
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Model based testing

Istvan Majzik
majzik@mit.bme.hu

Software Verification and Validation (VIMMD052)

1

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

• Checking completeness, consistency, feasibility, verifiability
• Assuring traceability

• Trade-off analysis, interface analysis, fault effects analysis
• Model based quantitative evaluation

• Formal verification by (temporal logic based) model checking
• Equivalence checking

• Source code analysis
• Software model checking with abstraction
• Proof of program correctness by theorem proving
• Module testing (unit testing)  model based techniques

2

Overview

 Introduction
o The role of models in testing
o Use cases for model based testing

 Test case generation for test coverage metrics
o Using graph-based (direct) algorithms
o Using model checkers
o Using bounded model checkers

 Test case generation on the basis of mutations
o Model mutations

 Conformance and refinement relations for testing
o May and must preorder, IOCO

+ Tools for model based test case generation

3

Introduction

4

Common practice: UML models in manual testing

 Use case diagrams:
o Validation (acceptance) testing: Covering use cases

 Class and object diagrams
o Module testing: Identifying sw components, interfaces

 State machine and activity diagrams:
o Module testing: Reference for structure based testing

 Sequence and collaboration diagrams:
o Integration testing: Identifying scenarios

 Component diagram:
o System testing: Identifying physical components

 Deployment diagram:
o System testing: Designing test configuration

5

Model based test case generation: Typical approach

Test cases on the basis of the specification

Design model
(specification)

Formal verification
(e.g., model checking)

Implementation

Test cases

Manual coding

Test case generation

Automated
code generation

6

Use cases for model based testing

 In case of manual coding: Conformance checking

 In case of automated code generation: Validation

Model

Implementation

Abstract test cases

Concrete test cases

manual
coding

test generation

mapping
automated
testing

Model

Implementation

Abstract test cases

Concrete test cases

code
generation

test generation

mapping
manual
evaluation

validation

7

Abstract and concrete test cases

8

Source: M. Utting, A. Pretschner, B. Legeard. „A taxonomy of model-based testing approaches”, STVR 2012; 22:297–312

State, path,
requirement

coverage

Abstract
test cases:

events, actions

Concrete test
cases: inputs,
function calls

The role of models

9

Using the design models
as specifications:
Testing the conformance
of the model and the
implementation

Using separate
test models:
Specifying what to
test, how to test

A. Pretschner, J. Philipps. „Methodological Issues in Model-Based Testing”, Model-Based Testing of Reactive Systems, 2005.

Basic tasks for model based testing (MBT)

 Based on the model and the test criteria:

o Test case generation (for coverage or behavior conformance)

o Test oracle generation (synthesis)

o Test coverage analysis (for the model)

o Conformance verdict (between model and implementation)

Test criteria

Test case
generation

Model

Test oracle
Coverage Conformance

Implementation

Test cases
Testing

10

Example open source tool: GraphWalker

11

 Finite state machine modell + simple guards

 Tests for state and transition coverage

 Traversing the graph: random walk, graph based search, shortest path

 Generating JUnit test stubs (adapter)

Source: GraphWalker

http://graphwalker.github.io/introduction/

Example industrial MBT tool: Conformiq

 State machine models + Java action code

 Tests for state, transition, requirement coverage

 Integration with other tools for testing

So
u

rc
e:

 C
o

n
fo

rm
iq

. „
Te

st
in

g
B

lu
et

o
o

th
 P

ro
to

co
l S

ta
ck

s
w

it
h

 C
o

m
p

u
te

r-
G

en
er

at
ed

 T
es

ts
”.

