Software Verification and Validation (VIMMD052)

Software Model Checking with Abstraction-Based Methods

Ákos Hajdu

hajdua@mit.bme.hu

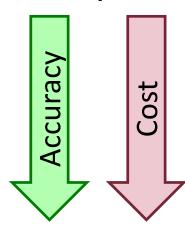
Budapest University of Technology and Economics Dept. of Measurement and Information Systems

INTRODUCTION

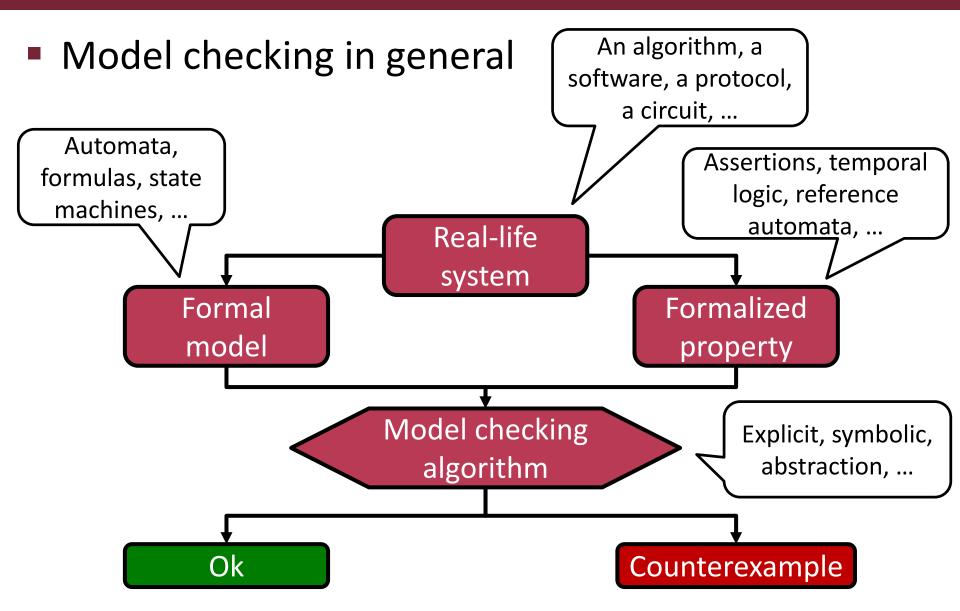
Introduction

- Motivation
 - Checking the source code directly
 - Should work by "pushing a button"
 - No deep background knowledge should be required

- Software verification techniques
 - Static analysis
 - Error patterns
 - Abstract interpretation
 - Model checking

