Software Verification and Validation (VIMMDO052)

Model based testing

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

(g gy
MUEGYETEM 1782



Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Checking completeness, consistency, feasibility, verifiability
Assuring traceability

Trade-off analysis, interface analysis, fault effects analysis
Model based quantitative evaluation

Formal verification by (temporal logic based) model checking
Equivalence checking

Source code analysis

Software model checking with abstraction

Proof of program correctness by theorem proving
Module testing (unit testing) < model based techniques




Overview

" Introduction
o The role of models in testing
o Use cases for model based testing

= Test case generation for test coverage metrics
o Using graph-based (direct) algorithms
o Using model checkers
o Using bounded model checkers

= Test case generation on the basis of mutations
o Model mutations

= Conformance and refinement relations for testing
o May and must preorder, I0CO

+ Tools for model based test case generation




Introduction




Common practice: UML models in manual testing

= Use case diagrams:
o Validation (acceptance) testing: Covering use cases

= Class and object diagrams
o Module testing: Identifying sw components, interfaces

= State machine and activity diagrams:
o Module testing: Reference for structure based testing
= Sequence and collaboration diagrams:
o Integration testing: Identifying scenarios
= Component diagram:
o System testing: Identifying physical components
= Deployment diagram:
o System testing: Designing test configuration




Model based test case generation: Typical approach

Formal verification

Automated
(e.g., model checking)

code generation

DRI e Manual codin | -
(specification) 2

Test case generation Test cases

Test cases on the basis of the specification




Use cases for model based testing

" |n case of manual coding: Conformance checking

test generation
Model Abstract test cases

manual

mapping
codlng automated

testing
Implementatlon Concrete test cases

" |n case of automated code generation: Validation

test generation
4 Abstract test cases

code £
generation manual
evaluation

%

mapping

Concrete test cases



Abstract and concrete test cases

/—qast (2) /“/

e | Selection — | Requirements
Criteria
State, path,
requirement @) ¢ l )
coverage
k —
(Teat Case ( ?j P
| Specification / ~

‘/—_j — ‘O, ) Model
( Test [
oo\ o | T

Abstract
test cases: ¢
. —
events, actions Test | Verdicts I|
Script ‘ 5-1) ) .
Concrete test Adaptor + Env /{5-21
cases: inputs, ” “
. SUT
g function calls
L. >

Source: M. Utting, A. Pretschner, B. Legeard. , A taxonomy of model-based testing approaches”, STVR 2012; 22:297-312




The role of models

Requirements Model

@ T ’NO Using the design models

Generation as specifications

i Generation £ .
ﬁ / X Testing the conformance

Test Case Specification
e = o | of the model and the
:: 'ZD Test Cases . .
I wanual (e implementation

Model
for Development

Requirements
Using separate = <! ®

test models: ode
. f : ® anal o
Specifying what to Coding

Generation
teSt, hOW tO teSt Test Case Specification VH7 e

T code.
< Testfélle
Automatlc
I Verdicts HW, OS, Legacy

A. Pretschner, J. Philipps. ,,Methodological Issues in Model-Based Testing”, Model-Based Testing of Reactive Systems, 2005.




Basic tasks for model based testing (MBT)

= Based on the model and the test criteria:
o Test case generation (for coverage or behavior conformance)
o Test oracle generation (synthesis)
o Test coverage analysis (for the model)

o Conformance verdict (between model and implementation)

Test case Implementation

generation l

Testing

Test oracle
Coverage Conformance




Example open source tool: GraphWalker

e_|nit
i frememberMe=false;validLogin=true;

v_ClientMotRunning

e Close
e StartClient
['rememberMe||lvalidLogin]
v_LoginPrompted
e ToggleRememberMe
frememberMe=!rememberMe;

e _InvalidCredentials
NaldiLogin=false;

e StartClient
[rememberM e&&validLogin]

e WalidPremium Credentials

e_Logout MvalidLogin=true;

v _Browse

e Exit

Source: GraphWalker

" Finite state machine modell + simple guards
= Tests for state and transition coverage

= Traversing the graph: random walk, graph based search, shortest path
"= @Generating JUnit test stubs (adapter)



http://graphwalker.github.io/introduction/

Example industrial MBT tool: Conformiq

& Propect Explerer
&5 BLUETO0TH
@ 0C1
B 0C2
o HTMLStripter
medel
Main.cqn
i] ProtncolEsception.cqe
i) SDPClient.cqs
B SDPCHiantami
i SystemBlock.cys B

8 Test Cases: BLUETOOTH>> DC2
Search:
& Mame
42 recpuiremnent: SDP-Cliert/SDP-PD
45 transition: SDPClient Process.We
46 recpuirement SDP- chent/SDP_

48 recpirement: SDP-chent/SDP_

Must graced
Request
orflesponse/M
orftesponse/m
48 reguirement: SDP-chent/SDP_Eorfiesponse/m

requirement: SDP-ehent/SDP_Emcrfespense/m

1| [ Coverage Editor BLUETOOTH

Testing Goals
S0P-client

S0P EnorResparse

Must net slow

(4PDU paramater enigth

#t
must sccept code )
E——"—
3t code 02

Continustion state wes defined, must continue
Must nct alow o0 small PDU parameter kength
Must rject P0US with nos-corforming POU-content
Must reject POUS with non-matching paramete length
ServiceATiute resuts retumed OK

508 ServiceSesrchAttrbteResoorse

requirerment: SDP-ehent/SDP._
requirement: SDP-chent/SDF_EsrorRespanse/m
requirerment: SDP-ehent/SDP.
requirement: SDP-chent/SDP |
requirement: SDP-chent/SDP |
requirement: SDP-ehent/SDP._Se

requirement: SDP-chent/SDP._

tote s defined, mast continue

o Model Browser

pc1 pea -

1111111

<lfsjsfs B

H (B o O~

(£ Mol Profiles| 5 Tracesbility: DC2.

SDPChent | SOPChent Process | Main.cqa | ProtocolEscestion.cqs | SDPCEent.cqa | SystemBlackcaa

!