 T
ec

h
n

o
lo

gy
 b

ri
ef

. 2
0

1
0

12

Example industrial MBT tool: SpecExplorer

 C# model program + adapter code

 Tests for covering scenarios, action patterns

Source: https://visualstudiogallery.msdn.microsoft.com/
271d0904-f178-4ce9-956b-d9bfa4902745

13

Overview of algorithms for model based test generation

 Graph-based algorithms
o Model represented as a graph + traversal/search in this graph

 Application of model checkers
o Counterexample is a test sequence for specified coverage
o Symbolic or bounded model checkers

 Mutation based test generation algorithms
o Test goal: Detect model mutations  detect code bugs

 Planner based methods
o The planner constructs an operation sequence for a test goal

 Evolutionary algorithms (e.g., genetic algorithms)
o Modifying an initial test suite generated by random walk
o Optimization: increase coverage, reduce test length, …

 Symbolic execution
o Control flow automata model

14

Graph-based algorithms for test
generation

15

Typical applications of graph-based algorithms

 Model: Represents state based, event driven behavior
o Transitions triggered by input events

o Actions are given as outputs

 Basic formalisms:
o Finite state automata (FSM; Mealy, Moore, Büchi, …)

o Higher level formalisms mapped to automata (UML statecharts, SCADE Safe
Statechart, Simulink Stateflow, …)

 Typical applications
o User interfaces, web based applications

o Embedded controllers

o Communication protocols

 Graph based algorithms
o Different algorithms for various testing tasks and test criteria

o Generating optimal test suite: Typically NP-complete

16

Graph-based algorithm for transition coverage

 Mapping the problem
o Testing problem: Coverage of transitions

• All transitions shall be covered by a test sequence

• The test sequence shall go back to the initial state

o Graph-based problem: ”New York street sweeper” problem

• In a directed graph, what is the (shortest) path that covers all transitions and
goes back to the initial state?

• (The same problem in undirected graphs: ”Chinese postman” problem)

 Basic idea for the algorithm: Euler-graph  Euler-circuit
o Computing the polarity of vertices: nr. of incoming minus outgoing edges

o Duplicating edges that lead from a vertex with positive polarity to vertex
with negative polarity, until all edges have zero polarity

o Finding an Euler-circuit in the resulting graph (linear algorithm)

• Euler-circuit: All edges are covered, it can always be constructed in such graph

o The traversal of the Euler-circuit defines the test sequence

17

Example: Transition coverage

Original graph with
polarities of vertices

Sequence for traversal (Euler-circuit):

 a b c b f e g d e g

Graph with duplicated edges

(this way having an Euler-graph)

18

Graph-based algorithm for covering transition pairs

 Mapping the problem
o Testing problem: Coverage of transition sequences

• All possible sequences of n subsequent transitions shall
be covered by a test sequence

• The test sequence shall go back to the initial state

• Simplest case: Covering all transition pairs

o Graph-based problem: “Safecracker” sequence

• (Shortest) edge sequence that includes all possible sequences of n subsequent
edges (simplest case: n=2)

 Basic idea of the algorithm for n=2 (de Bruijn algorithm):
o Constructing a dual graph

• Edges of the original graph are mapped to vertices

• If there is a pair of subsequent edges in the original graph then an edge is drawn
in the dual graph between the vertices that represent these edges

o Forming an Euler-graph (by duplicating edges)

o Finding an Euler-circuit that defines the test sequence

19

Example: Covering transition pairs

Original graph

Sequence for traversal that cover all transition pairs:

 a b c b f e c b g d e f e g

Dual graph with edges representing
edge pairs in the original graph

20

Graph-based algorithm for concurrent testing

 Mapping the problem
o Testing problem: Covering all transitions by concurrent testers

• Goal is complete transition coverage

• There are several testers that share (preferably equally)
the testing task to finish it in the shortest time

