Software Verification and Validation (VIMMDO052)

Verification of the source code

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

(g gy
MUEGYETEM 1782

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Checking completeness, consistency, feasibility, verifiability
Assuring traceability

Trade-off analysis, interface analysis, fault effects analysis
Model based quantitative evaluation

Formal verification by (temporal logic based) model checking
Equivalence checking

Source code analysis

Inputs and outputs of the phase

Software requirements

specification
Software component
source code

Software architecture Software component
design (module) coding

Software component /

design

Software source code

verification report
L —1

ﬁLocaI” static checking: ‘

« Good quality
(understandable,

Software quality

assurance plan maintainable, reusable code)
* Free of bugs
\. Adheres to specification

)

Overview: What is checked?

" Checking coding guidelines
o Domain / platform / company specific rules
o Well-known coding standards (guidelines)

" Checking software metrics
o Estimation of quality aspects (e.g., maintainability)
o Relation of metrics and fault-proneness

" Checking fault patterns by static analysis
o Extensible tools

= Checking runtime failures by code interpretation

o Static verification of dynamic properties

Checking coding guidelines

Coding guidelines — introduction

= Set of rules giving recommendations on

o Style: formatting, naming, structure

o Programming practices: constructs, architecture
= Main categories

o Industry/domain specific

* Automotive, nuclear, ...

o Platform specific
* C, C++, CH, Java, ...

o Organization specific
* Google, CERN, ...

Coding guidelines in critical systems (standards)

= Programming style
o Code formatting, comments, source code metrics
= Restricted constructs

o Recursion, pointers, automatic type conversion, unconditional
branch, ...

o OO constructs: Polymorphism, multiple inheritance, embedding
objects, runtime construction and destruction of objects

" Programming languages (e.g., in EN50128):
o Analyzable, strongly typed, structured or OO language
o SIL1-SIL4 HR: Ada, Modula-2, Pascal
o SIL1-SIL4 NR: BASIC, SIL3-SIL4 NR: unconstrained C/C++
o SIL3-SIL4 R: C and C++ with coding rules (language subset)
= Tools (compilers, libraries):
o Certified, validated or proven-in-use

Example: Part of SoHaR guidelines (nuclear industry)

Group Number Guideline
1 Reliability

1.1 Predictability of Memory Utilization
Specific 111 Minimizing Dynamic Memory Allocation
Outside 1.1.2 Minimizing Memory Paging and Swapping

1.2 Predictability of Control Flow
Specific 121 Maximizing Structure
Specific 1.2.2 Minimizing Control Flow Complexity
Specific 1.2.3 Initialization of Variables before Use
Specific 1.2.4 Single Entry and Exit Points in Subprograms
Specific 1.25 Minimizing Interface Ambiguities
Specific 1.2.6 Use of Data Typing
General 1.2.7 Precision and Accuracy
Specific 1.2.8 Use of Parentheses rather than Default Order of Precedence
Specific 1.2.9 Separating Assignment from Evaluation
Outside 1.2.10 Proper Handling of Program Instrumentation
General 1.2.11 Control of Class Library Size
General 1.2.12 Minimizing Dynamic Binding
General 1.2.13 Control of Operator Overloading

1.3 Predictability of Timing
Outside 1.3.1 Minimizing the Use of Tasking
Outside 1.3.2 Minimizing the Use of Interrupt Driven Processing

C and C++ coding guidelines (rule sets)

= MISRA C (Motor Industry Software Reliability Association)
o MISRA C:2004: 142 rules (122 mandatory)

Examples:

e Rule 33 (Required): The right hand side of a "&&" or "| |" operator
shall not contain side effects.

* Rule 49 (Advisory): Tests of a value against zero should be made
explicit, unless the operand is effectively Boolean.

* Rule 59 (R): The statement forming the body of an "if", "else if",

"else", "while", "do ... while", or "for" statement shall always be
enclosed in braces.

o MISRA C:2012: 143 rules + 16 directives

* Rules: For static checking of the source code
 Directives: Related to process, design documents

= MISRA C++ (2008): 228 rules
= US DoD, JSF C++: 221 rules (including code metrics)
o ,Joint Strike Fighter Air Vehicle C++ Coding Standard”

Example: Checking MISRA compliance

= Tools for checking MISRA compliance
o LDRA, IAR Embedded Workbench, QA-C, SonarQube, Coverity, ...

