
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

Code-based Test Generation

Dávid Honfi, Zoltán Micskei

honfi@mit.bme.hu

1

Motivation

 Given a barely tested software to test

o Availability: source code or binary

 Developer testing

o Can be expensive, incomplete, etc.

 Alternative approaches

o Combinatorial, model-based, etc.

 Idea: generate tests somehow – code based

o Based on various criteria (e.g., coverage)

2

Test selection based on source code

3

int fun1(int a, int b){
 if (a == 0){
 printf(ERROR_MSG);
 return -1;
 }
 if (b > a)
 return b*a + 5;
 else
 return (a+b) / 2;
}

1
2

3

4

a b statement

0 * 1, 2

a!=0 b > a 3

a!=0 b <= a 4

What is missing?

What can be checked without expectations?

 Basic, generic errors (exception, segfault…)

 Failing assert statement for different inputs

 Manually extending assertions can improve this

 Reuse of already existing outputs

o Regression testing, different implementations

4

test case = input + expected output

TECHNIQUES

Random

5

Random test generation

Random selection from input domain

 Advantage:

o Very fast

o Very cheap

 Ideas:

o If no error found: trying different parts of domain

o Selection based on: ”diff”, ”distance”, etc.

 Tool for Java:

 6

Randoop: feedback-driven generation

 Generation of method sequence calls

 Creating compound objects:

 Heuristics:

o Execution of selected case

o Throwing away invalid, redundant cases

7

Case studies of robustness testing

 Robustness testing (using invalid inputs)

o Fuzz: random inputs for console programs

• Unix (1990), Unix (1995), MacOS (2007)

o NASA: flash file system

• Simulating HW errors, comparison with references

• (Model checking did not scale well)

 Randoop

o JDK, .NET libraries: checks for basic attributes
(e.g.: o.equals(o) returns true)

o Comparison of JDK 1.5 and 1.6

o It was able to find bugs in well-tested components

 8

TECHNIQUES

Annotation-based

9

Using annotations for test generation

 If the code contains:

o pre- and post-conditions (e.g.: design by contract)

o other annotations

 These are able to guide test generation.

10

/*@ requires amt > 0 && amt <= acc.bal;

 @ assignable bal, acc.bal;

 @ ensures bal == \old(bal) + amt

 @ && acc.bal == \old(acc.bal - amt); @*/

 public void transfer(int amt, Account acc) {

 acc.withdraw(amt);

 deposit(amt);

 }

Tools for annotation-based test generation

 AutoTest

o Eiffel language, Design by Contract

o Input: „object pool”, random generation

• Idea: Include inputs that satisfy preconditions.

o Expected output: checked on the base of contracts

11

AutoTest: Bertrand Meyer et al., "Program that Test Themselves", IEEE Computer 42:9, 2009.

Tools for property-based test generation
 QuickCheck

o Goal: replace manual values with generated ones

o Tries to cover laws of input domains

12

@Test
public void sortedListCreation() {
 for (List<Integer> any : someLists(integers())) {
 SortedList sortedList = new SortedList(any);
 List<Integer> expected = sort(any);
 assertEquals(expected, sortedList.toList());
 }
}
private List<Integer> sort(List<Integer> any) {
 ArrayList<Integer> sorted = new ArrayList<Integer>(any);
 Collections.sort(sorted);
 return sorted;
}

Claessen et al. "QuickCheck: a lightweight tool for random testing of Haskell programs"
ACM Sigplan Notices 46.4 (2011): 53-64

TECHNIQUES

Search-based

13

Search-based techniques

Search-based Software Engineering (SBSE)

 Metaheuristic algorithms

o genetic alg., simulated annealing, hill climbing…

 Representing a problem as a search:

o Search space:
program structure + possible inputs

o Objective function: reaching a test goal
(e.g., covering all decision branches)

14

A tool for search-based test generation

 „Whole test suite generation”

o All test goals are taken into account

o Searches based on multiple metrics

• E.g., high coverage with minimal test suite

 Specialties:

o Minimizes test code, maintains readability

o Uses sandbox for environment interaction

15

TECHNIQUES

Symbolic execution

16

Example: Static symbolic execution

17

int fun1(int a, int b){
 if (a == 0){
 printf(ERROR_MSG);
 return -1;
 }
 if (b > a)
 return b*a + 5;
 else
 return (a+b) / 2;
}

1
2

3

4

a == 0

a: 0
b: 0

T

b > a

F

a: 1
b: 2

T

a: 2
b: 1

F

PC: Path
Constraint

Selected inputs

Symbolic execution: the idea

 Static program analysis technique from the ’70s

 Application for test generation

o Symbolic variables instead of normal ones

o Constraints forming for each path with symb. variables

o Constraint solving (e.g., SMT solver)

o A solution yields an input to execute a given path

 New century, new progress:

o Enough computing power (e.g., for SMT solvers)

o New ideas, extensions, algorithms and tools

18

Extending static symbolic execution

 Static SE fails in several cases, e.g.