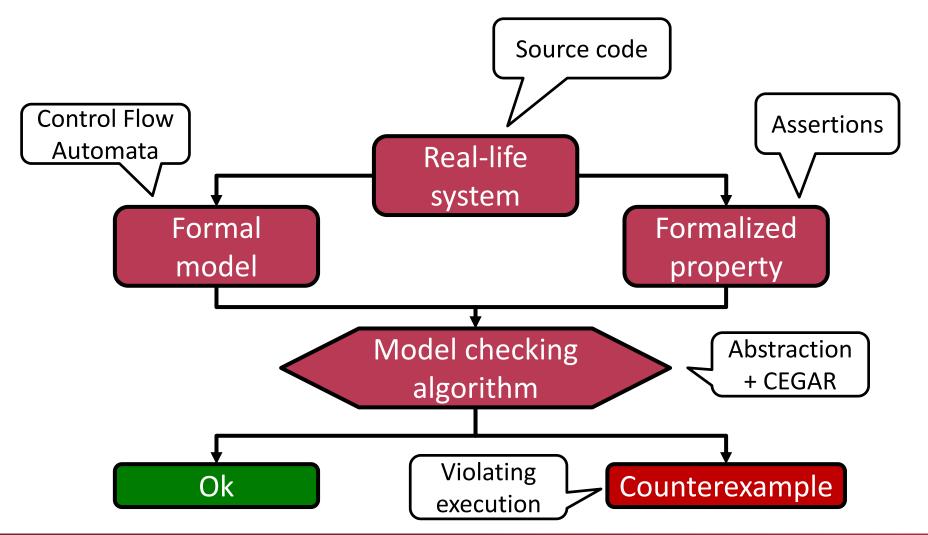


Introduction – Model Checking



Introduction – Model Checking

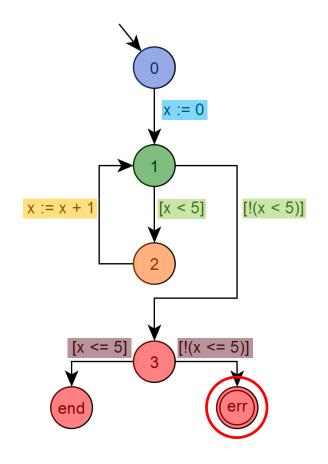
This lecture: focus on software and abstraction



Introduction – Model and Property

- Control-Flow Automaton
 - Set of control locations (PC)
 - Set of edges with operations over a set of variables
 - E.g., guard, assignment ...

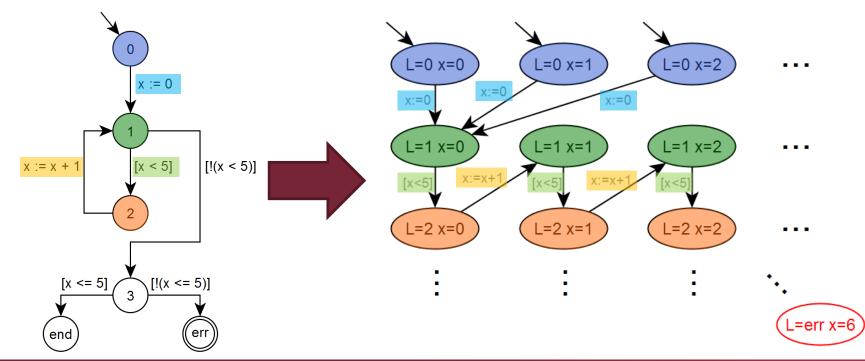
```
x: int
0: x = 0
1: while (x < 5) {
2: x = x + 1
}
3: assert (x <= 5)
```

Typical property: "error" location should not be reachable

Introduction — States and Transitions

- State: location + valuation of variables (L, x₁, x₂, ..., x_n)
- Transition: operations
- Problem: state space explosion caused by data variables
 - E.g., 10 locations and 2 integers: 10·2³²·2³² possible states
- Goal: reduce the state space representation by abstraction



Introduction – Mathematical Logic

Propositional logic (PL)

 $\neg p \land (p \lor q)$

- Boolean variables and operators
- SAT problem: is the formula satisfiable
 - Example: bounded model checking
- Expressive power sometimes not enough
- First order logic (FOL)

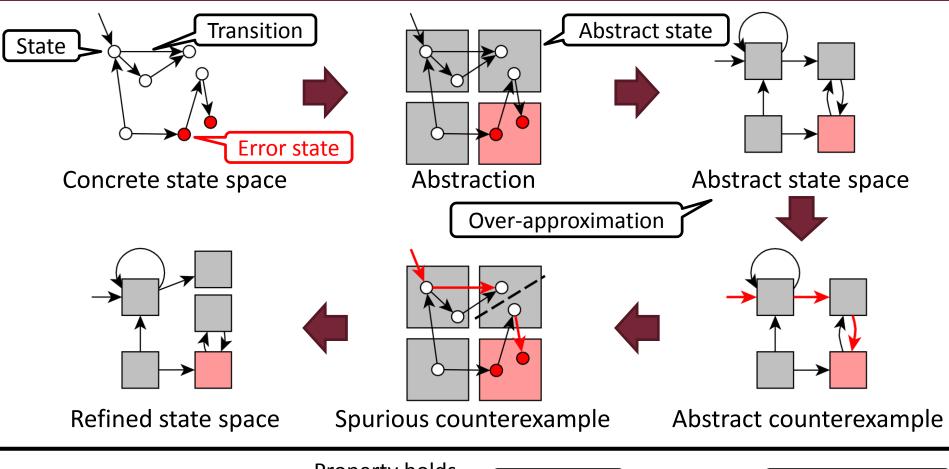
 $\forall x, y \exists z : p(f(x, y), g(z))$