• All testers start in the initial state

• Condition: The tested system shall be resetable to the initial state

o Graph-based problems: ”Street sweepers brigade” problem

 Solution with heuristics (not an optimal solution)
o Giving an upper limit k of the length of the test sequence for each tester

o Generating an edge sequence in the Euler-graph that contains the highest
number of edges that were not covered yet, and consists of at most k edges

o Generating additional test sequences until uncovered edge exists

o Trying to lower the limit k until the number of testers can be increased

21

Example for concurrent transition coverage

Original test sequence (Euler-circuit, for 1 tester):
 a b c b f e g d e g
A potential set of concurrent test sequences (k=7):

o Tester 1: a b c b f e g
o Tester 2: d e g

 A better set of concurrent test sequences (k=5):
o Tester 1: a b c b g
o Tester 2: d e f e g

22

Test generation by model checking

23

Basic idea

 Typical test coverage criteria (for the model):
o Control flow based:

• State coverage, transition coverage

• Incoming-outgoing transition pairs coverage

o Data flow based:
• Variable definition and usage coverage (for all variables)

 Required for test generation:
o Traversal of the state space  Model checker can perform it

 Basic idea:
o Let the model checker traverse the state space

o Let control the model checker in such a way that the counter-
examples generated by the model checker form test sequences

o Proper requirements (temporal logic properties to be checked)
are needed – depending on the coverage criteria

24

PowerOff

LineOk

LineWeak

Ready

keyNo

keyYes

Error

3. The counterexample generated

by the model checker demonstrates

that the given state can be reached

4. The counterexample is a test

sequence covering the state

LineWeak

Basic idea: Using a model checker for test generation

2.Specifying property for the

model checker: The state

LineWeak cannot be reached:

 EF LineWeak

1. Test sequence to be generated:

Coverage of the state LineWeak

25

Formal model

 Engineering
model

 Test coverage
criteria

Model
checker

 Set of TL formula

 Counterexamples
as test sequences

Framework for automated test generation

26

UML
statechart

 Test coverage
criteria

SPIN model

checker

 LTL formula

PROMELA

model

 XML based
test sequences

A possible implementation of the framework

27

Representing test coverage criteria by TL formula

 Labels in the model for variable v (predicates):
o def(v)

o c-use(v)

o p-use(v)

o implicit-use(v)

 Characteristic functions (with state variables):
o s: being in state s

o t: executing a given transition t (reaching the target state from
the source state)

 State sets ( represented by characteristic functions):
o d(v): all def(v)

o u(v): all c-use(v) or p-use(v)

o im-u(v): all implicit-use(v)

o start: state for starting new test (e.g., initial state)

Using the variable in condition for an
implicit transition
Implicit transition: The state does not
change if the condition of the implicit
transition holds

28

Formula for control flow based coverage criteria

 State coverage:
{EF s | s basic state}

 If a predefined start state shall be reached for the
subsequent test:
{EF (s  EF start) | s basic state}
 (EF start is omitted from the next formula)

 Weak transition coverage:

{EF t | t transition}

 Strong transition coverage:
{EF t | t transition}  {EF it | it implicit transition}

Strong coverage: Implicit
transitions (not leaving the
given state) are also tested

Set of formula is defined

29

Recap: Data flow based test coverage criteria

 All-defs:

 All-uses:

use v use v use v

def v For all v, from all def v:

at least one
def-clear path:

to at least
one use v:

For all v, from all def v:

at least one
def-clear path:

to all use v:
use v use v use v

def v

30

Formula for data flow based test coverage criteria

 Weak all-defs coverage:
{EF (t  EX E(d(v) U u(v))) | v variable, td(v)}

 Weak all-uses coverage:
{EF (t  EX E(d(v) U t’)) | v variable, td(v), t’u(v)}

 Strong all-defs coverage:

{EF (t  EX E(d(v) U (u(v)  im-u(v))))
| v variable, td(v)}

 Strong all-uses coverage:
{EF (t  EX E(d(v) U t’))

| v variable, td(v), t’ u(v)  im-u(v)}

One def-clear path traversed from all
def(v) to one use(v)

One def-clear path traversed from all
def(v) to all use(v)

Implicit variable usage: in conditions for
not leaving the state

31

Features of model checker based test generation

 Capabilities of model checkers:

o Generating (typically) a single counterexample

o Test sequences are hard to generate for coverage criteria
that require all paths (this way all counterexamples)