Options for node “evaluator /1"

Category:
General Options
CIC++ Cornpiler
fscembler i i . -] 2 z]
Cukpuk Converter | Output | Library Configuration | Library Options | MISRA-C: 2004 | MISR 4 * 3
;:ISST-;:;:S Enable MISRA-C @ MISRA-C:2004
Linker []Log MISRA C-Settings) MISRA-C:1998
Debugger Set dctive MISRA-C:2004 Rules
Sirnlator ’ Mone] [R equired l ’ Al]
angel
GOE Server []12.8: [advizom] The operands of logical operators [%&, | and 1] shoul A
LAR ROM-mmonikar 12.7: [required] Bitbwize operators ghall not be applied to operands w W
J-LinkjJ-Trace 12.8: [required] The right hand operand of a shift operator shall he be
TI Stellaris FTDI 129 [required] The unary minus operator shall not be applied to an
Macraigor 1210 [required] The comma operator zhall not be used. U
PE micro []12.11: [advisomy] Evaluation of constant unsigned integer expressior
RDI 1212 [required] The underlying bit reprezentations of floating-point *
ST-LINE []1213: [advizon] The increment [++] and decrement [--] operatars sk o,
Third-Party Driver =T w (. I B ¥

Example: Compiler-dependent implementation

= Results of integer division depending on compiler implementation:

o (-5/3) may be -1 and the remainder is -2, or

o (-5/3) may be -2 and the remainder is +1

= Qut-of-range results when adding or multiplying integers:

uintl6é t uléa =
uintlé_t uléb =
uint32 t u32x;

40000;
30000;

u32x = uléa + uleéeb;

/*
/*
/*

/*

unsigned short / unsigned int ?
unsigned short / unsigned int ?
unsigned int / unsigned long

70000 or 4464 *?

*/
*/

? */

*/

o If the addition is implemented using unsigned short (16 bits) corresponding

to the types of the operands then overflow may occur

o If the addition is implemented using unsigned int (32 bits) corresponding to

the type of the result then there is no overflow

= These compiler-dependent implementations have to be validated
(tested)

Checking software metrics

Software source code metrics

= @Goals
o Measurable characteristics of the source code
o Linked with the quality of the source code

= Quality aspects for source code (MISRA)
Complexity

Maintainability

Modularity

Reliability

Structuredness

Testability

Understandability

o Maturity

= Besides quality, costs can also be estimated on the basis of metrics
o Cost of development, testing, maintenance

O O O O O O O

Example: MISRA metrics

/Cyclomatic Number:
,Number of basic paths
through the component
which can generate every
possible path of a

kcomponent.”

Ietrics

/Essential Cyclomatic
Complexity:

»,Computed by reducing
the control flow graph by
systematically (from the
inner parts) replacing
structured code blocks
with a single node”

ETEM 1782

\/

Source Code

Component
Source Cod

Software Type of Area of Application | Technique or Metric
Attributes Technique
Structuredness Method Component Interval Reduction

Cyclomatic Number
Essential Cyclomatic Complexity
Number of Entry Points

Number of Exit Points

Number of Structuring Levels
Number of Unconditional Jumps
Number of Execution Paths

Cyclomatic Number
Number of Distinct Operands
Number of Unconditional Jumps
Number of Execution Paths
Number of Decision Statements
1B Coverage

DDP Coverage

LCSAT Coverage

PPP Coverage

System
Source Code

Number of Calling Paths
Number of Components
IB Coverage

DDP Coverage

LCSAT Coverage

PPP Coverage

Example: Limits for MISRA metrics

Average number of
operators and
operands in

statements
\

o~

-
CSC = Cyclomatic

Number *

(Fan-In * Fan-Out)?

o

\\.

p
Structured control
flow graph (ESC=1)

G

=
=

J

Average number of
components at call
levels in the function

call tree
\

)

Software Metric Area of High Level Low Level
Application Languages Languages
Min Max Min Max

1 Average Statement Size Component 2 g N/A N/A
Comment Frequency Component 0.5 1 1 1
Component Length Component 3 250 3 250
Component Stress Complexity Component 1 10000 1 10000
Cyclomatic Number Component 1 15 1 15
DDP Coverage Both 80% 100%% 80% 100%
- Essential Cyclomatic Complexity Component 1 1 1 1
it Hierarchical Complexity System 1 5 1 5
IB Coverage Both 100% 100% 100% 100%
LCSAT Coverage Both 6% 100% G0% 100%
MNumber of Calling Levels Svstem 1 8 1 8
Number of Calling Paths System 1 250 1 250
Number of Components System 1 150 1 150
Number of Decision Statements Component 0 g 0 8
Number of Distinct Operands Component 1 50 1 50
Number of Distinct Operators Component 1 35 1 35

