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Intro: Equivalence and refinement 
checking in model based design 

Refining statechart models 

Properties expected from refinement relations 
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Introduction: Relations between models 

 Equivalence between models: 
                        Reference model   Modified model 

             Specification (abstract)    Implementation (concrete, more detailed) 

                     Expected behavior    Provided behavior (e.g., protocol) 

     Fault-free “perfect” system    Fault tolerant system in case of specific faults 

 

 Refinement between models: 
o Preserving original behavior and extending it in an allowed way 

o Reducing nondeterminism in the model (with concrete conditions) 
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Example: Refinement in statechart models (1) 

4 



Example: Refinement in statechart models (2) 
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What is expected: Checking well-defined relations 

 “Refines” relation to keep existing behavior (with proper 
mapping of events and actions) with refinements 

 “Extends” relation to allow controlled changes in existing 
behavior 
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What do we expect from a refinement relation? 

 Reflexive and transitive 

 Not symmetric 

 Keeping liveness property: The refined model shall be able to 
provide the behavior that the original model is able to provide 
o With proper mapping of events and actions of the refined model 

o Assuming fairness: Keeping the liveness property in case of fair behavior 
(i.e., in case of choices, all potential behaviors will eventually occur) 

 Composability: 
o Subsequent refinements result in refinement 

o Refinement and extension result in extension 

 … 

 

Precise definitions of the relations are required! 
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Definition of the relations 

 Relations are defined on low-level models, 
typically on LTS 

 Recap: LTS (Labeled Transition System) 

 

 

 

 

 LTS may be derived from higher-level formalisms 
(using operational semantics) 

o E.g., statecharts, Petri-nets, process algebra, … 

( , , )

    set of states

    set of actions

    state transition relation

LTS S Act

S

Act

S Act S

 

  
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Example: Mapping LTS from statechart 
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Equivalence relations 

Trace equivalence 

Strong bisimulation equivalence 

Weak bisimulation (observational) equivalence 
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Classification of relations 

 Equivalence relations, denoted in general by = 
o Reflexive, transitive, symmetric 

 Some equivalence relations are congruence: 
o If T1=T2, then for all C[ ] context C[T1]=C[T2] 
o The same context preserves the equivalence 
o Dependent on the formalism: how to embed in C[ ] 
 

 Refinement relations, denoted by  
o Reflexive, transitive, anti-symmetric ( partial order) 

 Precongruence relation: 
o If T1T2, then for all C[ ] context C[T1]  C[T2] 
o The same context preserves the refinement 
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Equivalence checking using an equivalence relation 

Design 

Design model 
(LTS) 

Specification 

Reference model  
(LTS) 

No: Counter- 
example 

Yes 

Subsequent 
design  
steps 

Automated  
equivalence checker 

12 



Hierarchy of relations proposed in the literature 

Why do exist so many relations? 
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Properties that characterize the relations 

 Distinguishing observable and internal actions: 
o Observable actions: Appear on the external interface (“ports”) of the 

modeled component, relevant for the environment 
• Representing: method call, sent or received message, provided service etc. 

o Unobservable (internal) actions: Do not appear on the external interface 
(“ports”) of the modeled component, not relevant for the environment 

• Representing: internal activities, calls, messages etc. 

• Their effects can be observed only through the subsequent actions 

• Notation:   (or sometimes i) 
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Example: Internal actions 

a 

e f 

c b d 

a 

b 

c 

d 

a 

  

c b d 

Internal behavior 
of the component: 
e and f are internal actions 

Observable behavior 
of the component: 
e and f are mapped to  
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Properties that characterize the relations 

 Distinguishing observable and internal actions: 
o Observable actions: Appear on the external interface (“ports”) of the 

modeled component, relevant for the environment 
• Representing: method call, sent or received message, provided service etc. 

o Unobservable (internal) actions: Do not appear on the external interface 
(“ports”) of the modeled component, not relevant for the environment 

• Representing: internal activities, calls, messages etc. 

• Their effects can be observed through the subsequent actions 

• Notation:   (or sometimes i) 

 Allowing nondeterminism: 
o From a state, many transitions are labeled with the same action 

• „Image finite system”: their number is finite 

o Typically used in abstract models, resolved during refinement 

 Semantics of concurrent component models: 
o Interleaving (one action at a time) 

o True concurrency (several actions at a time) 
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The notion of “test” and “deadlock” 

 “Test” in LTS based behavior checking: 
o Test: A sequence of actions that is expected (from the initial state) 

• Analogy: interactions on ports during testing 

• Test steps are actions that may represent: sending or receiving messages, 
raising or processing events etc. 

 “Deadlock” in LTS based behavior checking: 
o A given action cannot be provided by the system in an expected action 

sequence (test) 
• Analogy: no interaction is possible on a port 

• The deadlock is given by the action that is not possible; it may represent that 
is not possible to send or receive message, process an event etc. 

o Failure of a test: The action that cannot be provided (deadlock) 

 

o Example: Piano with keys that can be dynamically locked/unlocked 
• Behavior: unlocking is determined by the actions of the LTS 

• Successful test is a tune that can be played 
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Examples for deadlocks 

 What is deadlock after action a? 

