

Seleck;

[Clock reset ; |

w=0 _
T ¥=[Guard: [.==g

activated=false

Swnc:

[Action closing

¥ ==d] %=0 é-lpen
(<=h O< ¥<=8 Update: oo

(8] I Cancel

Informal semantics of a Timed Automaton

= |nitial state:
o Initial location is active, all clocks are set to O
= Delay:
o The value of clocks is increased (at the same pace)

o The max. time spent in a control location is determined by the
location invariant

= Firing of a transition to change state:

o Transition (on an edge) is enabled if
e Source location is active
e Guard condition is satisfied
* Clock resets satisfy the invariant of the target location
* Synchronization (if any — see later) is possible
o Transition that is enabled may fire (random selection)
* Action (variable assignment) executed
* Clocks that were reset become 0
* The target location of the edge becomes active

Formal semantics of TA: Notations

= Notations for formalizing the semantics:
* u: C—N clock valuation

* u(x) is the value of clock x
* u+d increasing the clock valuation for all clocks by d
* The new value of clock x is u(x)+d
* uv: merging clock valuations for sets of clocks,
where u and v are clock valuations and K, C are independent: CnK=0
e uv(x)=u(x) if xeC
e uv(x)=v(x) if veK
e [C’>0]u for all clock xeC’ the valuation becomes 0O,
otherwise remains the same

* g(u) is the evaluation of a guard g in case of valuation u
= State of TA: (I, u) control location and clock valuation
o Valuation of integer variables is similar (not given separately)

Formal semantics of TA: Mapping to TTS

= The semantics of a TAisa TTS=(S, s,, —, V) where
o S set of states, where each state is in form (l,u)
o Sy = (ly,up) initial state
o — < SxLxS is defined in the following way:
e (l,u) =2 (Iu’) is possible, if there exist r and g such that

I—)I' edge exists betweenthelocatlons
g(u) guardevaluatestotrue, '
:u =[r > 0]Ju clockresetsoccur

e (I,u) =@ ()" u’) is possible, if

I- I' control locationdoesnot change
u '=u+d timespentisd, '
,Inv(u) clockinvariantholds

__

o V(l,u) =V(l) is the labeling of states

Example of the formal semantics of TA

= The semantics of a TA determines a set of TTS

o Guards and invariants make various delays possible
(possible delays are in ranges)

= The TTS is defined in case of the example TA as follows:

(15,(0,0))

g(d)

a
{x}
{P} @ , Condition: Resetting clock x Condition:
o arbitrary delay by transition on m<e<m’
b {X_’y} dinl, edge a
0@
y>n
cl{y}
{P’Q} 1, e time spent Transition on b d and e can be |
v (delay) in I, will reset both chosen depending
clock X,y clocks on the conditions

Formal semantics of TA (summary)

Timed Automaton

Mapping

Timed Transition System

(TA)

Green Yellow
x=0

x<=15

TA=(N, I,, E, Inv, V), where
e Set of control location: N
e |nitial control location: |,

e Edges with guards, actions and
clocks resets:

Ec NxB(C)x Act x 2¢ x N

e Location invariants: Inv: L—>B(C)
kLocation labeling: V: N —>24P /

- \

>

(TTS)

{Green} {Yellow}
g(25)

g(5)

\

{} {Green}

g(15)

{Red} {Red} {Yellow}

TTS = (S, sq, =, V) where
e Set of states: S as (l,u)
e |nitial state: s,

e Transitions: — < SxXAXS,
A= Act U {g(d) | deRR.,}
— Action transitions: Act labels
— Delay transitions: g(d)

vabeling: V: S—2AP /

Composition of Timed Automata

= Composition of TA: Network of automata
* Synchronization among automata

* Transitions executed simultaneously (rendezvous)

* Synchronous communication: Sending and receiving on a channel

* Definition of the composition (synchronization):

* Which are the transitions that are executed simultaneously

* Description: f synchronization function,
that is defined on actions (this way implicitly on transitions)

* Example: c! are c? are synchronized, f(c!, c?)=0 — corresponding
transitions are executed simultaneously, resulting in “no action”

* TA, |; TA, composition:

* Its semantics is given as a TTS « derived from composition of TTS
* Before: Let us define the composition of TTS

Recap: Synchronization in UPPAAL

“Sending
a message”

Declarations:

clock t, u;
chan press;

1 press? t==3
Switch:
o press? t=0 _L\'th press? t=3 Bright
® -0 .
press?
(13 . .
U press! u=0 LightOn ReCGIVIng
ser: _

b

”
d message
Think o -
O prass! u»3
press! u=0 ;gsﬁght press BrightOn
- =
u<3
press

Parallel composition of TTS

= Parameter: synchronization function f

o f: (Actu{0}) x (Actu{0}) — Actu{0}
where 0 denotes a missing action (also when no transition is taken)