Categories of OO metrics

= Sjze: Counting source code elements
o Number of code lines, attributes, methods (private/public/protected)
= Complexity: Cyclomatic numbers
o CK: Max. number of independent paths in the control flow graph
o Sum of cyclomatic complexities of methods
= Coupling: How many elements of other classes are used
o Number of (directly) called methods
o Number of classes with called method or used attribute
= [nheritance: Based on the inheritance graph
o Number of levels below / above a given class, directly / all
o Number of inherited methods
= Cohesion: Links among the methods and attributes of a class
o Number of methods sharing (using together) an attribute
o Number of methods calling each other

Correlation of OO metrics and fault-proneness (1)

= @Goal: Prediction of the fault-proneness of classes

o To support focusing the testing activities on risky classes

= Experiments: Measuring correlation of metrics and number of bugs
detected in a class during testing
o Open source projects were examined (Mozilla, 4500 classes)
o Bugs recorded in bug databases were analyzed (Bugzilla, 230 000 bugs)

Inefficient metrics for fault-proneness prediction:

= |nheritance category

o NOA: Number of Ancestors
o NOC: Number of Children

= Cohesion category

o LCOM: Lack of Cohesion in Methods: Number of method pairs that do not
share attribute minus the number of methods that share

Correlation of OO metrics and fault-proneness (2)

Efficient metrics for fault-proneness prediction:

= Coupling category:
o CBO (Coupling Between Objects): Number of classes coupled with the
examined class (calling their methods, using attributes, or inherit)

o NOI (Number of Outgoing Invocations): Number of directly called
methods

o RFC (Response Set of a Class): Number of methods of the class +
directly called other methods

o NFMA (Number of Foreign Methods Accessed): Number of foreign
methods (not owned and not inherited) that are directly called

= Size category:

o NML (Number of Methods Local): Number of local methods of a class

o LLOC (Logical Lines of Code): Number of lines that are not empty and
not comment only

Checking fault patterns by static analysis

Pattern based tools

Types of static analysis tools

= Early tools: syntactic ,well-formedness” checking
o Examples: Lint (for C, from 1979, Bell Labs), JLint (for Java)

= Static analysis tools looking for fault patterns

o Built-in fault patterns (bad practice) + extensible by new patterns
o Checking is not safe (false errors may occur)
o Examples: FindBugs, PMD (Java), Gendarme (.Net CIL), ...

= Static analysis tools using abstract code interpretation

o Computing the ranges of variables in program statements

o Detecting arithmetic overflow, underflow, out-of-bound indexing etc.

o Examples: CodeSurfer, CodeSonar (C/C++, template based), Prevent
(MS Win API, supporting PThreads), Klocworks

Example: Fault categories and patterns in FindBugs

= Bad practice

o Random object created and used only once
= Correctness

o Bitwise add of signed byte value
= Malicious code vulnerability

o May expose internal static state by storing a mutable object into a static field
= Multithreaded correctness

o Synchronization on Boolean could lead to deadlock
= Performance

o Method invokes toString() method on a String
= Security

o Hardcoded constant database password

= Dodgy

o Useless assignment in return statement

Example: Bug found by static checking (1)

public class Main ({ '=‘instead of l=='}
public static void chk (boolean sl1l, boolean s2) {

if(sl = s2) {System.out.println("foo");}
else {System.out.println("bar");}}
public static void main(String[] args) {
boolean bl = false;

boolean b2 = true;

Main.chk (bl, b2);}}

JLint:
Verification completed: O reported messages.
FindBugs:

The parameter s1 to Main.chk(boolean, boolean) is dead upon entry but
overwritten

Dead store to s1 in Main.chk(boolean, boolean)
PMD:

No problems found

Example: Bug found by static checking (2)

public static void main(String[] args) {
String b = "bob";

b.replace('b', 'p'); 4he function String.replace() (called as
if (b.equals ("pop")) {

a member function of an instance)
System.out.println ("Equals") ; .
\ ut-pri ("Equ) does not alter the concrete instance,

} but returns the modified string as its
return value

| J
JLint:

java\lang\String.java:1: equals() was overridden but not hashCode().
Verification completed: 1 reported messages.
FindBugs:

Main.main(String[]) ignores return value of String.replace(char, char)
PMD:

An operation on an Immutable object (String, BigDecimal or Biginteger)
won't change the object itself