• E.g., all-du-paths criterion
(all def-clear path for a given def-use pair)

 Abstract test sequences are generated

o Defining the sequence of inputs

o Expected outputs shall be determined (e.g., by simulation
in the model)

o Mapping is needed to concrete test sequences: concrete
steps (calls) in a concrete test execution environment

32

Optimization of test sequences

 Task of model checking:

o Efficient traversal of the state space: Fast, with low memory needs

 Required for test generation:
Finding fast a counterexample that is as short as possible

→ Specific settings are needed in the model checker

o Generating the shortest test sequences: NP-complete problem

 Possible settings (e.g., in case of model checker SPIN):

o Breadth first search (BFS) in the state space

o Depth first search, but with limited depth (limited DFS)

o Finding shorter test sequences in an iterative way

o Approximate model checking (hash function for storing checked states)

• Some states (also covered by the hash function) will not be traversed

• If a counterexample is found then it is a real test sequence for coverage

33

Example: Results for generating test sequences

Options
(compile time
or run-time)

Time required
for test

generation

Length of
all test

sequences

Longest test
sequence
generated

 -I 22m 32.46s 17 3

-dBFS 11m 48.83s 17 3

 -i -m1000 4m 47.23s 17 3

 -I 2m 48.78s 25 6

 default 2m 04.86s 385 94

 -I -m1000 1m 46.64s 22 4

 -m1000 1m 25.48s 97 16

-m200 –w24 46.7s 17 3

Settings:
• -i iterative, -I approx. iterative
• -dBFS breadth first search
• -m limit for depth first search
• -w hash table size

State machine model of the
behavior of a mobile phone
(10 states, 11 transitions)

34

• Timed automata models
• Specific model checker: UPPAAL

Clock variables:
Modelling time dependency
(conditions, state invariants)

Extension of MBT to testing time-dependent behavior

37

State:
(input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait)
t=0 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5

Delay: 6

State:
(input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait)
t=6 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5

Transitions:
input.sending->input.sendInput { 1, inputChannel!, 1 }
mobile2.CallWait->mobile2.VoiceMail { inputEvent == evKeyYes && t >

5 && in_PowerOn, inputChannel?, 1 }

Delays are included between the
inputs of the test sequence

Generated counterexamples with timing

38

Test generation by bounded model
checking

39

Recap: Bounded model checking

 Using SAT solvers for checking reachability of specific states
o Given a Boolean formula (Boolean function), SAT solver generates a variable

assignment (substitution) that makes the formula true

 Mapping the verification problem to Boolean function:
o Predicate for initial states: I(s)

o Predicate for specified “bad” states: p(s)

o State transition relation: R(s, s’)

o “Stepping forward” along the state transitions: R(si, si+1)

 The characterization of a counterexample (with conjunction):

o Starting from the initial state: I(s)

o „Stepping” along the transition relation: CR(s,s’)

o Specifying that p(si) holds somewhere along the path

40

Recap: Encoding a model

Initial state:
 I(x,y) = (xy)

s1

s2

s3

(0,0)

(0,1)

(1,1)

(0,0) (0,1) (1,1)

s0:

s1:

s2:

s3:

41

Transition relation:
 CR(x,y, x’,y’) = (xy   x’ y’) 
  (x y  x’ y’) 
  (x y   x’ y’) 
  (x y   x’y’)

Paths with 3 steps from the initial state:

 I(x0,y0)  path(s0,s1,s2,s3) =

 = I(x0,y0) 
 CR(x0,y0, x1,y1) 
 CR(x1,y1, x2,y2) 
 CR(x2,y2, x3,y3)