—

()

& Trace: reqirement SDP-client/SDP_SeviceSesrchittribuseRes

appin | clientBTOut | ‘ clientBTin ‘

| appOut | ‘ SOP-client ‘

Servceseschatinjouteinden sl

requirement: SDP-cent/SDPServicaSesechRias;
requirement: SDP-chent/SDP_ServeceSearchRes;
5 recuirement: SOP-chent/SDP_ServiceSearchRies;

6 condtion: (xand y) where
& requirement: SOP-chent/SDP_Servcebesrchiies
B recuirement: SOP-chent/SDP_Servs

8 recuirement SOP-chent/SDP_Serv
0

S recuirement: SOP-chent/SDP_ServiceSearch;
S2 tenwiton: SOPCient Process, WaRAppREquest

93 reguirement SOP-chent/SDP_ServaceSearchRes,
S reguirement: SOP-chent/SDP_ServiceSearchRies;
95 branch body of for oop in /BLUETOOTH/med

SDP fenviceSearchAtiributsRecuiest

=00

=00
fentinuation state was defiped, must continue
TramsactienCor
=00
SOP_femviceSesschanribiteRecalest
=00

SOP_ServiceSemchftiributeResponse

SDPClient SO Client(String CQPore CQPort CQPort CQPort)
SDPClient resetTransaction()

SDPClientrun()

[ sopctientintal-stae0 )

&

SOPChernProcess |

SOPClient Process.nitial-state-l

[ soPChert Process WitappRequest |

SDPChent.ap!
SOPChent gethewTid)

SDPClientnpContStated

[;cochmmmusemus..r:hmmunmduu ]

soeC (0P S

507 SeviceSearchittibuteResponse sequireheding
ContinustionState requirehe(

SDPClient,checkPDUBase(S0P_POU,int)

sation State byteSizel)

catByteturayloytell bptel])

15| Steps requirements SOP-chen.. 1 & Comunle  frogress
Meszage  Feld Part/ el value
4 A ServceSemchitribuscingsic to apsin

4 U
it 101 0
it 1] wsT
4 et
0] 0
it 1]
4 @ S0P ServicaSamchitrbuteR: from chentBTOu
puld 6
b 0
0
10
.8 to clientSTin
0
1
i0

']
8 3
]
i
0
searchPatten
yteCount 10
aitddlist
contState

Conformiq Designer IDE for automatic test case generation

State machine models + Java action code

= Tests for state, transition, requirement coverage

Integration with other tools for testing

Source: Conformigq. , Testing Bluetooth Protocol Stacks with Computer-

Generated Tests”. Technology brief. 2010




Example industrial MBT tool: SpecExplorer

= o simtinl [ i v M. NI W “TETIETERW

Stopwatch
File Edit View Project Build Debug Data Tools Test ' SpecExplorer | Analyze Window Help File Edit View Project Build Debug Team Data Iools Architecture Test SpecExplorer Apalyze Window Help
G- G| % a@|9 o Q-5  Belortion Manager || Hasvatue G s - O- - S| % ]9 - - &5 b [pebug ~|[any cPU -|| 3 [tAction Jasaaem
e = Modeling Guidance — : = g = — - S0 EE 1] % % [ h el | G el el - y
%% 5 RMERIRREEIB =G o T a0 | & Q R T 1= (i~ U= -Peie e R ax 20003 & SB[ % % [RER |5 REIZTR] L s i NewWorkkem- () =
pec Explorer Modeling Guida i onfig.cord od Model.seerpl Exploration Manager e g Coriocord -
= 2 1 using SpecExplorerProject.JlointImplementation; // Using this name space for all implementation actions +
Guidance: [Test existing implementation  ~ 0@ @ ) @ = ¥ & Selected View StateDesciptions v l§ 41 51 ¥4 K9 | [AllColumns] ~ = > i
E Compieed D Selected Machine: Model E 3 using Microsoft.tiodeling; /# Include for use of modeling types (sets in this case) =]
1. Import actions from Machine Test Enabled Description Group Project R 5 /7 Bundle Switch Option values in one config
Cip ST DateTime|Reset sTimerReset()/True Model  true Model 6 config Mainswitches
7
|| Completed TestSuite  true Model 8 switch testclassbase = "vs';
2. Write model rules ) switch generatedtestpath = "..\\Testsuite";
18 switch generatedtestnamespace = "SpecExplorerProject.TestSuite”;
Steps X 1 switch StackDepth=2048;
1.Create classes and fields in a C# file to sTimerReset()/True switch PathDepthBound=1024;
hold state data. switch StepBound=50@@;
2.Declare rule methods for actions in StartStopButiol sudteh statesound-5000;
4 switch Forgxploration=false;
i g switch Testenabled=false;
eclare rule methods Timer\Running 100 am ‘1| 0 R
3. Write method bodies. o = -
4 Bxample esetLapButton() ModeButton() ModeButton() ResetL. e
<. 4 Copy Cod S <PspecExpl j KeyBoard - =P pius
static class ModelProgram tton() < DaleTimelRunning;DsTi “lusing system;
{ — = using System.Collections.Generic;
static bool b; //state variable using System.Text;
[Action] StartSto| using Microsoft.Moedeling;
static void Negate) //ruk
method 9 5 E1// Implementaion Architecture
The 1) C____ Timer|Stopped sTimerReset()/False /I 1. The calculator service is the application domain
} / /] 2. Connection is part of that service wrapped around how reach it
ModeButton() ModeButton() 1" 3. Authorization is a higher level service that syncs with Connection to control when the calculator service
= " is allewed to run
[C] Completed _—— — " Each of the above is represented internally by its own cbject type. Object creation (and implicitly destruction):
3, Select Scenarios < Da|eT4‘meiS(op@sTimerReselolFalse WModal Machivis Propasics 5 1 Autherization Object -> Connection Object -> Calculator Object
[ES Comleted 51 I AL the implementation will use this single name space.
4. Combine parameter values ad -
= = . Flnamespace SpecExplorerProject.JointImplementation .
[Optional] « i » ClassCleanupAttribut: Microsoft.VisualStudio.Te 4 -
Yo States: 8/20 | Steps:23/44 | Requirements:0/0 | Bounds: 0/0 | Errors: 0/0 ClassInitializeAttribute Microsoft VisualStudio.Te 100 -8 —
7] Complet peests =
; jeGenerationTime 120 = -
5. Explore machines ' - o8 Ready Lni41
pl Test Results 2 x DefaultParameterxpz Product &
| Completed || “p Run Checked Tests - b] Debug Checked Tests - Il & \5’3 DefaultParameterbxpz 10240
6. Create a test suite DepthFirst 3
© Testrunfailed Results: 5/8 passed; Item(s) checked: 3 == h . | di I d . f
] Completed S — Description . // /
B el TestName Project T — ExlorsanERGBAINS Source: ttpS visualstu l0galiery.msan.microso t.com
@ Passed TestSuiteSO TestSuite % True
B0 et Teorestt Tesue Tt mathod Gonmiions Al Coemetonces 271d0904-f178-4ce9-956b-d9bfa4902745
@ Passed TestSuiteS12 TestSuite |3 GeneratedTestFile -
1¢A@ Passed TestSuiteS14 TestSuite =
VA Failed TestSuites2 Testsuite Test method GeneratedTests I
B e S TSRS AT S ~ | Attribute that will be used to annotate the generated
BT Spec Explorer... MTMTANRY [ Test Resutt e