Example: Extension of PMD rules

\
class Example | We would like to detect when
void bar() { there aren’t curly braces around

while (baz) -
buz .doSomething () ; the body statement of a “while

} loop
} /

public class WhileLoopsMustUseBracesRule extends AbstractRule ({
public Object visit (ASTWhileStatement node, Object data) { ’\
SimpleNode firstStmt = (SimpleNode)node.jjtGetChild (1) ;

if ('hasBlockAsFirstChild (firstStmt)) { The
addvViolation (data, node) ; checker
} rule
return super.visit (node,data) ; UnJava)
} NG %
private boolean hasBlockAsFirstChild (SimpleNode node) ({
return (node.jjtGetNumChildren() !'= 0 && (node.jjtGetChild(0)

instanceof ASTBlock)) ;
}

e Abstract Syntax Tree (AST) based representation of the source code
e Rule to be checked at a given place of the AST

How to use static analysis tools

" Integrate to build process
o Perform check before/after each commit, generate reports
o Use from the start of a project: Too many problems found
at a later phase would discourage developers

= Configure the tools
o Filter based on severity or category of rules
o Add custom rules
= Review the results
o False positive: No errors found does not mean correct
software

o False negative: An error found may not cause a real failure
o Ignore rule / one occurrence, with explanation

Checking runtime failures

by code interpretation

Dynamic properties to be checked

" Goal: Detection of runtime failures without executing the
software

" Failures to be detected include
o Null pointer
o Array index out-of-bound
o Uninitialized data
o Access conflict on shared variable
o Arithmetic error: division by zero, overflow, underflow
o Dangerous type conversion
o Dead code (unreachable)

= Performed by control flow and data flow analysis

o Calculate interval (range) for each variable

o Propagate intervals based on control flow

Example: Detecting a runtime error by static analysis

20: int ar[10];
21: int i,75;
22: for (1=0; i1<10; i++)

23: {

24 . for (j3J=0; j<10; j++)
25: {

26: ar[i-j] = i+j;

27 : }

28: }

Error: Out-of-bound array access in line 26

Example: The Infer tool

= Static analysis tool by Facebook
o Focus on mobile code development
o Users: Facebook, Instagram, Oculus, Spotify, WhatsApp, ...

= Android and Java

o Null pointers, resource leaks

= jOS and Objective-C

o Null pointers, memory leaks, resource leaks

Feund 3 issues

./Root/Hello.java:27: error: NULL DEREFERENCE
cbject a last assigned con line 25 could be null and is dereferenced at line 27

25. Pecinters.A a = Peinters.mayReturnNull (rng.nextInt()):
28. // FIXME: should check for null before calling methed()
iy a.methed();

28. }

Example: QA-C, QA-C++ tools

Security Issues: . .
=z ,A combination of
Buffer under- and overflow

v~ Arithmetic overflow and wraparound S MT SOIVe Fan d

v~ Format string mis-use .
in-house
Crash-Inducing Defects: Ianguage and
v Null pointer operations, invalid pointer values, operations on unrelated pointers pa rS| ng eXpe rt|Se
v Divide-by-zero I .
v Uncaught exceptions, throw-catch specification mismatches, improper exception use resu t In
exceptionally

Flawed Logic Issues:
accurate dataflow

v Invariant (always true/false) logic and unreachable code

v Unset variables and semantic
v Redundant expressions, initializations and assignments modellng Of C a nd
v Infinite loops
v Return value mismatches C++ COd e
Memory Issues: —a foundajclon for
v~ Memory allocation mismatches d Set Of un Iq ue)
v~ Memory leaks analyS|S CheCkS
APl Mis-use:

v~ Standard library pre- and post-condition verification

How does code interpretation work?

Source code to be examined:

00O J o 1 & W N R O

k=ioread32() ;
1i=2;
Jj=k+5;

: while (i<10) {

i=i+1;

J=3+3;

Risk: Division by O.
s it possible?
What is the input resulting

\\in division by 07

~

)

Phase 1: Collecting information about the values of variables

values of (i,j,k)

= X1={(2,j,k) | (i,j,k)eXO0} N
Based on the previous
= X2={(i,k+5,k) | (i,j,k)exl}\[step

J

= X3=X2 U X6 ‘ A

This statement can be

= X4={(i+1,j,k) | (i,j,k)eX3, iﬂO} Lreached from two pIaces/

O XO={(0,0,|<) | k € [_231’231_1]} ﬁWhat are the potential

= X5={(i,j+3,k) | (i,j k) X4} Inside of the loop
" X6=X5 %Exit from the loop

= X7={(i,j,k) | (i,jk)eX3, i=10}

= X8={(i,j,k/(i-j)) | (i,j,k)eX7, i-j#0}

Phase 2: Computation of the ranges (1)