SAT based test generation for coverage criteria

 Constructing the Boolean function:
o Encoding paths with k steps from the initial state

o Specifying test criterion: In general, a TG formula

• Reaching (covering) a state

• Executing (covering) a transition

• Traversing (covering) a part of the model, …

 If this formula can be satisfied, then the substitution gives a test

o This test is according to TG and limited to k steps

o If there is no substitution then there is no test for TG in k steps

State
sequence

Model paths
of k length

Test
goal

0 10

1

0
1 (), ,..., : (,)

k

i i
i

k I s Ts Rs s Gs s





  

42

Features of BMC based test generation

 Limitations for test generation

o Test of max. k steps can be generated

o The length of paths can be increased iteratively

o If a test sequence is found then it can be used

o If there is no test found then a longer test sequence may exist

 Mapping the test generation problem to SAT problem can
be made automatically

 The specification of test goals can be simplified

o For C programs: FQL language for test goals (FSHELL tool)
 in /code.c/ cover @line(6),@call(f1) passing @file(code.c) \ @call(f2)

o Specifying pre- and postconditions: Is there a test when the
postcondition is not satisfied (although the precondition holds)?

43

Test generation based on mutations

44

Using fault sets for test generation

 Experience in software testing:
o Coupling effect: Test cases that are efficient to find simple faults are also

efficient for finding more complex faults

o Competent programmer hypothesis: The programs are typically good, and
the majority of faults are often occurring typical faults

 Basic idea:
o Generating “mutant” models that contain typical simple faults,

and generate tests for detecting these faults

o There tests are expected to be more efficient in detecting more complex
faults than random tests

 Typical “mutations”:
o Changing arithmetic operations in conditions

o Changing the ordering of actions, messages

o Omission of actions, messages, function calls

o …

45

Equivalence relation for BMC based test generation

 Inputs and outputs are distinguished in the model
o in(s) – inputs (events) in state s

o out(s) – observable outputs (actions) in state s

o  action: lack of observable output

 Definition of the k-equivalence for the behaviour of two models:

 For the first k steps, providing identical input sequences,
 the outputs of the two models are the same

 Notation:
 Original model M: Mutated model M’:

Predicate for initial state: I(s0) I’(s’0)

State transition relation: R(si, si+1) R’(s’i, s’i+1)

Paths of length k from the initial state:

1

0 1
0

() (,)
k

i i
i

I s R s s






46

Mutation based test generation using k-equivalence

 Construction of a SAT formula for detecting a mutation:
o Providing the same input sequence for the two models

o Traversing paths of k length in the original model

o Traversing paths of k length in the mutant model

o At least one output shall be different in the two models

 If this formula can be satisfied then the substitution defines a test
o The test detects the mutation: An output is different if the mutation is

included in the model

o If there is no substitution then there is no test for k steps

1
'

1

0 1

' ' '' '

1
0

0
00 0

' (out(() (,)) ou(in() in () (,)() t))) (
k

i

kk

i i
i

i

k

i ii
ii

i
i

I sI s R s ss s sR s ss








 

     

The same
inputs

Original
model

Mutant
model

At least one
output is different

47

More general problem: Conformance in testing

 Test generation for mutations:
o Construction of test input sequences that result in different behavior in the

original (fault-free) and in the mutated model

o Expected output sequence of the mutation test: Belonging to the mutation

o These are so-called negative tests (failed test: no mutation)

 How to define the “difference” between two models:
What are the faults/mutations that are allowed?
o Additional behavior besides the specified behavior?

o Omission of some output?

 Typical solutions
o Safety critical systems: Equivalent behavior, strictly according to the

specification (complete specification and implementation are assumed)

o “Common” systems: Conformant behavior, the specification provides the
frame (limits) for acceptable behavior (incomplete specification and
incomplete implementation are allowed)

48

Refinement relations and testing

May preorder

Must preorder

49

Recap: Classification of relations

 Equivalence relations, denoted in general by =
o Reflexive, transitive, symmetric

 Some equivalence relations are congruence:
o If T1=T2, then for all C[] context C[T1]=C[T2]
o The same context preserves the equivalence
o Dependent on the formalism: how to embed in C[]