o Too long paths  too many constraints

o Cannot decide if a path is really feasible or not

 Idea: mix symbolic with concrete executions

o Dynamic Symbolic Execution (DSE) or

o Concolic Testing

19

Dynamic symbolic execution

Code to generate inputs for:

Constraints to solve

a!=null

a!=null &&
a.Length>0

a!=null &&
a.Length>0 &&
a[0]==1234567890

void CoverMe(int[] a)
{
 if (a == null) return;
 if (a.Length > 0)
 if (a[0] == 1234567890)
 throw new Exception("bug");
}

Observed constraints

a==null
a!=null &&
!(a.Length>0)
a!=null &&
a.Length>0 &&
a[0]!=1234567890

a!=null &&
a.Length>0 &&
a[0]==1234567890

int[] a

null

{}

{0}

{123…}

a==null

a.Length>0

a[0]==123…
T

T F

T

F

F

Execute&Monitor Solve

Choose next path

Done: There is no path left.

Source: T. Xie, N. Tillmann, P. Lakshman:
Advances in Unit Testing: Theory and Practice

20

Tools available

Name Platform Language Notes

KLEE Linux C (LLVM bitcode)

Pex Windows .NET assembly VS2015: IntelliTest

SAGE Windows x86 binary Security testing, SaaS model

Jalangi - JavaScript

Symbolic
PathFinder

 - Java

Other (discontinued) tools:

CATG, CREST, CUTE, Euclide, EXE, jCUTE, jFuzz, LCT, Palus, PET, etc.

21

More tools: http://mit.bme.hu/~micskeiz/pages/cbtg.html

http://mit.bme.hu/~micskeiz/pages/cbtg.html

DEMO: Microsoft IntelliTest

22

Generate unit tests for your code with IntelliTest
https://msdn.microsoft.com/en-us/library/Dn823749.aspx

SEViz (Symbolic Execution VisualIZer)
https://github.com/FTSRG/seviz

https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://msdn.microsoft.com/en-us/library/Dn823749.aspx
https://github.com/FTSRG/seviz
https://github.com/FTSRG/seviz

Parameterized Unit Testing

 Idea: Using tests as specifications

o Easy to understand, easy to check, etc.

o But: too specific (used for a code unit), verbose, etc.

 Parameterized Unit Test (PUT)

o Wrapper method for method/unit under test

oMain elements

• Inputs of the unit

• Assumptions for input space restriction

• Call to the unit

• Assertions for expected results

o Serves as a specification  Test generators can use it

23

Example: Parameterized Unit Testing

24

void ReduceQuantityPUT(Product prod, int soldCount) {
 // Assumptions
 Assume.IsTrue(prod != null);
 Assume.IsTrue(soldCount > 0);
 int oldQuantity = StorageManager.GetQuantityFor(prod);
 // Calling the UUT
 int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
 // Assertions
 Assert.IsTrue(newQuantity >= 0);
 Assert.IsTrue(newQuantity < oldQuantity);
}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }

Example: Parameterized Unit Testing

25

void ReduceQuantityPUT(Product prod, int soldCount) {
 // Assumptions
 Assume.IsTrue(prod != null);
 Assume.IsTrue(soldCount > 0);
 // Calling the UUT
 int newQuantity = StorageManager.ReduceQuantity(prod,soldCount);
 // Assertions
 Assert.IsTrue(newQuantity >= 0);
 int oldQuantity = StorageManager.GetQuantityFor(prod);
 Assert.IsTrue(newQuantity < oldQuantity);
}

/// The method reduces the quantity of the specified
/// product. The product is known to be NOT null, also
/// the sold amount is always more than zero. The method
/// has effects on the database, and returns the new
/// quantity of the product. If the quantity would be
/// negative, the method reduces the quantity to zero.
int ReduceQuantity(Product prod, int soldCount) { … }

Challenges of SE-based techniques

1. Exponential growth of execution paths

2. Complex arithmetic expressions

3. Floating point operations

4. Compound structures and objects

5. Pointer operations

6. Interaction with the environment

7. Multithreading

8. …

26

T. Chen et al. „State of the art: Dynamic symbolic execution for automated test generation”.
Future Generation Computer Systems, 29(7), 2013

Challenges (1)

Exponential growth of execution paths

 Ideas:

o Various traversal algorithms instead of DFS

o Method summary: simple representation of methods

27

int hardToTest(int x){
 for (int i=0; i<100; i++){
 int j = complexMathCalc(i,x);
 if (j > 0) break;
 }

 return i;
}

Challenges (2)

Complex arithmetic expressions

 Ideas: most SMT solvers cannot handle these

o E.g., CORAL is specially designed for these problems

o Using different solvers for different cases

28

int hardToTest2(int x){
 if (log(x) > 10)
 return x
 else
 return -x;
}

Challenges (4)

Compound structures and objects

 Structures, recursive data structures

 Idea: Lazy initialization

o Fields remain uninitialized at start

o Assigning values only when they are used

• Values: e.g., null, reference to a new or existing object, etc.