= CH# model program + adapter code
= Tests for covering scenarios, action patterns




Overview of algorithms for model based test generation

= Graph-based algorithms

o Model represented as a graph + traversal/search in this graph
= Application of model checkers

o Counterexample is a test sequence for specified coverage

o Symbolic or bounded model checkers
= Mutation based test generation algorithms

o Test goal: Detect model mutations — detect code bugs
= Planner based methods

o The planner constructs an operation sequence for a test goal
= Evolutionary algorithms (e.g., genetic algorithms)

o Modifying an initial test suite generated by random walk

o Optimization: increase coverage, reduce test length, ...
= Symbolic execution

o Control flow automata model




Graph-based algorithms for test

generation




Typical applications of graph-based algorithms

= Model: Represents state based, event driven behavior
o Transitions triggered by input events
o Actions are given as outputs

= Basic formalisms:

o Finite state automata (FSM; Mealy, Moore, Biichi, ...)

o Higher level formalisms mapped to automata (UML statecharts, SCADE Safe
Statechart, Simulink Stateflow, ...)

= Typical applications
o User interfaces, web based applications
o Embedded controllers
o Communication protocols
= Graph based algorithms
o Different algorithms for various testing tasks and test criteria

o Generating optimal test suite: Typically NP-complete




Graph-based algorithm for transition coverage

= Mapping the problem

o Testing problem: Coverage of transitions
* All transitions shall be covered by a test sequence
* The test sequence shall go back to the initial state

o Graph-based problem: “New York street sweeper” problem

* In adirected graph, what is the (shortest) path that covers all transitions and
goes back to the initial state?

* (The same problem in undirected graphs: “Chinese postman” problem)
= Basic idea for the algorithm: Euler-graph — Euler-circuit

o Computing the polarity of vertices: nr. of incoming minus outgoing edges

o Duplicating edges that lead from a vertex with positive polarity to vertex
with negative polarity, until all edges have zero polarity

o Finding an Euler-circuit in the resulting graph (linear algorithm)
* Euler-circuit: All edges are covered, it can always be constructed in such graph

o The traversal of the Euler-circuit defines the test sequence




Example: Transition coverage

Original graph with Graph with duplicated edges
polarities of vertices (this way having an Euler-graph)

Sequence for traversal (Euler-circuit):
abcbfegdeg




Graph-based algorithm for covering transition pairs

= Mapping the problem

o Testing problem: Coverage of transition sequences

* All possible sequences of n subsequent transitions shall
be covered by a test sequence

* The test sequence shall go back to the initial state
e Simplest case: Covering all transition pairs
o Graph-based problem: “Safecracker” sequence
* (Shortest) edge sequence that includes all possible sequences of n subsequent
edges (simplest case: n=2)
= Basic idea of the algorithm for n=2 (de Bruijn algorithm):

o Constructing a dual graph
* Edges of the original graph are mapped to vertices

* If thereis a pair of subsequent edges in the original graph then an edge is drawn
in the dual graph between the vertices that represent these edges

o Forming an Euler-graph (by duplicating edges)

o Finding an Euler-circuit that defines the test sequence




Example: Covering transition pairs

Original graph Dual graph with edges representing
edge pairs in the original graph

Sequence for traversal that cover all transition pairs:
abcbfecbgdefeg




Graph-based algorithm for concurrent testing

= Mapping the problem

o Testing problem: Covering all transitions by concurrent testers
* Goal is complete transition coverage

* There are several testers that share (preferably equally)
the testing task to finish it in the shortest time

 All testers start in the initial state
* Condition: The tested system shall be resetable to the initial state

o Graph-based problems: “Street sweepers brigade” problem

= Solution with heuristics (not an optimal solution)
o Giving an upper limit k of the length of the test sequence for each tester

o Generating an edge sequence in the Euler-graph that contains the highest
number of edges that were not covered yet, and consists of at most k edges

o Generating additional test sequences until uncovered edge exists

o Trying to lower the limit k until the number of testers can be increased




Example for concurrent transition coverage

Original test sequence (Euler-circuit, for 1 tester):
abcbfegdeg
A potential set of concurrent test sequences (k=7):

o Tester 1: abcbfeg
o Tester 2: deg

= A better set of concurrent test sequences (k=5):
o Tester 1: abcbg

o Tester 2: defeg




Test generation by model checking




= Typical test coverage criteria (for the model):

o Control flow based:
» State coverage, transition coverage
* Incoming-outgoing transition pairs coverage

o Data flow based:
* Variable definition and usage coverage (for all variables)

= Required for test generation:
o Traversal of the state space <~ Model checker can perform it

= Basic idea:

o Let the model checker traverse the state space

o Let control the model checker in such a way that the counter-
examples generated by the model checker form test sequences

o Proper requirements (temporal logic properties to be checked)
are needed — depending on the coverage criteria




Basic idea: Using a model checker for test generation

1. Test sequence to be generated:
Coverage of the state LineWeak

3. The counterexample generated
by the model checker demonstrates
that the given state can be reached

keyNo

0\

L PowerOff

keyYes

2.Specifying property for the

model checker: The state

=

l Error

[LineWeak }

.

