
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Software module testing
(unit testing)

Istvan Majzik
majzik@mit.bme.hu

Software Verification and Validation (VIMMD052)

1

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

• Checking completeness, consistency, feasibility, verifiability
• Assuring traceability

• Trade-off analysis, interface analysis, fault effects analysis
• Model based quantitative evaluation

• Formal verification by (temporal logic based) model checking
• Equivalence checking

• Source code analysis
• Software model checking with abstraction
• Proof of program correctness by theorem proving
• Module testing (unit testing)

2

Inputs and outputs of the phase

Software module
(unit) testing

Software module
verification report

Software module
test report

Software module
design

Software module
test plan

Software quality
assurance plan

Summarizes all
module level
verification and
testing activities

3

Goals of testing

 Testing:
o Running the program in order to detect faults

 Exhaustive testing:
o Running programs in all possible ways (with all possible inputs)

o Hard to implement in practice

 Observations:
o Dijkstra: Testing is able to show the presence of faults, but not

able to show the absence of faults.

o Hoare: Testing can be considered as part of an inductive proof:
If the program runs correctly for a given input then it will run
similarly correctly in case of similar inputs.

4

Test environment: Module testing

T1 M2 Stub3

Test execution
• providing inputs
Test evaluation
• checking outputs

Test stub with
restricted

functionality

Module (unit)
to be tested

Test program or
test script

5

Test approaches

 Specification based (functional) testing
o The system is considered as a “black box”

o Only the external behaviour (functionality)
is known (the internal behaviour is not)

o Test goals: checking the existence of the specified
functions and absence of extra functions

M1

m1()

m2()
m3()

A1

A2 A3

A4

M1 • Structure based testing
o The system is considered as a white box

o The internal structure (source) is known

o Test goals: coverage of the internal
behaviour (e.g., program graph)

6

Specification based testing
(functional testing)

7

Goals and overview

Goals:
o Based on the functional specification,

o find representative inputs (test data)

for checking the correctness of the implementation

Overview of techniques:
 1. Equivalence partitioning

 2. Boundary value analysis

 3. Cause-effect analysis

 4. Combinatorial techniques

 5. Finite state automaton based techniques

 6. Use case based testing

8

Example: Requirements in standards (EN 50128)

 Software design and implementation:

 Functional/black box testing (D3):

9

1. Equivalence partitioning

 Input and output equivalence classes
o Data that are expected to cover the same faults

(execute the same part of the program)

o Each equivalence class: represented by a test input

o The correctness in case of the remaining inputs follows
from the principle of induction

 Test data selection is a heuristic procedure
o Input data triggering the same service

o Valid and invalid input data

 -> valid and invalid equivalence classes

o Invalid data: Robustness testing

11

Valid/invalid equivalence classes

 Tests in case of multiple inputs:
o Valid (normal) equivalence classes:

Test data should cover as much equivalence classes as possible

o Invalid equivalence classes:
First covering each invalid equivalence class separately,
then combining them with invalid test data systematically

 Weak and strong equivalence classes:

x1

x2

Weak normal
equivalence classes

Strong normal
equivalence classes

x1

x2

12

Example: Equivalence classes (partitions)

 Classic example: Triangle characterization program
o Inputs: Lengths of the sides (here: 3 integers)
o Outputs: Equilateral, isosceles, scalene

 Test data for equivalence classes
o Equilateral: 3, 3, 3
o Isosceles: 5, 5, 2 (similarly for the other sides)
o Scalene: 5, 6, 7
o Not a triangle: 1, 2, 5 (similarly for the other sides)
o Just not a triangle: 1, 2, 3
o Invalid inputs

• Zero value: 0, 1, 1
• Negative value: -3, -5, -3
• Not an integer: 2, 2, ’a’
• Less inputs than needed: 3, 4

a

b c

13

2. Boundary value analysis

 Examining the boundaries of data partitions
o Input and output partitions are also examined

o To be applied for upper/lower bounds

 Typical problems found
o Incorrect relational operations

o Incorrect input/output conditions in loops

o Incorrect size of data structures (access), …

 Typical test data:
o A boundary requires 3 tests, a partition requires 5-7 tests:

b1 b2

17

3. Cause-effect analysis

 Examining the relation of inputs and outputs
(if it is simple, e.g., combinational)
o Causes: input equivalence classes

o Effects: output equivalence classes

o Constructing Boolean variables from these

 Boole-graph: relations of causes and effects
o AND, OR relations

o Implicitly: invalid combinations

 Decision table: Covering the Boole-graph
o Rows: Inputs and corresponding outputs

o Columns represent test data

19

A

B

C

1

2

3

Example: Cause-effects analysis

1

2

A

B

3 C

OR

AND

OR

AND

No access

Full access

Restricted access

Owner ID

Administrator ID

Authorization code

 T1 T2 T3

1 0 1 0
2 1 0 0

3 1 1 1

A 0 0 1

B 1 1 0

C 0 0 0

Inputs: Outputs:

Inputs

Outputs

AND

20

4. Combinatorial techniques

Goal: Testing the combinations of parameters
o Problems are often caused by rare combinations
o The number of all combinations can be high

 “Best guess” ad-hoc testing
o Based on intuition, typical faults

 “Each choice” testing
o All parameter values shall be tested (at least once)

 “n-wise” testing
o For each n parameters (out of m>n) testing all possible

combinations of their potential values

o “Pairwise” testing: Special case with n = 2

o Tool support: e.g., http://www.pairwise.org

21

http://www.pairwise.org/
http://www.pairwise.org/

Example: Pairwise testing

 Given input parameters and potential values:
o OS: Windows, Linux

o CPU: Intel, AMD

o Protocol: IPv4, IPv6

 All combinations:
o 8 combinations are possible

 “Pairwise” testing: A potential test suite:
o T1: Windows, Intel, IPv4

o T2: Windows, AMD, IPv6

o T3: Linux, Intel, IPv6

o T4: Linux, AMD, IPv4

22

Efficiency of n-wise testing

Source: R. Kuhn et al. „Combinatorial Software

Testing”, IEEE Computer, 42:8, 2009

Many faults are triggered by
specific combinations of 2 or 3

parameters

Comparing ad hoc
and pairwise testing

(10 projects)

23

5. Finite state automaton based testing

 Specification is given as a finite state automaton

 Typical testing goals:

o Covering (testing) all states, all transitions

o Trying also transitions that are not allowed

• Problems:

• Determining the state of
the tested system

• Setting initial state

• Methods

• Automated test input
generation (see later)

24

6. Use case based testing

 Deriving test cases from the specified use cases

o Use cases: often with preconditions and post-
conditions

 Typical test cases:

o Main path (“happy path”, “mainstream”): 1 test case

o Alternative paths: separate test cases

o Oracles: checking post-conditions

o Tests for violating preconditions

 Mainly higher level testing

o System tests, acceptance tests

25

Using the methods together

Typical application of the basic methods:
1. Equivalence partition based

2. Boundary value analysis

3. Cause-effect analysis, or combinatorial, or finite state
automaton based (depending on the specification)

Extension: Random testing
o Generating random test data

• Fast test generation, with low computational effort

o Fault coverage cannot be estimated

o Difficult to evaluate the test results:
• Computing the expected results (simulation)

• Only “smoke checking” (identifying rough failures like crash)

26

Structure based testing

27

Test approaches

 Specification based (functional) testing
o The system is considered as a “black box”

o Only the external behaviour (functionality)
is known (the internal behaviour is not)

o Test goals: checking the existence of the specified
functions and absence of extra functions

M1

m1()

m2()
m3()

A1

A2 A3

A4

M1 • Structure based testing
o The system is considered as a white box

o The internal structure (source) is known

o Test goals: coverage of the internal
behaviour (e.g., program graph)

28

The internal structure

 Well-specified representation:
o Model-based: state machine, activity diagram

o Source code based: control flow graph (program graph)

S1

S2
S3

e1 / a1
e2[g] / a1

e0 / a0

S4

e1 / a2

e2

e1 / a2

e2[g1] / a2

S A1

A2

A3 A4

S

A5 E

29

The internal structure

 Well-specified representation:
o Model-based: state machine, activity diagram

o Source code based: control flow graph (program graph)

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

 } else {

d: m=n-i;

 }

e: printf(“%d\n”,n);

 }

f: printf(“Ready.”)

Source code: Control flow graph:

Statement
(block)

Decision

b

c

d

e

Branch

Path

a

f

30

Test coverage metrics

Characterizing the quality of the test suite:
Which testable elements were tested

 1. Statements → Statement coverage

 2. Decisions → Decision coverage

 3. Conditions → Condition coverage

 4. Execution paths → Path coverage

This is not fault coverage!