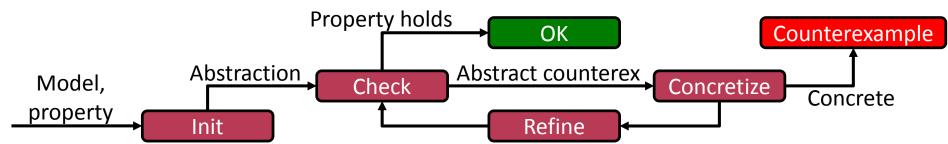
- Functions, predicates, quantifiers
- Not decidable in general
- Satisfiability Modulo Theories (SMT)
- $(x \le y + 1) \land (y \ge 3)$

- FOL formulas
- Interpreted symbols
 - E.g., integer arithmetic

COUNTEREXAMPLE-GUIDED ABSTRACTION REFINEMENT (CEGAR)

CEGAR – Introduction





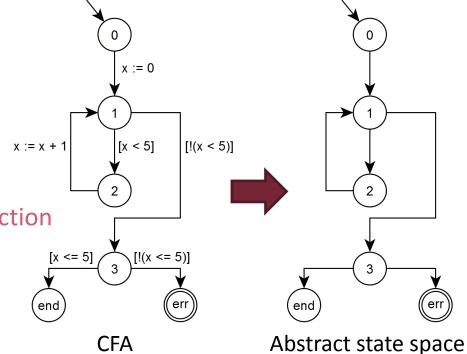
Abstraction – Introduction

Abstraction

- General mathematical concept
- Hide details
- Easier problem

Example

- Location abstraction
- $\circ (l, x_1, x_2, \dots, x_n) \to (l)$
- Usually not enough
 - Extension with predicate abstraction



Predicate abstraction

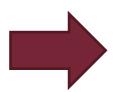
- Keep track of predicates instead of concrete values for variables
- Abstract state: concrete states corresponding to the same location, satisfying the same predicates
- Performing abstraction
 - Enumerate and join concrete states
 - \circ 3x3 concrete states in the example \rightarrow 5 abstract states
 - State space explosion ☺

Variables:

$$x, y; D_x = D_y = \{0,1,2\}$$

Predicates:

$$(x = y), (x < y), (y = 2)$$



y∖x	0	1	2
0	(x = y)		
1	(x < y)	(x = y)	
2	(x < y) $(y = 2)$	(x < y) $(y = 2)$	(x = y) $(y = 2)$

- Performing abstraction (differently)
 - Enumerate abstract states only
 - \circ Predicate set $P \rightarrow |L| \cdot 2^{|P|}$ possible abstract states

- Example
 - 3 predicates → 8 possible abstract states (for each location)
 - Some are not feasible
 - Use SMT solver
 - E.g. $(x = y) \land (x < y) \land \neg (y = 2)$

	x = y	x < y	y = 2
1	X	X	X
2	X	X	\checkmark
3	X	✓	X
4	X	\checkmark	\checkmark
5	✓	X	X
6	✓	X	✓
7	√	/	Χ
8	\checkmark	/	\checkmark

Abstract states

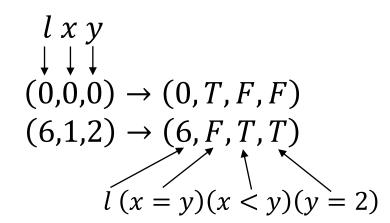
o b_i : Boolean variable: ith predicate holds or not

o Notation:
$$p(b_i) = \begin{cases} p_i & \text{if } b_i \text{ is true} \\ \neg p_i & \text{otherwise} \end{cases}$$