~

Ready 1

/

LineWeak cannot be reached:

— EF LineWeak

4. The counterexample is a test
sequence covering the state
LineWeak



Framework for automated test generation

Engineering

Formal model
model

Model Counterexamples
checker as test sequences

Test coverage

o Set of TL formula
criteria




A possible implementation of the framework

UML PROMELA
statechart model

SPIN model
checker

Test coverage

. LTL formula
criteria

XML based
test sequences




Representing test coverage criteria by TL formula

= Labels in the model for variable v (predicates):

O def(v) Using the variable in condition for an

o C-USE(V) implicit transition
Implicit transition: The state does not
O p-use(v) change if the condition of the implicit

o implicit-use(v) transition holds )
= Characteristic functions (with state variables):
o s: beingin state s

o t: executing a given transition t (reaching the target state from
the source state)

= State sets (— represented by characteristic functions):
o d(v): all def(v)
o u(v): all c-use(v) or p-use(v)
o im-u(v): all implicit-use(v)
o start: state for starting new test (e.g., initial state)




Formula for control flow based coverage criteria

= State coverage: % Set of formula is defined

{—EF s | s basic state}

If a predefined start state shall be reached for the
subsequent test:

{—EF (s A EF start) | s basic state}
(EF start is omitted from the next formula)

o i+ . Strong coverage: Implicit
Weak transition cove rage: (transitions (not leaving the

{—=EF t | ttransition}  8iven state) are also tested

= Strong transition coverage:

{—=EF t | ttransition}w {—EF it | it implicit transition}




Recap: Data flow based test coverage criteria

= All-defs:

= All-uses:

def v

For all v, from all def v:

at least one
def-clear path:

to at least ‘
one use V: usev  usev use v

For all v, from all def v: def v

at least one
def-clear path:

to all use v: ‘

use v use v use v




Formula for data flow based test coverage criteria

One def-clear path traversed from all

= Weak all-defs coverage:_— def(v)toone use(v)
{—EF (t A EX E(—d(v) U u(v))) | v variable, ted(v)}

L[One def-clear path traversed from all }
= Weak all-uses coverage: 22V toalluselv)

{—EF (t A EXE(—d(v) Ut’)) | vvariable, ted(v), t’cu(v)}

Implicit variable usage: in conditions for }

O Strong all-defs Coveragezé[not leaving the state

{—EF (t A EX E(—d(v) U (u(v) v im-u(v))))
| v variable, ted(v)}
= Strong all-uses coverage:

{—EF (t A EX E(—d(v) U t))
| vvariable, ted(v), t" e u(v) U im-u(v)}




Features of model checker based test generation

= Capabilities of model checkers:
o Generating (typically) a single counterexample

o Test sequences are hard to generate for coverage criteria
that require all paths (this way all counterexamples)

e E.g., all-du-paths criterion
(all def-clear path for a given def-use pair)

= Abstract test sequences are generated
o Defining the sequence of inputs

o Expected outputs shall be determined (e.g., by simulation
in the model)

o Mapping is needed to concrete test sequences: concrete
steps (calls) in a concrete test execution environment




Optimization of test sequences

= Task of model checking:

o Efficient traversal of the state space: Fast, with low memory needs

= Required for test generation:
Finding fast a counterexample that is as short as possible
— Specific settings are needed in the model checker
o Generating the shortest test sequences: NP-complete problem

= Possible settings (e.g., in case of model checker SPIN):
o Breadth first search (BFS) in the state space
o Depth first search, but with limited depth (limited DFS)
o Finding shorter test sequences in an iterative way
e

Approximate model checking (hash function for storing checked states)
* Some states (also covered by the hash function) will not be traversed

e If a counterexample is found then it is a real test sequence for coverage




Example: Results for generating test sequences

Options Time required Length of Longest test

(compile time for test all test sequence

or run-time) generation sequences generated
| 22m 32.46s 17 3
-dBFS 11m 48.83s 17 3
-i -m1000 4m 47.23s 17 3
-| 2m 48.78s 25 6
default 2m 04.86s 385 94
-1 -m1000 1m 46.64s 22 4
-m1000 1m 25.48s 97 16
-m200 —w24 46.7s 17 3

Settings:

e -i iterative, -l approx. iterative
e -dBFS breadth first search

e -m limit for depth first search
e -w hash table size

State machine model of the
behavior of a mobile phone
(10 states, 11 transitions)




Extension of MBT to testing time-dependent behavior

Clock variables:
Modelling time dependency
(conditions, state invariants)

DutputEvent = DlearDlspIay
|n F'DwerDﬂ —false E

* Timed automata models
* Specific model checker: UPPAAL




Generated counterexamples with timing

State:
( input.sending mobile.PowerOn mobilel.LineOK mobile2.CallWait )
t=0 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5

Delay: 6 Delays are included between the

inputs of the test sequence

State:
( input.sending mobile.PowerOn mobilel.LineOK mobile2.CallWait )
t=6 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5

Transitions:
input.sending->input.sendlnput { 1, inputChannel!, 1}

mobile2.CallWait->mobile2.VoiceMail { inputEvent == evKeyYes && t >
5 && in_PowerOn, inputChannel?, 1}




Test generation by bounded model

checking




Recap: Bounded model checking

= Using SAT solvers for checking reachability of specific states

o Given a Boolean formula (Boolean function), SAT solver generates a variable
assignment (substitution) that makes the formula true

= Mapping the verification problem to Boolean function:

o Predicate for initial states: I(s)
o Predicate for specified “bad” states: p(s)
o State transition relation: R(s, s’)

o “Stepping forward” along the state transitions: R(s, s.,,)
= The characterization of a counterexample (with conjunction):

o Starting from the initial state: I(s)

o ,Stepping” along the transition relation: C.(s,s’)

o Specifying that p(s') holds somewhere along the path
R A N R




Recap: Encoding a model

(0,0) Initial state:
l(x,y) = (—xA—y)

N\

0,1)