= Definition: Composition TTS, [TTS, = TTS,,

where TTS,=(Sy, s, o, =1, V1), TTS,=(S,, 550, =5, V5)
and TTS,=(S, sq, —, V)

* (s;|¢s,) €S (pairs of states are composed)
* Sp=(S10 l£S0) €S (initial state)
* — is defined inductively (transitions in TTS,):

* (s;]¢s,) ¢ (s’ |¢5,) ifs; >2, s’ and s, =P, s’ and f(a,b)=e

* (sq |s,) 2% (s'; |¢s',) if s, > s’ and s, 59 s,

* V(s; |5,) =V,(s1)UV,(s,) (union of labeling)

Semantics of the parallel composition of TA

= Notation: TA, | TA, network of automata

= Semanticsof TA; | TA,isa TTS,=TTS, | TTS, where

* Semantics of TA, is TTS,, semantics of TA, is TTS,
* TA, | TA, is not an automaton, but TTS, [TTS, isa TTS

* Note: It is possible to construct such TA; ® TA, product
automation, that for the semantics of TA; ® TA,:
TTS a1 010 ~ TTS, [TTS,, i.e., these are bisimulation equivalent
(the definition of bisimulation: see later)

= The f synchronization function in case of UPPAAL TA:

e f(a!,a?)=0 synchronized actions
(a! ”sending” and a? "receiving”)

* f(a,0)=a action of the first automaton only

e f(0,a)=a action of the second automaton only

Semantics of the parallel composition of TA (summary)

Network of timed Mapping Timed transition
automata > system
TA, | TA, [TS,=TTS; | TTS,
e Defining synchronizeh Gsoz TTS, |fTTSZ:(S’ Sor —> V), Where\
actions:

e States: (s, s,) pairs, s, S, s,€S,
* Initial state: s;=(s, ¢, S, o)
* Transitions: — defined as:
— Action transition: (s, s,)—>¢ (s, s,)
if s; > s,"and s, >°, s,” and f(a,b)=e
— Delay transition: (s,, s,)—>&% (s, s,’)

f: (ActU{}) x
(Actu{}) > Act

* TA; semantics:
TTS;=(Sy, 8109, =1, V4)

* TA, semantics:

TTS;= (S, S300 2 V) if s, >¢d s ’ands, > s
e Labeling of states:

_ J \ V(sy, 5,) = Vs (5,) UV, (S,) /

Strange behavior

of timed automata

Time convergence
Timelock
Zenoness

Overview

= Strange behavior: “Unrealistic” execution paths,
these may complicate the model checking

* Time convergence: Infinite sequence of delays converges
towards a constant delay

* Timelock: Time cannot progress to infinity

e Zenoness: Performing infinitely many actions in finite time

" Handling these paths:

* Time convergent paths must not be generated as counter-
examples by model checking (these are not “fair” paths)

* Timelock and zenoness can be avoided by proper
construction of the model (imposing delays)

Background: Zeno paradox and convergent series

Zeno paradox: Race of Achilles

= The quicker runner (Achilles) gives the
slower runner (tortoise) a head start

= |nthe race, the quicker runner can
never overtake the slower

o The quicker must first reach the point
where the slower started

o In the meantime the slower moved
along

o So that the slower always holds a lead

Convergent series (in mathematics):

= Sequence of infinite partial sums has a
finite limit: o
L = Zaﬂ.

= Example: 1 1 1

From wikipedia:
https://en.wikipedia.org/wiki/Zeno%27s_paradoxes

Time convergence

= Example automaton: X >= 1
off sw_off \, on
d12# X <=2

sw on,x:=0

= Example path inits TTS (valid but not realistic):

&(1/2) g(1/4) §(1/8)

(off . 1-272) 2= (off . 1-273)

(off ,0) (off . 1—271)

= Time convergent path (in general):

* Infinite sequence d,, d,, ... of delays,
where d,+d,+... converges to d (constant)

= Time divergent path:
* The sum of delays converges to infinity

= A location contains a timelock if there is
no time divergent path from that location
* There is no path on which the time can progress to infinity

* Terminal location is not necessarily a timelock

* If location invariant is true then the time can progress in that
location to infinity

= Example automaton with timelock:

* (on, 2) is reachable, and there is no divergent path

X >= 1 and x<Z

sw_off \, On
/ X <=2

sw on,x:=0

Example: Timelock with time convergent path

= Example automaton:

X >=1 and x<Z

on

sw on, X :=0

o Inits TTS (on, d) is timelock if 2<d<3
o Time convergent path to timelock:

(on,2) (on,2.9) (on, 2.99) (on, 2.999) (on,2.9999) ...

enoness

= Zeno path:

* Time convergent, but at the same time
infinitely many aeAct actions can be executed

= Example automaton:

X >=1

sw_off on SW_on,
x:=0

J/ﬂ X<=2

sw on,x:=0

= 7eno paths: wp/without delay]

(off,0) =L (on, 0) = (on, 0) 2 (on, 0) 20 .