„Recursive” LTS model, Act={a} 

• How internal actions influence deadlock? 
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 
 

Act={a, b, c} 

Act={a, b, c} Act={a, b, c} 



Trace equivalence: Notation 

 Analogy: Automata on finite words 

 

o Applying this analogy in case of LTS: 

• Each state is an “accepting state” 

• ”Language”: Each possible action sequence (trace) 

 Notation: 

1 2 1 2  if  ( ) ( )A A L A L A 

1 2 3 4
*...  finite action sequence (  is empty)na a a a a Act  

1

0 1 n 0 n 1'  if s s ...s  state sequence where s ,  s ',  
ia

i is s s s s s
 

    

( ) is a trace from s, if ' : 's s s s


  

 ( ) is the set of traces from s:  ( ) | ' : '  s s s s s


    
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Trace equivalence: Definition and examples 

 Let T1 and T2 two LTS, s1 and s2 their initial states 

 Definition of trace equivalence :  

 

 Examples: 
1 2 1 2  iff.  (s )= (s )T T  

a a 

b c 

a 

b c 

 ( ) ( ) , , ,s t a ab ac   

s t 


a 

a 

 ( ) ( ) , ,s t a aa   

s 

a 

a 

t 

a 


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Trace equivalence: Disadvantages 

 Sensitivity to deadlock 
o Equivalent LTSs may have different deadlock behavior 

o Caused by nondeterminism or internal actions 

 

 

 

 

 

 

 Solution: 
o It has to be checked whether the states reached by the 

same trace allow the same continuation of the trace 
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Strong bisimulation relation: Definition 

 Definition of the strong bisimulation relation:  
 is a bisimulation, if for all ( , )  and 

any ,  ', '  it holds:

  if '  then ' : '   and ( ', ')

  if '   then ' : '  and ( ', ')

a a

a a

B S S s t B

a Act s t S

s s t t t s t B

t t s s s s t B

  

 

    

    

a 

s’ 

a 

t’ 

s t B 

B 
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Strong bisimulation equivalence: Definition 

 Strong bisimulation equivalence ~: 

 
 Intuition: Equivalent systems can “simulate” each other 

o Matching transitions with actions in equivalent states 

o The same traces are possible through equivalent states 

 Example (1): 

1 2 1 2 1 2~   iff  : ( , ) ,  also denoted as ~T T B s s B s s 
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s t ~
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a a 

b b 

a 
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Strong bisimulation equivalence: Example (2) 

a a 

b c 

a 

b c 

 ( ) ( ) , , ,s t a a b a c   

s t ~

 Strong bisimulation equivalence between LTSs: 

a a 

b c 

a 

b c 

 ( ) ( ) , , ,s t a a b a c   

s t ~
? 
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Strong bisimulation equivalence: Advantages 

 Strong bisimulation implies trace equivalence 

 Congruence for specific “CCS-like” LTS 

o Recap: An equivalence relation is congruence if the same context 
preserves the equivalence: 

• Here in case of T1~T2, for all C[ ] context C[T1] ~ C[T2] 

o “CCS-like” LTS:  

• LTS has a tree structure 

• Embedding an LTS: merging initial state of the embedded LTS Ti 
with any state of the context LTS C[] to get C[Ti]  

 Strong bisimulation equivalent systems provide the same 
deadlock behavior 

o If T1~T2 then if deadlock is possible in LTS T1 then the same deadlock 
is possible in LTS T2 
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Strong bisimulation equivalence: Formalizing deadlock 

 Deadlock possibilities can be expressed using the 
Hennessy-Milner logic: 
o Deadlock for action a is expressed as [a]false  

• It holds only if there is no transition labeled with a, i.e., a is deadlock 

o Deadlock for a set of actions {a1, a2, … an}: 
  {[a1]false  [a2]false  …  [an]false} 

o Deadlock for a set of actions in a state reachable by <b1><b2>…<bn>:  
  <b1><b2>…<bn> {[a1]false  [a2]false  …  [an]false} 

 Theorem:  
In case of LTSs, T1~T2 iff for any HML expression p: 

o either  T1,s1 |= p and T2,s2 |= p, 

o or  T1,s1 |= p  and T2,s2 |= p  
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Strong bisimulation equivalence: Disadvantages 

 Sensitivity to unobservable actions: 

o In some cases there is no observable effect of an 
internal action, but the relation makes a difference 

o Simple example: 

 

b 

~
a 

b 

a 
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Weak bisimulation equivalence: Notation 

 The “weak” variant of strong bisimulation 
o It is not sensitive to internal actions without 

observable effect 

o Rationale: Have the possibility of the same observable 
traces through equivalent states 

 Notation: 
*  finite action sequence (  is empty)Act 

*ˆ ( )  observable action sequence (  deleted)