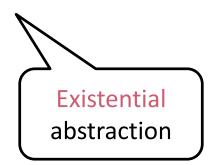
Example

Variables:
$$x, y; D_x = D_y = \{0,1,2\}$$

Predicates: $(x = y), (x < y), (y = 2)$



- Abstract initial states, error states, transitions
 - Abstract initial state: $(l, b_1, ..., b_m)$, where $l = l_0$
 - Abstract error state: $(l, b_1, ..., b_m)$, where $l = l_E$
 - Abstract transition: at least one concrete transition exists between contained concrete states
 - Calculate with SMT solver (without enumerating concrete states)
 - For $(l, b_1, ..., b_m)$ and $(l', b'_1, ..., b'_m)$:
 - $-\exists op: (l, op, l') \in G$ (there is an edge between locations in the CFA)
 - $-p(b_1) \wedge \cdots \wedge p(b_m) \wedge op \wedge p(b'_1) \wedge \cdots \wedge p(b'_m)$ is satisfiable

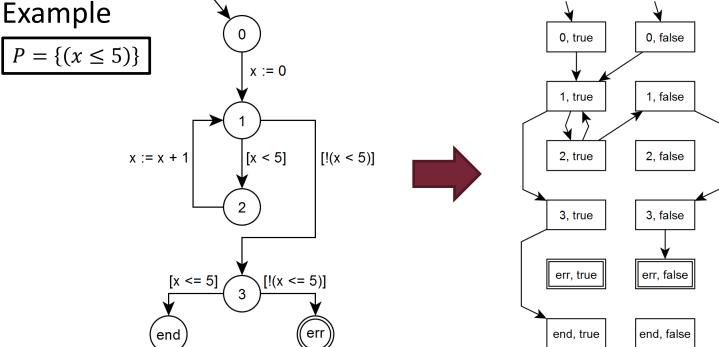


Example 0, true 0, false $P = \{(x \le 5)\}$ x := 01, false 1, true [x < 5][!(x < 5)]2, false x := x + 12, true 3, false 3, true err, false [x <= 5][!(x <= 5)]

■ 6 locations, 1 predicate → 12 abstract states

end, false

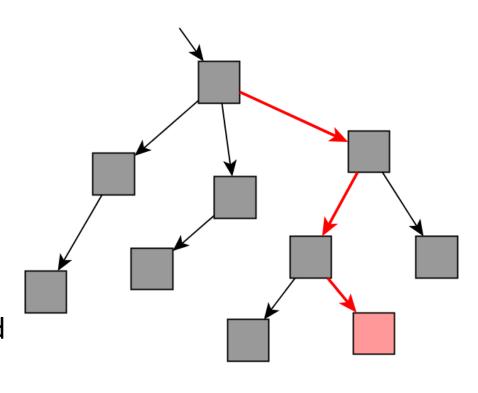
end, true



- Transition examples
 - \circ (2, true) \rightarrow (1, true)
 - $(2, x := x + 1, 1) \in G$ and $(x \le 5) \land (x' = x + 1) \land (x' \le 5)$ is satisfiable: x = 0, x' = 1
 - \circ (2, true) \rightarrow (1, false)
 - $(2, x := x + 1, 1) \in G$ and $(x \le 5) \land (x' = x + 1) \land \neg (x' \le 5)$ is satisfiable: x = 5, x' = 6

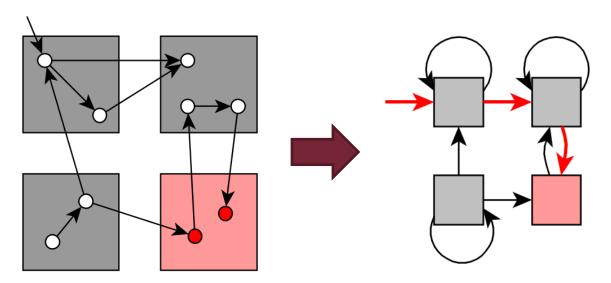
Model Checking

- Traverse abstract state space
 - With some search strategy, e.g., DFS, BFS
 - Search for error state
- Optimizations
 - On-the-fly
 - Calculate abstract states during the search
 - o Incremental
 - Do not explore unchanged parts after refinement



Model Checking

- Properties of existential abstraction
 - Over-approximates the original model
 - There is a corresponding abstract path for each concrete path
 - Universally quantified property holds → holds in the original model
 - Error state is not reachable (AG ¬Error) → not reachable in original
 - O What about abstract counterexamples?
 - Not all abstract paths have corresponding concrete paths!