(off ,0) == (on, 0) 03, (on, 0.5) ==L (on, 0) 025, (on,0.25) 20 |,

———

sw_on loop with delays but their sum converges to 1.
0.5+0.25+0.125 + ...

Avoiding zeno paths

" |n case of the previous example automaton:

* Imposing (minimal) delays between successive sw_on
actions (this way time will progress)

Example: The modified automaton model
 The minimal delay is 1 unit (in case of integer clocks)

* The given application-specific delays are increased
(here 100 times)

x >= 100

Formalizing properties:

Timed temporal logics

Overview of the approach

Timed Automata Timed CTL variant
(TA) (TCTL)
v v
Timed Transition Timed temporal logic
System (TTS) K (TTL) /

Formal verification:

Model checking

OK Error

Introduction of a Timed Temporal Logic

= Expectations:
e Use clock variables (intuitive)
* Recursion is allowed in the definition of semantics
* Formalize the typical safety and liveness properties on TA
* Decidable (properties can be checked)

= Notation:

e K set of formula clocks

* Used in the property formula only (if model clocks are not known)
* Their rate is the same as the rate of the model clocks

* |d identifiers (in TL formula to include recursion)
e Zeld variable

e Z can be assigned a formula: Z:=0
* D(Z) denotes the assignment: D(Z)=0, if Z was assigned ¢

The syntax of Timed TL

"@u=Plc|loro|ove|do| Ve |<a>e|[a]o |
Xing | xtn~y+m | Z

where PeAP, ceB(K), aeAct, xeK, and Zeld, m,neN

= Temporal operators (informally):

e do — exists a delay such that ¢ holds

* Vo — for all delays ¢ holds

* xin¢@ — by resetting x clock ¢ holds

e x+n ~ y+m — comparison of clock expressions
= TL can be evaluated on TTS (this way also on TA and

network of TA)

* s:(l,u) state of TTS (derived from TA)

* (s,v) notation for TTS state and formula clock valuation v

The semantics of Timed TL (1)

= (s,v) |=P for atomic proposition P iff PeV(s)
o l.e., Pisincluded among the labels of state s

= (s,v) |=c for clock expression iff c(v) holds
o l.e., in the case of clock valuation v the clock expression c is true
" (s,v) |[= @00, iff (s,v) |= 0, and (s,v) |= o,
" (s,v) |= v, iff (s,v) |= @, or (s,v) |= ¢,
" (s,v) |=3o iff 3d,s": s > és (s)v+d) |= @

o l.e., there exists a state reachable from (s,v) by a delay,
in which ¢ holds

= (s,v) |= Vo iff Vd,s": s 58 s’ = (s',v+d) |= ¢

o l.e., for all states reachable from (s,v) by delay, ¢ holds

The semantics of Timed TL (2)

" (s,v) |=<a>@ iff ds’: s >2s" and (s',v) |= ¢
o l.e., there exists a state reachable from (s,v) by action 3,
in which ¢ holds

" (s,v) |=[a]e iff Vs':s 535" = (s v) [= ¢

o l.e., in all states reachable from (s,v) by action a, ¢ holds
" (s,v) |=xin o iff (s,v’) |=¢ where v'=[{x}—>0]v

o l.e., by resetting formula clock x, ¢ holds

= (s,v) |=x+n "~ y+m iff v(x)+n ~ v(y)+m

o l.e., comparison holds for the values of the formula clocks

= (s,v) |=2 iff (s,v) |=D(2)

o l.e., the expression assigned to Z is true on (s,v)

Properties of the Timed TL

= Recap: The syntax
pu=c|Plorp|ove | 3o | Vo |<a>p | [a] o |
XinQ | x+n~y+m | Z
= Low level, simple operators
* Existential and universal operators for transitions with actions or delay
« ,Base logic” (its role is similar to the mu-calculus)

* Expressivity is high (since recursion is allowed,
but this construct in itself is not easy to use and not intuitive)

= Using the Timed TL

* Definition of composite / derived operators from the simple ones

o These are closer to intuition and practical use:
E.g., invariants, UNTIL, UNTIL_, BEFORE t

e Restrictions in model checkers (e.g., UPPAAL, KRONQOS) in order to have
more effective model checking algorithms

Useful expressions in the Timed TL

" |NV(p) invariant: it is the recursive expression assigned to Z,

where Z := ¢ A VZ A [Act]Z
here [Act]Z means [a,]Z A [a,]Z A ... Ala,]Z for all a,eAct