Standards require test coverage (DO-178B, EN 50128,...)

o 100% statements coverage is a typical basic requirement

31

Overview of test coverage criteria

 Control flow based test coverage criteria

o Statement coverage

o Decision coverage

o Condition coverage (several metrics)

o Path coverage

 Data flow based test coverage criteria

o Definition – usage coverage

o Definition-clear path coverage

 Combination of techniques

32

Basic concepts

 Statement

 Block

o A sequence of one or more consecutive executable statements
without branches

 Condition

o Logical expression without logical operators (AND, OR, …)

 Decision

o A logical expression consisting of one or more conditions
combined by logical operators (AND, OR, …)

 Path

o A sequence of executable statements of a component,
typically from an entry point to an exit point

33

1. Statement coverage

Definition:
Number of executed statements during testing

Number of all statements

Statement coverage: 80%

A1

A2

A3 A4

A5

Statement coverage: 100%

Does not take into account branches without statements

k=0

k=1

m=1/k

[a>0]
[a<=0]

34

2. Decision coverage

Definition:
Number of decision branches reached during testing

Number of all potential decision branches

Decision coverage: 50%

A2

A3 A4

Decision coverage: 100%

Does not take into account all combinations of conditions!

A2

A3 A4

[safe(c) || safe(b)]

35

3. Condition coverage

Generic definition:

Number of tested combinations of conditions

Number of aimed combinations of conditions

Definitions (regarding the aimed conditions):
• Every condition is set to both true and false during testing

• Does not yield 100% decision coverage!
• Example of 100% condition coverage:

1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true

• Every condition is evaluated to both true and false
• Not the same as above due to lazy evaluation

A2

A3 A4

[safe(c) || safe(b)]

36

4. Condition/decision coverage (C/DC)

 Definition:

o Each decision tries every possible outcome

o Each condition in a decision takes on every possible
outcome

Example for 100% C/DC coverage:
1. safe(c) = true, safe(b) = true
2. safe(c) = false, safe(b) = false

Does not take into account whether the condition has any effect!

A2

A3 A4

[safe(c) || safe(b)]

37

5. Modified condition/decision coverage (MC/DC)

 Definition:

o Each decision tries every possible outcome

o Each condition in a decision takes on every possible
outcome

o Each condition in a decision is shown to independently
affect the outcome of the decision

Example for 100% MC/DC coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false

A2

A3 A4

[safe(c) || safe(b)]

38

6. Multiple condition coverage

 Definition:

o All combinations of conditions tested

• For n conditions: 2n test cases may be necessary

• (Bit less with lazy evaluation)

• Sometimes not practical
(e.g. in avionics systems there are programs with more than
30 conditions)

100% multiple condition coverage:
1. safe(c) = true, safe(b) = false
2. safe(c) = false, safe(b) = true
3. safe(c) = false, safe(b) = false
4. safe(c) = true, safe(b) = true

A2

A3 A4

[safe(c) || safe(b)]

39

7. Basic path coverage

Definition:

Number of independent paths traversed during testing

Number of all independent paths

100% path coverage implies:

o 100% statement coverage, 100% decision coverage

o 100% multiple condition coverage is not implied

Path coverage: 80%

Statement coverage: 100%

A1

A2

A3 A4

A5

42

A structure based testing technique

 Goal: Covering independent paths
o Independent paths from the point of view of testing:

There is a statement or decision branch in the path,
that is not included in the other path

 The maximal number of independent paths:
o CK: cyclomatic complexity

o In regular control flow graphs (connected, single entry/exit):
CK(G)=E-N+2, where

 E: number of edges

 N: number of nodes

 in the control flow graph G

 The set of independent graphs is not unique

43

A structure based testing technique

 Goal: Covering independent paths
o Independent paths from the point of view of testing:

There is a statement or decision branch in the path,
that is not included in the other path

 The maximal number of independent paths:
o CK: cyclomatic complexity

o In regular control flow graphs (connected, single entry/exit):
CK(G)=E-N+2, where

 E: number of edges

 N: number of nodes

 in the control flow graph G

 The set of independent graphs is not unique

N=5,
E=8,
CK=5,
Max. 5
independent
paths!