ˆ     here   if  =

Act  

   

 



ˆ'   if  : '  and  s s s s
 

     
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Weak bisimulation relation: Definition 

 Definition of weak bisimulation relation:  

ˆ

ˆ

 weak bisimulation, if for all ( , )  and 

any ,  ', '  it holds:

  if '  then ' : '  and ( ', ')

  if '  then ' : '  and ( ', ')

a a

a a

WB S S s t WB

a Act s t S

s s t t t s t WB

t t s s s s t WB

  

 

    

    

a 

s’ 

s t WB 

WB 
t’ 

â
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Weak bisimulation equivalence: Definition 

 Weak bisimulation equivalence  
(also called as Observation equivalence) 

 
 

 Examples:       Internal action with effect: 

1 2 1 2 1 2  iff  : ( , ) ,  also denoted as s sT T WB s s WB   



 

b 

a 

b 

a 

a 

* 

* 

a 



 b 

a 

s s’ 


a b 
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Weak bisimulation equivalence: Formalizing deadlock 

 HML variant for observable actions: 
HML* ::= true | false | pq | pq | [[a]] p | <<a>> p 

 Semantics: 

o H3*: T,s |= [[a]]p     iff  s’ where s a s’:  s’ |= p  

o H4*: T,s |= <<a>>p iff   s’: s a s’ and  s’ |= p 

 Theorem:  
In case of LTSs, T1T2 iff for any HML* expression p: 

o either  T1,s1 |= p and T2,s2 |= p  

o or  T1,s1 |= p and T2,s2 |= p  
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Weak bisimulation equivalence: Properties 

 It is not congruence for CCS-like LTSs (there is a counterexample): 
 

 

 

 

 

 

 

 Interesting: The most permissive congruence relation,  
that implies weak bisimulation equivalence: 

, if for any ,  ', '  it holds:

  if '  then ' : '  and ' '

  if '  then ' : '  and ' '

c

a a

a a

s t a Act s t S

s s t t t s t

t t s s s s t

  

    

    

 b 

a 

s s’ 


a b 
 

a 

s s’ 


a 
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Computing equivalence relations: Basic idea 

Partition refinement algorithm 
1. Initially, each pair of states is included in the relation 

  They form a single partition (equivalence class) 

2. For each pair of states, to be checked: 
  If there is a labeled transition starting from one of the states  

  that cannot be matched by a labeled transition from the other, then  

o Remove that state pair from the partition, 

o Apply the consequences for the state pairs at the sources of incoming 
matching transitions 
• Since these are not equivalent if the matching transitions lead to 

nonequivalent states 

3. If there are no changes (fixed point is reached):  
The equivalence classes are found 
o If the initial states are in the same equivalence class then the LTSs are 

equivalent 
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Case study: Verification of fault 
tolerance using observation equivalence 
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Case study: Verification of fault tolerance 

Fault-tolerant (FT) system 
in case of fault to be tolerated 

Fault-free system 
(reference behavior) 

? 
 

Tolerálandó 
hiba 



Hibatűrés 
technikája 

Fault-free system 
(reference behavior) 

Fault to be 
tolerated 

Technique 
for FT 
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Are these 
techniques 
sufficient to 
tolerate the 
given faults? 

Yes, if the 
effects of the 
given faults 

do not 
influence the 
observable 
behavior. 



System architecture 

  

Behavior from the point of 
view of the client: 

 The observable behavior 
of the gateway 

Fault to be tolerated: 
Erroneous data in the 
reply from the server 

FT technique: Redundant 
servers and voting 

Here e may be erroneous 
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The Gateway component without fault tolerance 

 Statechart diagram 
(reference behavior): 

 LTS representation 
(reference behavior): 
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The Gateway component with fault tolerance 

 Statechart diagram:  LTS representation: 
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The Gateway component with fault tolerance 

 Statechart diagram:  LTS representation: 
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 Statechart diagram:  LTS representation: 

The Gateway component with fault tolerance 

 Állapotdiagram: 



Checking observation equivalence 

 

Behavior of the FT Gateway; 
here each internal action that is not 

observable by the client becomes  

This way it is shown that 
for the client 

the fault tolerance technique  
is transparent.  

Reference behavior  
of the Gateway 
(without fault  
tolerance) 
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Checking fault tolerance in case of error from S1 

 

Behavior of the FT Gateway in case of 
error from S1 (voting and call of S3);  
here each internal action that is not 

observable by the client becomes  

This way it is shown that 
for the client 

fault tolerance holds. 

Behavior of the 
fault-free gateway 
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Summary 

 Motivation and basic ideas 

o The role of behavioral equivalence and refinement 

o Observable and unobservable behavior 

o The notion of testing and deadlock 

 Equivalence relations 

o Trace equivalence 

o Strong bisimulation equivalence 

o Weak bisimulation equivalence (observation equivalence) 

 Case study 

o Verifying fault tolerance using observation equivalence 

 (Refinement relations: See later) 
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