Useful expressions in the Timed TL

" |NV(p) invariant: it is the recursive expression assigned to Z,
where Z := ¢ A VZ A [Act]Z

here [Act]Z mea|x [a,]Z A [a5 .. AN[a,]Z for all a,eAct
In all states that are reachable by In all states that are reachable by
delay transition, Z will hold action transition, Z will hold
O

These together form a general “next state”

operator for both delay and action transitions

Useful expressions in the Timed TL

" INV(p) invariant: it is the recursive expression assigned to Z,
where Z := ¢ A VZ A [Act]Z
here [Act]Z means [a,]Z A [a,]Z A ... Ala,]Z for all a.eAct

_
v ill
" @, UNTIL @, ,weak until”: it is Z, Lﬁéxssnac;hy hold }

where Z := @, v (@, A VZ A [Act]Z)

= @, UNTIL_, @, = xin ((p; A x<n) UNTIL o,)
here x is evaluated after reset, this way time n is relative

= ¢ BEFORE n

true UNTIL_, ¢

= Example: at(l.) BEFORE t deadline property

o It means reaching |. location before t
o Here notation: at(l.) means that the automaton is at control location |.

Simplification for effective evaluation

= Recap: The original syntax

ou=c|P|lorp|ove|do| Vo |<a>p | [a] ¢ |
XinQ | x+tn ~y+m | Z

= To formalize safety and bounded liveness properties it is
sufficient to restrict it as follows:

* Jo omitted (existential quantifier on delays)
e <a> omitted (existential quantifier on actions)
* cv formula allowed only
* Pvo formula allowed only

Invariants, UNTIL, UNTIL, , BEFORE t can be expressed

<n’

Timed CTL

Timed CTL

= CTL variant with time: Timed Computational Tree Logic

= Characteristics:
o Temporal operators are bound by time intervals
* J=[n,m] bounded, open or closed intervals

o Only the “until” temporal operator is included in the syntax
* With existential and universal quantifier on paths (EU and AU)

EU (o, v) oV, v AU (o, v) oV v

Formal syntax of TCTL

TCTL:=P | g|loArw | =0 | EUlo, v) | AU\(o, v)

= Atomic propositions: P AP state labels

= Clock expressions: geB(C)

" Boolean operators in case of ¢ and v formula:
OPAY
©—=0

= Temporal operators in case of ¢ and v formula
and J bounded time interval:

o EU,(p,) —there exists a path on which the following holds:
v holds in time interval J and until that vy holds

o AU (o,) —on all paths the following holds:
v holds in time interval J and until that ¢vy holds

here Jis in form [n,m], (n,m], [n,m), (n,m), also m=c0 is possible

Defining derived temporal operators

EF, @ = EU/(true, o) AF, ¢ = AU/(true, o)
EF, ¢ : AF, ¢
5 J=[n,m]§ t ! N
b n m 0 n m

EGJ ¢ = _IAFJ —(
AGJ P = _IEFJ —(
In case of untimed properties: J = [0,0)

The model checker KRONOS

= Using the TA formalism

= TCTL temporal logic variant
e 4<> (corresponds to EF)
e V] (corresponds to AG)

 4<>__ (reachable in n time units)

n

* V[]., (alwaysreached in max. ntime units)

" |Interesting property that is often specified:
e V[] d<>_; true

* |n each state the time is able to progress 1 time unit

* |tis not possible that “time is stopped”

Recap: Temporal operators in UPPAAL

Start id==0 x=0 Req 3
@ - x==k
2/ p
M
id=10 x-'1_=l< id==0
x =0, -0
id = pid .
W
O C
w=k && id==pid
Critical_section Wait

Model of a mutual exclusion protocol (Fischer) for automata:

" Liveness without timing for automation PO:
o After Wait, the critical section will eventually be reached on all paths:
PO.Wait --> PO.Critical_section
" Timed liveness:

o After Wait, the critical section will be reached on all paths
in less that T time units:

PO.Wait --> (PO.Critical_section and x<T)
o Note that the x clock is reset when entering Wait

Outlook: The basic idea of model checking

= |dentification of (time) regions,
where conditions are evaluated to the same truth value
o Conditions determined by invariants and guards in the TA
o There are many potential delays that make a condition true
o This way regions are formed on the clock variables
o The truth of a Timed TL expressions is defined on the regions

= Semantics based model checking:
* Can be solved as a constraint satisfaction problem

* Is there a clock valuation with which ¢ holds?

A

e

O<x<1
O<y<1

y>X /

v

= Motivation: Checking the models of real-time systems

= Models
* Timed Transition System (TTS)
* Timed Automata (TA)
* Mapping: TA —> TTS
" Interesting behavior in models of timed systems
* Time convergence, timelock, zenoness (zeno path)
* Formalizing properties
* TL (Timed Temporal Logic)
* Timed CTL variants
= Model checking
* Basic idea: regions