Abstract Counterexample

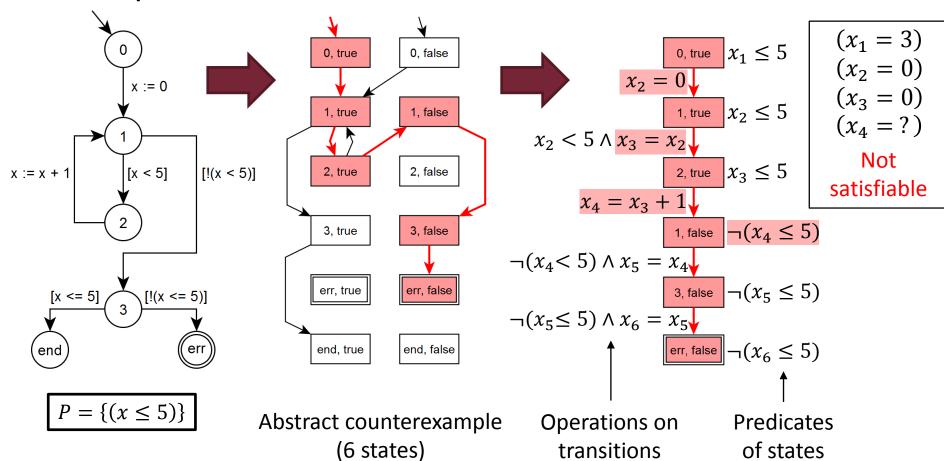
- Form of abstract counterexample
 - Sequence of locations and predicates

$$(l_1, b_{1,1}, ..., b_{1,m}), (l_2, b_{2,1}, ..., b_{2,m}), ..., (l_n, b_{n,1}, ..., b_{n,m})$$

- Finding a concrete path → traverse a part of the concrete state space
 - Guided by the abstract counterexample
 - Using SMT solver
 - Similarly to bounded model checking (BMC)
 - Generalize the method presented at existential abstraction for n steps
- Concrete path exists → concrete model is faulty
- Concrete path does not exist → spurious counterexample

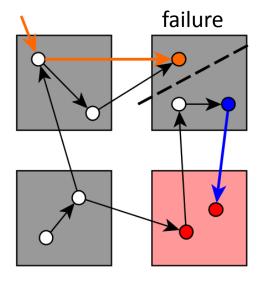
Abstract Counterexample

Example



Spurious Counterexample

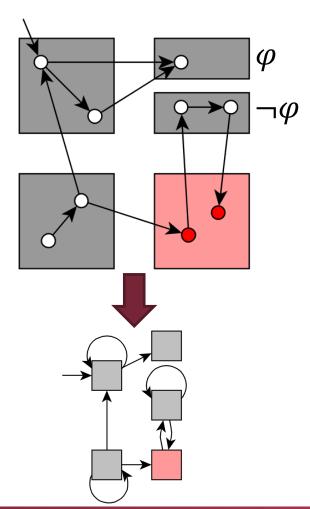
- A concrete path exists until a state and after, but it is "broken" → "failure" state
- Group concrete states mapped to "failure" state
 - O D = "Dead-end": reachable
 - B = "Bad": transition to next state
 - IR = "Irrelevant": others



- Reason for spurious counterexample
 - Set of predicates does not distinguish D and B