Transition relation:
‘ Ce(x,y, X,¥') = (= xA=y A= X'A Y) v
V(XA yA XA YY)V

V(I XA yA= XA Y)YV
V([ XA yA=xX'A—Y)

00 (©1) (@1)

Paths with 3 steps from the initial state:
1(x°,y°) A path(s®,st,s?,s%) =

ol O O = 1(x2,y°) A
5 CR(XO)yol Xl)yl) N\
> : ?i | CR(Xllyll X2’y2) N

CR(Xziyzl X3;y3)




SAT based test generation for coverage criteria

= Constructing the Boolean function:
o Encoding paths with k steps from the initial state
o Specifying test criterion: In general, a TG formula
e Reaching (covering) a state
* Executing (covering) a transition
* Traversing (covering) a part of the model, ...

k —
38,8, S - |(So)/\./:§R(Sn3i+1) A TG

State Model paths Test
seguence of k length goal

= |f this formula can be satisfied, then the substitution gives a test
o This test is according to TG and limited to k steps
o If there is no substitution then there is no test for TG in k steps




Features of BMC based test generation

= Limitations for test generation
o Test of max. k steps can be generated
o The length of paths can be increased iteratively
o If a test sequence is found then it can be used
o If there is no test found then a longer test sequence may exist

= Mapping the test generation problem to SAT problem can
be made automatically

" The specification of test goals can be simplified

o For C programs: FQL language for test goals (FSHELL tool)
in /code.c/ cover @line(6),@call(f1) passing @file(code.c) \ @call(f2)

o Specifying pre- and postconditions: Is there a test when the
postcondition is not satisfied (although the precondition holds)?




Test generation based on mutations




Using fault sets for test generation

= Experience in software testing:

o Coupling effect: Test cases that are efficient to find simple faults are also
efficient for finding more complex faults

o Competent programmer hypothesis: The programs are typically good, and
the majority of faults are often occurring typical faults
= Basicidea:

o Generating “mutant” models that contain typical simple faults,
and generate tests for detecting these faults

o There tests are expected to be more efficient in detecting more complex
faults than random tests
= Typical “mutations”:
o Changing arithmetic operations in conditions
Changing the ordering of actions, messages
Omission of actions, messages, function calls

O
©)
O




Equivalence relation for BMC based test generation

= |nputs and outputs are distinguished in the model
o in(s) —inputs (events) in state s
o out(s) —observable outputs (actions) in state s
o 0 action: lack of observable output

= Definition of the k-equivalence for the behaviour of two models:

For the first k steps, providing identical input sequences,
the outputs of the two models are the same

= Notation:
Original model M: Mutated model M’:
Predicate for initial state: 1(S,) ’(s”,)
State transition relation: R(s,, Si\q) R'(s", s":.1)

k-1
Paths of length k from the initial state: 1(s,) A /\ R(S:,S..,)
i=0




Mutation based test generation using k-equivalence

= Construction of a SAT formula for detecting a mutation:

o Providing the same input sequence for the two models
o Traversing paths of k length in the original model
o Traversing paths of k length in the mutant model
o At least one output shall be different in the two models

i/E}(in(si) =in(s,)) A I(so)/\ik/:_}lR(si,sm) A I'(s;))/\Z}lR'(si',si'ﬂ) A i\Z(out(si) # out(s.))

The same Original Mutant At least one
inputs model model output is different

= |f this formula can be satisfied then the substitution defines a test

o The test detects the mutation: An output is different if the mutation is
included in the model

o If there is no substitution then there is no test for k steps




More general problem: Conformance in testing

= Test generation for mutations:

o Construction of test input sequences that result in different behavior in the
original (fault-free) and in the mutated model

o Expected output sequence of the mutation test: Belonging to the mutation
o These are so-called negative tests (failed test: no mutation)

= How to define the “difference” between two models:
What are the faults/mutations that are allowed?
o Additional behavior besides the specified behavior?
o Omission of some output?
= Typical solutions

o Safety critical systems: Equivalent behavior, strictly according to the
specification (complete specification and implementation are assumed)

o “Common” systems: Conformant behavior, the specification provides the
frame (limits) for acceptable behavior (incomplete specification and
incomplete implementation are allowed)




Refinement relations and testing

May preorder
Must preorder




Recap: Classification of relations

= Equivalence relations, denoted in general by =
o Reflexive, transitive, symmetric

Some equivalence relations are congruence:
o If T1=T2, then for all C[ | context C[T1]=C[T2]
o The same context preserves the equivalence
o Dependent on the formalism: how to embed in C[ ]

~

= Refinement relations, denoted by <

o Reflexive, transitive, anti-symmetric (— partial order)

Precongruence relation:
o If T1<T2, then for all C[ ] context C[T1] < C[T2]
\_ o The same context preserves the refinement )




Recap: Modelling behavior and internal actions

Internal behavior Observable behavior
of the component: of the component:
e and f are internal actions e and f are mapped to t




Recap: The notion of “test” and “deadlock”

= “Test” in LTS based behavior checking:
o Test: A sequence of actions that is expected (from initial state)
* Analogy: interactions on ports during testing

 Test steps are actions that may represent: sending or
receiving messages, raising or processing events etc.

= “Deadlock” in LTS based behavior checking:

o A given action cannot be provided by the system in an expected
action sequence (test)

* Analogy: no interaction is possible on a port

* The deadlock is given by the action that is not possible;
it may represent that is not possible to send or receive
message, process an event etc.

o Failure of a test: The action that cannot be provided (deadlock)

o Successful test: The action sequence can be provided




May preorder: Definition

= Notation:

e (Act—7)™ observable action sequence (7 deleted)

s «
s=s' if JaeAct™s—s'and =4

A(S) is the set of observable action sequences from s:
p
A(S) ={,B|Hs':s:>s'}
= Definition of the may preorder refinement relation:

For T, and T, LTSs with initial states s, and s,, Act actions:

T <, T, It A(s)) CA(s,)

Here T, offers more observable action sequences
(more possible behaviors that can be observed)