) X0={(0,0,k) | ke[-231,231-1]} Ranges calculated using
X0={(0,0,k) | ke[-231,231-1]}%the information collected }

in the previous phase

= X1={(2,j,k) | (i,j,k)eXO0}

N
Resolving references by
X]-:{(zrork) | kE[-231, 231']-]}ﬁpropagatinginformation

= X2={(i,k+5,k) | (i,j,k)eX1} o /

X2={(2’k+5’k) | kE[—231, 231_1]} Assignment before the

loop, and condition to be in

= X3= X2 U X6 the loop)
X3={(i,j k) | ke[-231, 231-1], i€[2,10], j=k+3i-1}

CXa=((+LK) | (K)eX3,i<10)) Smme
X4={(i,j,k) | ke[-23%, 231-1], i€[3,10), j=k+3i-4}

i increased; j was not assigned its new value thus 3 subtracted

Phase 2: Computation of the ranges (2)

= X5={(i,j+3,k) | (i,j,k)eX4}
X5={(i,j,k) | ke[-231, 231-1], i€[3,10), j=k+3i-1}
= X6= X5

X6=X5 j=k+5+3(i-2), 1
and here i=10
= X7={(i,j,k) | (i,j,k)eX3, i=10}

X7={(10,j,k) | ke[-231, 231-1], j=k+29}

= X8={(i,j,k/(i-})) | (i,,k)eX7}
X8={(10,j,k/(i-})) | ke[-231, 231-1], j=k+29)

Error, if i-j=0, in this case since i=j=10, k=j-29=-19
X8....={(10,10,-19)}

Analyzing dynamic properties

= Based on analyzing control flow and data flow
o Operations with intervals and constraints
o Loops: determine loop invariants
= Calculating loop invariants
o Hard problem (undecidable in general)
o Approximations are required
= Abstraction: over-approximating the intervals

o All errors are detected
o False negatives (errors) are possible

* Can be treated as a hint for further analysis or testing

lllustration of abstraction

= Problem: Division by (x-y); is x==y possible?

Ymin

x and y (without

abstraction)
_

\

Possible values of

)

Rough abstraction
by intervals: many

false positives
& J

Better abstraction
(regions): 4 cases

shall be checked
N

)

Example: Color-coded output of the PolySpace tool

static void Sguare Root_conv (double alpha, float *heta pt, float *gamna)

{
*beta pt = (£loat) ((1.5 + cos(alpha))/5.0): The Co ors of PolvSpace
if(*beta pt < 0.3) Each function and operation is verified for
*gamma = 0.75; all possible values, and then colored accor-

b ding to its reliability.

static void Square Root (void) .

(A (Green Proven safe under all operating
double alpha = random float(); conditions. Focus your efforts elsewhere.
float beta;
float gauma; Red Proven definite error each time the

operation is executed.
Square_Root_conv (alpha, sbeta, &gamua);

Orange Unproven.
if (randon int() > 0){l ' P

gamma = (float)sgrt(beta - 0.75);

Grey Proven unreachable code. May

) : : :
else(i point to a functional issue.
ganma = (float)sgre(y 1 - beta):
if(beta > 1)
alpha = 0;
) |

Tools supporting code interpretation

= Abstract interpretation of code:

o PolySpace C/Ada
* Ariane 5 (70k lines of code), Flight Management System (500k lines of code)

o Astrée
* Airbus flight control software
o C Global Surveyor
* NASA Mars PathFinder, Deep Space One
= Annotation based tools (design by contract):
Loop invariants, pre- and post-conditions are given manually

o ESC/Java (based on JML):
Annotation based synthesis of monitor components, test oracle

* E.g., jmlc+jmlirac, jmlunit
o Microsoft PreFix, PreFast, Boogie (Spec#, BoogiePL):
Verification conditions (theorems to be proved) are generated and given to
an external theorem prover

Summary: Techniques for source code analysis

= Manual review on the basis of checklists
o Coding guidelines (e.g., naming conventions)
o Typical mistakes (error guessing)
o Analysis of the structure
* Control flow checking: complexity, clear structure
* Data flow analysis: looking for limits and boundary values

= Static analysis tools

o Checking coding standards (built-in rules)

o Checking the limits of source code metrics

o Looking for fault patterns: Syntactic and possibly semantic faults
= Dynamic analysis tools

o Checking potential runtime faults by code interpretation

o Calculate and propagate the interval for each variable

o Performance problems may also be detected