29

Challenges (6)

Interaction with the environment

 Calls to platform and external libraries

 Idea:

o „Environment models” (KLEE): for simple C programs

o Special Security Manager object (Java)

30

int hardToTest3(string s){
 FileStream fs = File.Open(s, FileMode.Open);
 if (fs.Lenth > 1024){
 return 1;
 } else
 return 0;
 }
}

Existing solutions for environment handling

 Stubbing and mocking (faking)

o Fixed values and checks for all DSE executions

o Not suitable for test generation

 Parameterized mocking

o Interaction with DSE is possible

• More relevant test cases

• Custom behavior in mocks: e.g., state change of objects

o Introduces complexity for users of DSE

• Requires large amount of time and effort

• Not trivial task in case of complex structures

o Fakes cannot be generated under certain conditions

31

Our approach for automated isolation
 Automated isolation on source code level

1. Abstract syntax tree transformations in the SUT
2. Parameterized sandbox synthesization

32

SUT

C1

C2

Environment

i(C1,C2)

i(C2,E)

i(C2,C1)

i(C1,E)

SUT

C1’ C2’

Environment

SB i'(C2,E) i'(C1,E)

i(C2,C1)

i(C1,C2)

Replaced
external

calls

Sandbox

Example of AST transformation

33

public class WeekendNotifier {
 public bool IsWeekendNear() {
 DateTime date = DateTime.GetNow();
 date.AddDays(2);
 if(date.GetDay() == "Saturday") return true;
 return false;
 }
}

public class WeekendNotifier {
 public bool IsWeekendNear() {
 DateTime date = Fake.DateTimeGetNow();
 Fake.DateTimeAddDays(2,date);
 if(Fake.DateTimeGetDay(date) == "Saturday") return true;
 return false;
 }
}

Example of parameterized sandbox

34

public static class Fake {

 public DateTime DateTimeGetNow() {
 // Return a state container object instead of the original
 return New<DateTime>.Instance();
 }

 public void DateTimeAddDays(int days, DateTime date) {
 // TODO: State change of date using the memory address
 }

 public int DateTimeGetDay(DateTime date) {
 // Obtaining return value from DSE
 return DSEEngine.ChooseValue<int>();
 }

}

A peek in the details

 Input: FQNs of classes under test

 Transformations

o AST traversal for exploration and rewriting

• Rewriting of invocations, member accesses: mandatory

• Rewriting of object creations: centralized state storage

o In-memory partial compilation for type information

• Semantic model for AST nodes

 Parameterized sandbox synthesization

o Based on AST transformations: signature information

oMerged into one static class: Fake

35

Workflow of the prototype

36

SUT

C1’ C2’

SB i'(C2,E) i'(C1,E)

i(C2,C1)

i(C1,C2)

DSE

Input
values

Input
values

Return values,
state changing

values, etc.

C# code in
Visual Studio

Microsoft
IntelliTest

Some open questions and ideas

 How to use the results?

o Generated tests cannot be used directly on original

o Using only test data

• Feedback for user: in editor, report, etc.

• Integration testing

o Compositional dynamic symbolic execution

 How to obtain basic behavior for the sandbox?

o User definition

o Synthesized from environment models

 How to restrict behavior to avoid false positives?

37

EVALUATIONS

38

Applying these techniques on real code?

 SF100 benchmark (Java)

o 100 projects selected from SourceForge

o EvoSuite reaches branch coverage of 48%

o Large deviations among projects

 A large-scale embedded system (C)

o Execution of CREST and KLEE on a project of ABB

o ~60% branch coverage reached

o Fails and issues in several cases

39

G. Fraser and A. Arcuri, “Sound Empirical Evidence in Software Testing,” ICSE 2013

X. Qu, B. Robinson: A Case Study of Concolic Testing Tools and Their Limitations, ESEM 2011

Are these techniques really that good?

 Does it help software developers?

o 49 participants wrote and generated tests

o Generated tests with high code coverage did not
discover more injected failures

 Finding real faults

o Defects4J: database of 357 issues from 5 projects

o Tools evaluated: EvoSuite, Randoop, Agitar

o Only found 55% of faults – requirements were missing

40

G. Fraser et al., “Does Automated White-Box Test Generation Really Help Software Testers?,” ISSTA 2013

S. Shamshiri et al., „Do automatically generated unit tests find real faults? An empirical study of
effectiveness and challenges.” ASE 2015

Comparison of test generator tools

 Various source code snippets to execute

o Covering most important features of languages

 300 Java/.NET snippets

o Executed on 6 different tools

 Experience:

o Huge difference in tools

o Some snippets challenging for all tools

41

L. Cseppentő, Z. Micskei: „Evaluating Symbolic Execution-based Test Tools,” ICST’15