Example: May preorder

Two LTSs with observable action sequences: T, <, T,

T1 0 S T2 0 t

A

L

A(s) =1{a,ab, ac} A(t) ={a,ab,ac, ad, ace}




May preorder: Relationship with testing

" |[ncaseof T,<, T,

o Each test that may be successful in case of T,,
may also be successful in case of T,

* When a test “may be successful”: due to nondeterministic
behavior or internal actions it may also fail

o The relation preserves the possibly successful tests:
Possibly successful tests of T, are included in the possibly
successful tests of T,

= Refinement defined by may preorder:
o Possible observable behavior is preserved (not lost)

= To be defined: Another refinement relation:

o Mandatory observable behavior is preserved
o Preserves the tests that are always successful (never fail)




Must preorder: Notation for failed tests

s refuses E < Act—{z} actions, if Ve € E :there isnos=s'

s divergent (s 1),
If 3s,s,... Infinite sequence, where s=s, and s, —>s._,

s divergent on £ action sequence (s 11 53),

B
if 38" prefix of B, suchthats=s"'and s'1l

(B,E) is afailure of s, if
either s 11 g
5

or3is': s=s'and s' refuses E
(1.e., divergent on g, or after S it refuses E).

F(s) iIs the set of all failures for s.




Must preorder: Definition

Refinement relation: Covering failures
T <. T, iff F(s;)2F(s,)
l.e., there are less failures Iin T, than in T,.

The role of failures:
o Failures: Refusing actions directly of because of divergence

o Less failures: Less possible refusals, more successful
actions (action sequences)

o If the behavior is extended in the usual way then the
number of failures will decrease (actions become possible)

o Reducing nondeterminism may also result in decrease of
the number of failures




Must preorder: Relationship with testing

" Incaseof T, <. T,
o Each test that is always successful in case of T,
also always successful in case of T,
* T, has less failures, cannot refuse more actions (tests)

o The refinement preserves the tests that are always
successful:

* Tests that are always successful in T, are included
in the tests that are always successful in T,

= Characteristics of must preorder:

o The refined LTS preserves observable behaviors that
were already included in the more abstract LTS

= Relation with deadlock possibility:
o The refinement is sensitive to deadlocks




Example: Must preorder

Tests of T1 that are always successful: {a,ab}
here <a,{c}> is a failure

Tests of T2 that are always successful: {a,ab,ac}
here <a,{c}> is not a failure




Example: Must preorder

Tests of T1 that are always successful: {a,ab}

Tests of T2 that are always successful: {a,ab,ad}
the set of failures is reduced




Conformance relation for testing: IOCO

Input Output Conformance




Desirable properties of a conformance relation

= Trace based relation (for test evaluation)

e Goalis to compare the behavior observed during testing and
the behavior described in the specification (to identify faulty behavior)

e For black box testing: Distinguishing inputs, outputs, and internal (invisible)
actions

e Arbitrary interleaving of inputs and outputs (not fixed as input-output pairs)

e The lack of output action is considered as a specific behavior
(i.e., there is fault if the specification does not allow the lack of output)

e Nondeterministic behavior shall be possible

= Model: More precise than LTS

o Action types
* |nput actions: Provided by the test driver
* QOutput actions: Observable by the test evaluator
* Internal (invisible) action: Not controlled by the environment
o Quiescent state:
* There is no output transition labelled by output action or internal action
— Output transition(s) labelled only by input action(s)




The IOLTS formalism

" |nput-Output Labelled Transition System (IOLTS):
IOLTS = (S, Act,—,s,)
S Is the set of states, s, Initial state
Act is the set of actions: Act = Act,, U Act,, U{z}
—c Sx Act xS Is the state transition relation

Act, input, Act_,, output actions, T internal action
= Properties of an IOLTS:

o Complete, if in each state there is transition defined for each action

o Input complete (weakly input enabled), if in each state there is transition
defined for each input action, possibly after t*

* Property of implementation model: Each input is handled somehow

o Deterministic, if there is only a single target state in case of each observable
action sequence




IOLTS examples

Coffee automaton IOLTS:

o Act, ={1,2} inputs (coins)
* Notation: with ? prefix: ?1, ?2

o Act, ={c,t} outputs (coffee or tee)
* Notation: with ! prefix: Ic, !t

2

2~ (5)
-

@ﬁ
ki:l




Further notations and transformations

= Notations:
e [3 observable action sequence
e A(T) set of observable action sequences of IOLTS T
* In(s) set of input actions on transitions from state s
e Out(s) set of observable output actions from state s
e Out(S) set of observable output actions from state set S
e Reachable states: with an “after” operator

8
s after f = {s‘ |s= s'} S after = | (s after j)

seS

* Handling quiescent states in a uniform way:

o The quiescent states (i.e., waiting for input) are denoted by
a loop transition labelled with a specific 0 output action

* This way we get an extended IOLTS Ty
o In this IOLTS quiescence can be “observed” as output 0




Example: IOLTS extended with quiescence

Coffee automaton IOLTS:
o Act, ={1,2} inputs (coins), ? prefix

o Act_ .={c,t} outputs (coffee or tee), ! prefix

out

If there is no output action from a state then a
0 loop transition is added

c

Extended with
guiescence:




Example: IOLTS made complete

Coffee automaton IOLTS:
o Act, ={1,2} inputs (coins), ? prefix

o Act_ .={c,t} outputs (coffee or tee), ! prefix

out

Loop transitions for actions that were missing:

e g k

Extended with Then made l\:{
quiescence: oy S0 input (ko) 72
@5 sl complete:
lc |71
@65 (99




k-equivalence for IOLTS

= Elements of the definition:
o Ts IOLTS as “specification” (expected behavior)
o Ms IOLTS as “implementation” (provided behavior)
o Outputs follow inputs (reactive behavior)
= Definition:
o In the “specification” T5 and "implementation” M,

the same input sequence results in
the same output sequence for the first k steps

= Properties
o Simple relation

o Strict for testing (in k steps):
Restrictions, extensions of the behavior are not allowed




|OCO relation for IOLTS

= Elements of the definition:
o TgIOLTS as “specification” (expected behavior)
o Mg IOLTS as “implementation”, that is made input complete
o The set of potential actions is the same
= Definition: M ioco T ("M is ioco conform to specification T”)