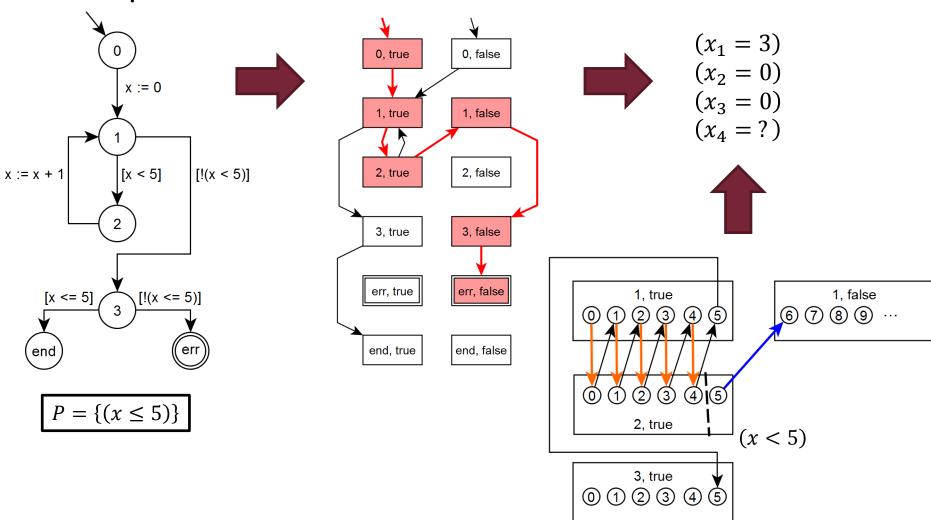
Abstraction Refinement

- Eliminating the spurious counterexample
 - More predicates (finer abstraction)
 - Separate D and B
 - Without enumerating concrete states
 - Describe D and B with formulas
 - SMT solver can generate a formula φ that separates (interpolation)
 - The set $P \cup \{\varphi\}$ will eliminate this spurious counterexample
 - Moreover it is enough to split only the failure state (lazy abstraction)
- Additional spurious counterexamples
 - More predicates