A1

A2

A3 A4

A5

44

Generating structure based test sequences

 Conceptual algorithm:
o Selecting maximum CK independent paths

o Generating inputs to traverse these paths,
each after the other

 Problems:
o Not all paths can be traversed:

Conditions along the path may be contradictory

o Loops: Traversal shall be limited (minimized)

 There are no fully automated tools to generate test
sequences for path coverage
o Symbolic execution: With SMT solver

o Limitations: Loops, data types, external libraries, …

45

Other coverage metrics (examples)

 Loop
o Loops executed 0 (if applicable), 1, or multiple times

 Race
o Multiple threads executed on the same block of statements

 Relational operator
o Boundary values tried in case of relational operators

 Weak mutation
o Tests for detecting the mutation of operators or operands

 Table
o Jump tables (state machine implementation) testing

 Linear code sequence and jump
o Covering linear sequences in the source code

(with potential branches but executed in linear order)

 Object code branch
o Machine instruction level coverage of conditional branches

46

Example: Testing for control flow based coverage

Product getProduct(String name, Category cat){

 if (name == null || !cat.isValid)

 throw new IllegalArgumentException();

 Product p = ProductCache.getItem(name);

 if (p == null){

 p = DAL.getProduct(name, cat);

 }

 return p;

}

Exercise: Generate test cases for 100% statement coverage,
decision coverage, C/DC coverage

47

Overview of test coverage criteria

 Control flow based test coverage criteria

o Statement coverage

o Decision coverage

o Condition coverages

o Path coverage

 Data flow based test coverage criteria

o Definition – usage coverage

o Definition-clear path coverage

 Combination of techniques

48

Data flow based test criteria

 Goals of testing
o Definition (value assignment) and use of the variables

o Check: Is there an incorrect assignment? Is it used in incorrect way?

 Labeling the program graph:
o def(v): definition of variable v (by assigning a value)

o use(v): using variable v

o p-use(v): using v in a predicate (for a decision)

o c-use(v): using v in computation

 Paths:
o def-clear v path: there is no def v label

o def-use v (shortly d-u v) path:

• Starts with def v label, ends with p-use v or c-use v label

• Between these there is a def-clear v path

• There is no internal loop (or the full d-u v path is a loop)

49

Example: Labeling the program graph

x=a+2

z=x+y

y=24

if (x>12)

def x

c-use x

p-use x

def y

c-use y def z

c-use a

p-use x

x y z a

p-use x

variables

50

All-defs coverage criterion

 All-defs:

 For all v variables, from all def v statements:
At least one use v statement is reached by
at least one def-clear v path
 (here use v may be either p-use v or c-use v)

use v use v use v

def v

use v use v use v

def v forall v, forall def v:

one def-clear v

path tested:

to one use v:

51

All-p-uses, all-c-uses, all-uses criteria

 All-p-uses / all-c-uses:
 For all v variables, from all def v statements:

All p-use v / c-use v statements are reached by
at least one def-clear v path

 All-uses:
 For all v variables, from all def v statements:

All use v statements are reached by
at least one def-clear v path

p-use v p-use v p-use v

def v forall v, forall def v:

one def-clear v

path tested:

to all use v:

c-use v c-use v c-use v

def v

52

All-paths and all-du-paths criteria

 All-paths:

o For all v variables, from all def v statements :
To all use v statements all executable def-clear v paths are tested

o In case of loops multiple executions are distinguished

 All-du-paths:

o For all v variable, from all def v statements:
To all use v statements all d-u v paths are tested

use v use v use v

def v forall v, forall def v:

all def-clear v

path tested:

to all use v:

use v use v use v

def v

all d-u v

path tested:

53

Hierarchy of data flow based test coverage criteria

all-paths

all-du-paths

all-uses

all-c-uses / some-p-uses

all-defs

all-p-uses / some-c-uses

all-p-uses

all-edges

all-nodes 100% statement coverage

Difficult to achieve

100% decision coverage

54

Using test coverage metrics

 What are these good for?

o Finding parts of the program (source code) where testing is weak

• Test suite shall be then extended

o Redundant test cases can be identified (that cover the same part of
the program)

• Data dependency shall be considered: different types of faults are
tested by different data on the same path

o Indirect measure of code quality is the coverage of successful tests

o Rather, measure of the completeness of the test suite

o Testing phase may be terminated on the basis of the coverage

 What are these not good for?

o To identify requirements that were not implemented

o To test program parts extracted from the original context

55

Execution of test cases

Execution order (prioritization) of the test cases:

If the number of faults is expected to be low:

First the more efficient tests (with higher fault coverage)

o Covering longer paths,

o Covering more difficult decisions

t

Fault coverage

t

Fault coverage

ttest ttest

c1

c2

56

Summary: Module test design techniques

 Specification and structure based techniques

o Many (more or less orthogonal) techniques

o Specification based testing is the primary approach

 Only basic techniques are used commonly

o Exception: Safety-critical systems
(e.g. DO178-B requires MC/DC coverage analysis)

 Combination of techniques is useful:

• Example (Microsoft report):

 Specification based: 83% code coverage

 + exploratory: 86% code coverage

 + structure based: 91% code coverage

57