For all observable action sequence in the specification: In each state that is
reachable by such action sequence, the output actions provided by
implementation M form a subset of the output actions given in specification T

VS e A(T,) @ Out(s,,, after ) c Out(s,, after j)

For all observable Observable output Observable output
action sequence f3 actions in the actions in the
in the specification implementation specification

after 3 after 3




Properties of I0OCO

= Explaining the definition:

o Def.: For all observable action sequence in the specification: In each state
that is reachable by such action sequence, the output actions provided by
implementation M form a subset of the output actions given in specification T

o The specification provides limits for the allowed behavior

o The implementation fits the frame given by the specification

= What are allowed?

o Restricted behavior: The implementation may contain less potential output
action than in the specification

* E.g., in case of a partial implementation, or partial resolution of nondeterminism

o Extended behavior: The implementation may contain outputs after action
sequences that are not included in the specification

* E.g., the specification is not complete (some action sequences are not included)

= \What is not allowed?

o Implementation (its outputs) cannot be extended in case of action sequences
that are included in the specification, i.e., it is not allowed to “provide more”




Examples for satisfying 10CO

The observable output
actions shall be checked

\:V\ o9 after each observable
D 7 action sequence

)

/The implementation

may contain additional
action sequences,

but keeps the behavior for
action sequences given in

Qhe specification /

ey &
21

€1
le
(e2)> i)

specification




Examples for violating I0CO

/

The implementation
extends the behavior in
case of action
sequences given in the

\ Specification

' ? ?
5 G@KJ ’ not 10Cco k, after <?1, 5, ?1>

|, after <?1, 5, ?1>

specification 71 72 ‘



Summary of 10CO features

Input-output conformance relation (I0CO) by Tretmans, 1996:

= This relation is designed for functional black box testing of systems
with inputs and outputs

= |nputs are under control of the environment, i.e. the tester, while
outputs are under control of the implementation under test

= |OCO allows one to use incomplete specifications
= The specification and the implementation can be non-deterministic

= The models used for IOCO allow arbitrary interleaving of inputs and
outputs

= |OCO considers the absence of outputs as error if this behavior is
not allowed by the specification

These properties make input-output conformance testing
applicable to practical applications




Summary of the studied behavioral equivalences

= Equivalences: For verification
o Trace equivalence: T, T" Iff A(S)=A(S)
o Strong bisimulation: T~T"iff 3B:(s,s)eB
o Observation equivalence: T=T"' iff 3WB:(s,s") €WB

= Preorders: For model refinement
o May preorder: T<, T' iff A(S)cA(S)
o Must preorder: T< T"iff F(S) 2 F(s)

= Conformance relation: For testing
o k-equivalence
o Input-output conformance (I0CO)




Other techniques and tools

for model based test generation




Using a planner for test generation

" Planning problem in Al

o Construction of an action sequence to reach a goal state from an
initial state (using a set of actions with conditions and effects)

* Elements of the planning problem for test generation:
o Initial state: Initial state of application (model)
o Goal state: State to be reached (covered)
o Actions: Activities (functions) executed on the basis of inputs in the
application
= Test: Determined by the generated action sequence
o Instances of actions: Determine required inputs for triggering

o Partial ordering of actions (as given by mapping the conditions and
effects) — partial ordering of inputs

o Test input sequence results from linearization of the input sequence




Application for GUI testing (1): GUI model

Operator model of the GUI: Basis of model based test generation
= System objects

o Elements of the background application: text, data, files, ...
= Events on the GUI

o Menu events (ME): Expanding operations (e.g. File/Save)
o Focus extension events (FEE): Opening new windows, palettes, etc.
o System related events (SRE): Changing the state of system objects

= (Qperators
o GUI operators: Combining ME and FEE
* Using GUI widgets (e.g., opening a new file selection window by File/Open)
o System related operators: (ME,FEE)*SRE
* Initiating the change of system objects (e.g., Edit/Cut and its effect on the text)

o Composite (abstract) operators: Sequences of basic operators
* E.g., saving a file to a selected folder




Application for GUI testing (2): Testing approach

Scenario based testing approach:

1. Specifying test elements and goals
o ldentification of operators and system objects
o ldentification of use case scenarios (with initial and goal state)

2. Construction of operator sequences
o Implementation of the use cases with composite operators

3. Mapping each operator sequence to a concrete event sequence
o Test sequence is defined by the GUI event sequence
o Composite operators can be resolved by a planner

| 2 o | Select .
I ‘ Select("public") -| ‘ (‘duc;;uc"} ‘

Select l
("new.doc")

TypeInText
(“final")




Application for GUI testing (3): Using the planner

Solving a planning problem for test generation:

= Elements of the planning problem for GUI testing:
o Initial state: Initial state of the GUI and system objects
o Goal state: GUI and system state to be reached (covered)

o Actions (with conditions and effects): GUI operators and events, variables of
operators are system objects

= Solution by the planner: Plan to reach goal state from the initial state
o Actions are identified (with partial ordering) — GUI operators and events
o Conditions and effects of actions — Conditions and changes in system objects
o Variables of actions — Instantiated with system objects

= Test sequence is derived by ordering (linearization)

High E
Le?.’el Planl_I~ »|_File_Open >

Decomposition

Mapping Planner




Application for GUI testing (4): Example

. Abstract Abstract
ngh level Operator Operator
plan: File_Open ——— File_SaveAs

“(“pubhc"," L Y(E?iwf‘;x > h(“publlc"",
doc2.doc") new.doc")

Decomposition

Mapping
. h | . Mappmg Planner
Wlt p anner: FI|E |- PEH ChDir Select
|(S— ("public”) ("doc2.doc" )

Planner

Select("public")
Mapping Planner
[Fie po{[sor ]

Decomposition

Resulting
seguence:

YETEM 1782



Application for GUI testing (5): Example (mod.)