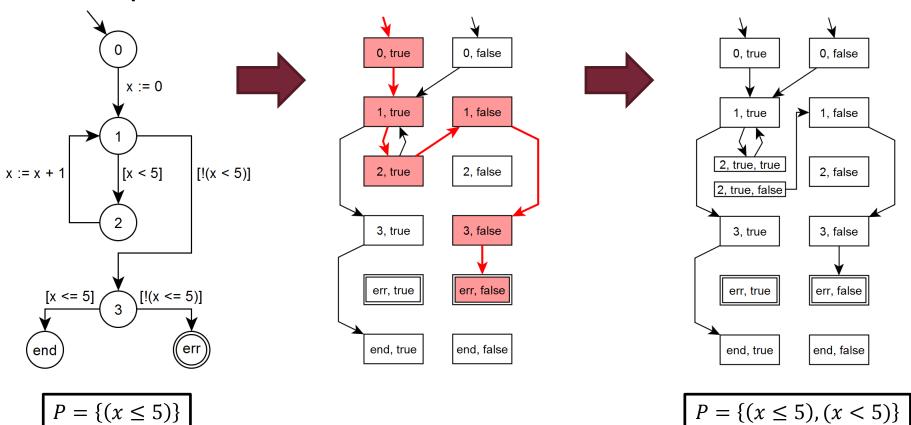
Abstraction Refinement

Example

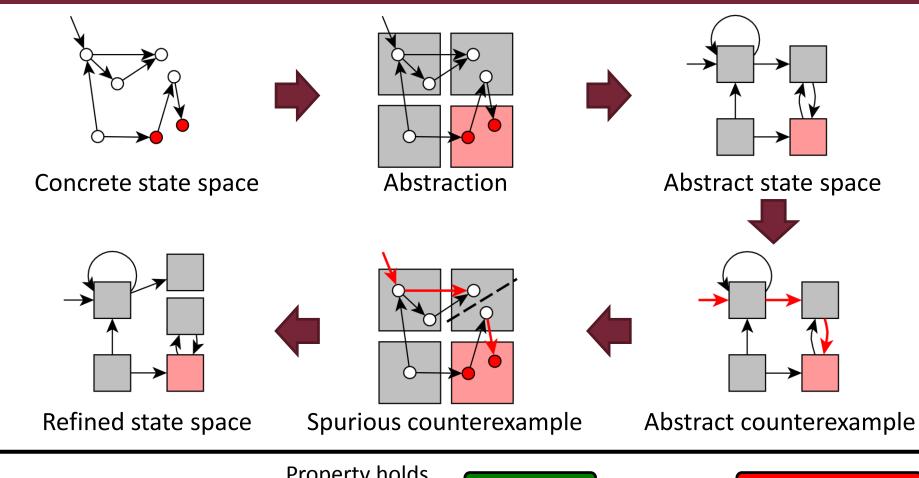


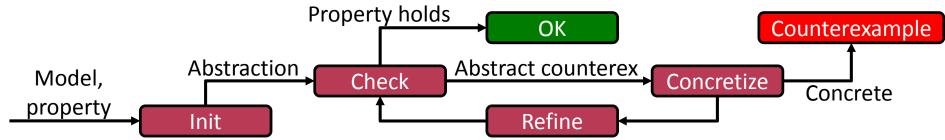
Abstraction Refinement

Example



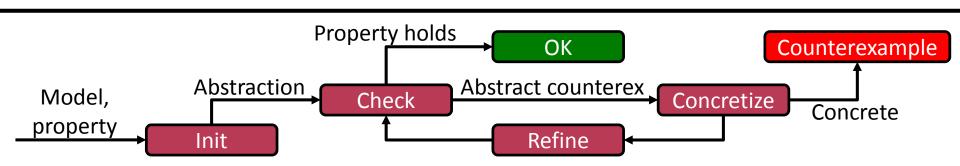
CEGAR – Summary





The algorithm

- Counterexample-Guided Abstraction Refinement (CEGAR)
 - Automatic method
 - Each step is automatic
 - Deep knowledge of formal methods is not required
 - O How about the initial set of predicates?
 - It can be an empty set
 - It can come from conditional statements in the software
 - Other heuristics



TOOLS

SLAM2

- Part of Static Driver Verifier Research Platform (SDVRP)
- Structure
 - Driver C code: analyzed component
 - Platform model: describe environment
 - Analysis: adherence to API usage rules
- Algorithms
 - Create Boolean program with predicate abstraction
 - Symbolic model checking: BEBOP tool
 - CEGAR loop
- research.microsoft.com/en-us/projects/slam/

BLAST

- Berkeley Lazy Abstraction Software Verification Tool
- Input: C program + requirement (BLAST Query Language)
- Predicate abstraction
 - Building abstract reachability tree (ART)
- Refinement: new predicate with interpolation
 - Lazy abstraction: apply new predicate locally
- Limitations: multiplication, bit operations, overflow
- mtc.epfl.ch/software-tools/blast/index-epfl.php

CPAchecker

- The Configurable Software-Verification Platform
- Input: C program + specification
 - Assertion, error label, deadlock, null dereference, ...
- Highly configurable
 - Different kinds of abstractions (not only predicate)
 - Can consider multiple prefixes of a counterexample
 - Chooses from different refinements (refinement strategy)
- cpachecker.sosy-lab.org/

Theta

- Generic, modular, configurable model checking framework
- Developed at BME-MIT
- Generic: various kinds of formal models
 - Transition systems, control flow automata, timed automata
- Modular: reusable and combinable modules
- Configurable: different algorithms and strategies
- o github.com/FTSRG/theta

- Competition on Software Verification 2017 (SV-COMP)
 - sv-comp.sosy-lab.org/2017/
 - 32 tools, 8908 input tasks (program + requirement)
 - Categories
 - Arrays (ArraysReach, ArraysMemSafety)
 - Bit Vectors (BitVectorsReach, Overflows)
 - Heap Data Structures (HeapReach, HeapMemSafety)
 - Floats
 - Integers and Control Flow (ControlFlow, Simple, ECA, Loops, Recursive, ProductLines, Sequentialized)
 - Termination
 - Concurrency
 - Software Systems (DeviceDriversLinux64, BusyBox)

SUMMARY

Summary

- Software model checking
 - Common problem: state space explosion
 - Solution: abstraction
 - Location + predicates
 - Properties of existential abstraction
 - CEGAR: automatically obtain proper abstraction
 - 1. Initial abstraction
 - 2. Model checking
 - 3. Examining the counterexample
 - 4. Refining the abstraction
 - Tools