. File_Open File_SaveAs
High level ("publigf, & T‘QE;‘?"TF;’“ > ("public”,
D | an: "doc2.doc") na "new.doc")

Decomposition

Planrer

Mapping
with planner:

Mapping

1- mr

Select ‘
{ doc2. doc

ChDir ‘
public" -

Planner

Select("Root") - Select("public")
Decomposition

Mapping Y Planner
0 Sz N e

("new.doc")

Resulting [+ [=b - [5} [

sequence: q

[o]

TypeInTexf

Seler.t
{ new.doc")

Select

. L
("doc2.doc™) ‘ m

I

YETEM 1782



Using evolutionary algorithms for test generation

= Evolutionary algorithms (e.g., genetic algorithms)
o Modifying an initial test suite generated by random walk

o Modifications: mutation of a test input sequence, merging
test input sequences (parts of sequences)

o Test suite that has better properties w.r.t. given test criteria
is kept for further modifications

= Test criteria:

o Control flow based criteria: Coverage of states, branches,
conditions, paths, ...

o Data flow based criteria: All-defs, all-uses coverage
o Test length, execution time, ...

= Example tool:

o Java: DOTgEAr




Recap: Using symbolic execution

= Static program analysis technique: Here applied for models (e.g., CFA)
o Following computation of paths with symbolic variables
o Deriving reachability conditions as constraints
o Constraint solving (e.g., SMT solver): Yields inputs to execute a given path
= Test input generation: Inputs for covering the paths of the program
o Generation of expected outputs by path simulation
o Checking generic correctness criteria (lack of exceptions, no crash)
= Challenges
o Loops (with a large number of paths)
o Complex types and operations (to be supported by the SMT solver)
o Handling dependencies and libraries
= Example tools
o Java: Symbolic PathFinder (based on Java PathFinder)
o .Net: PEX, IntelliTest
o C:KLEE, CUTE, EXE




Examples for automated test generation tools (1)

" Test generation with model checkers
o FSHELL: For C programs

 CBMC (bounded model checker) generates a counterexample to
be used as test sequence for a specified test goal

o BLAST:

* Counterexample generated: Abstract test case for a test goal
* Includes symbolic execution (for CEGAR): Generated test data

o UPPAAL CoVer, TRON:

* Modeling time-dependent behavior by timed automata

* Counterexamples for non-coverage are generated by the UPPAAL
model checker

* Conformance relation for testing:
Relativized timed input-output conformance (RTIOCO) —
consistent with IOCO in untimed models




Examples for automated test generation tools (2)

= Testing based on abstract data types

o Test inputs are generated on the basis of the axioms given in
the abstract data type

e Equivalence partitions, boundary values can be used

m
To Abstract data types: Operations with axioms \
O Type Boolean is
o A sorts Bool
opns
false, true : -> Bool
o Au not : Bool -> Bool
and : Bool, Bool -> Bool
O STC eqns
O TDH forall x, Y: Bool
ofsort Bool
o T-V not (true) = false;

not (false)
X and true

true;
X,



Examples for automated test generation tools (2)

= Testing based on abstract data types

o Test inputs are generated on the basis of the axioms given in
the abstract data type
e Equivalence partitions, boundary values can be used

" Tools supporting specific modeling languages

o Conformiqg: For UML (statechart) models
o AGATHA: UML, SDL, STATEMATE models

* Generating path conditions and constraint solving to get test inputs
o Autolink: SDL and MSC models are supported
o STG: For LOTOS language

o TDE/UML: Coverage criteria and constraints can be specified

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models




Example: MOGENTES project for model based test generation

MOGENTES
s - demonstrators
v Automotive
w “““““ ! o ILI on/offroad
: / : A sz Railway
User Requirements / Specification Foan e signalling
Software f System
' Test Case
' : Application
Safety Requirements Result (unit, system,
(Standards) e Data SIL, HIL, F1)

Scenario

Generation
Model Test Cases

MOGENTES - research core




Example: Model checking based TCG in MOGENTES

UML statechart
model

’.

* Timed automata

* Tracing
* Coverage
N\ g

Structure for classes

» Event queue handling

Abstract
test case

State Machine with Time Extension:
Flattened state machine

J—> Transformation
from UML to SMTE

{SMTE model}

4 ---=-=-=--1

j/> Transformation

from SMTE to UPPAAL

/{UPPAAL model}

1
1
|
1
1
1
1
]

v

}

Manbing | Trace UPPAAL based TCG
ppIng (verifyta, CoVer)

\{Test goals }

N




Example: Mutation based TCG in MOGENTES (1)

—\>
Parameterized UML
model
- UML based TCG:
UML2AS
transformations| uiEtian . . .
IR e = Generation of mutations:
e o Applied on UML models
Mutated UL model o Based on a fault library defined
on models
UML to OOAS UML to OOAS .
transformation transformation u Inte rnal fo rmallsm:
Reference O‘OAS Mutated O‘OAS O OO ACtlon SyStem
model model o
o Guarded action language
= Test generation:
o Detect mutation based on I0CO
Qualitative \ [ re I at | on
é;g?enms Reference AS model Mutated AS model o SMT Solver IS used
\f x o Bounded length of the test
ree iAs Chsses cases can be specified

Abstract Test Suite




Example: Mutation based TCG in MOGENTES (2)

Simulink model

v

Simulink to AS
transformation

CBMC guarded
assignments

TCG with CBMC

T

Mutation C—
generator | Fault model

Mutated internal model

/

Conformance transformation

Miter model

CBMC

/ SMT formula

&
result

SAT/SMT solver

Abstract Test Suite

Simulink based TCG:

= Generation of mutations:

o Applied on C programs
generated from Simulink
models (with automated code
generator)

o Based on a fault library defined
on source code

= Bounded model checking:
o CBMC for C programs

= Test generation:

o Detect mutation based on I0CO
relation




= Model based test case generation

o On the basis of coverage criteria
* Control flow oriented: states, transitions coverage
» Data flow oriented: def-use coverage

o On the basis of mutations

* Using conformance relations (k-equivalence, I0CO) for distinguishing original
and mutated behavior

= Algorithms and tools
o Direct (graph-based) algorithms
Model checkers: Counterexample as test case
Planner algorithms: Goal-oriented action sequence

Symbolic execution: Path coverage
Test for (abstract) data types: On the basis of operators’ axioms

e
e
o Evolutionary algorithms: Optimizing (random) test suite
e
e