 Refinement relations, denoted by 
o Reflexive, transitive, anti-symmetric ( partial order)

 Precongruence relation:
o If T1T2, then for all C[] context C[T1]  C[T2]
o The same context preserves the refinement

50

Recap: Modelling behavior and internal actions

a

e f

c b d

a

b

c

d

a

 

c b d

Internal behavior
of the component:
e and f are internal actions

Observable behavior
of the component:
e and f are mapped to 

51

Recap: The notion of “test” and “deadlock”

 “Test” in LTS based behavior checking:
o Test: A sequence of actions that is expected (from initial state)

• Analogy: interactions on ports during testing

• Test steps are actions that may represent: sending or
receiving messages, raising or processing events etc.

 “Deadlock” in LTS based behavior checking:
o A given action cannot be provided by the system in an expected

action sequence (test)

• Analogy: no interaction is possible on a port

• The deadlock is given by the action that is not possible;
it may represent that is not possible to send or receive
message, process an event etc.

o Failure of a test: The action that cannot be provided (deadlock)

o Successful test: The action sequence can be provided

52

May preorder: Definition

 Notation:

 Definition of the may preorder refinement relation:

 For T1 and T2 LTSs with initial states s1 and s2, Act actions:

 Here T2 offers more observable action sequences
 (more possible behaviors that can be observed)

*() observable action sequence (deleted)Act   

* ˆ' if : ' and s s Act s s
 

      

() is the set of observable action sequences from :

 () | ' : '

s s

s s s s






 
    

 

1 2 1 2 iff (s) (s)T T   

53

Example: May preorder

 () , ,s a ab ac 

Two LTSs with observable action sequences:

 () , , , , t a ab ac ad ace 

54

1 2T T

May preorder: Relationship with testing

 In case of
o Each test that may be successful in case of T1,

may also be successful in case of T2
• When a test “may be successful”: due to nondeterministic

behavior or internal actions it may also fail

o The relation preserves the possibly successful tests:
Possibly successful tests of T1 are included in the possibly
successful tests of T2

 Refinement defined by may preorder:
o Possible observable behavior is preserved (not lost)

 To be defined: Another refinement relation:
o Mandatory observable behavior is preserved

o Preserves the tests that are always successful (never fail)

1 2T T

55

Must preorder: Notation for failed tests

  actions, if : there is refuses no '
e

s E Act e E s s    

0 1 0 1

 (),

 if ... infinite sequence, where

dive

 and

rgen

t

i i

s s

s s s s s s






  

'

 on action sequence (),

 if ' prefix of , such

divergen

that ' an

t

d '

s s

s s s


 

 



  

, is a of , if

 either

 or ' : ' and ' refuses

 (i.e., divergent on , or a

failur

fter it r

e

efuses E).

E s

s

s s s s E






 



 

() is the set of all failures for .F s s

56

Must preorder: Definition

Refinement relation: Covering failures

The role of failures:
o Failures: Refusing actions directly of because of divergence

o Less failures: Less possible refusals, more successful
actions (action sequences)

o If the behavior is extended in the usual way then the
number of failures will decrease (actions become possible)

o Reducing nondeterminism may also result in decrease of
the number of failures

1 2 1 2

2 1

 iff F(s) (s)

 i.e., there are less failures in than in .

FT T F

T T

 

57

Must preorder: Relationship with testing

 In case of
o Each test that is always successful in case of T1,

also always successful in case of T2
• T2 has less failures, cannot refuse more actions (tests)

o The refinement preserves the tests that are always
successful:
• Tests that are always successful in T1 are included

in the tests that are always successful in T2

 Characteristics of must preorder:
o The refined LTS preserves observable behaviors that

were already included in the more abstract LTS

 Relation with deadlock possibility:
o The refinement is sensitive to deadlocks

1 2FT T

58

Example: Must preorder

Tests of T1 that are always successful: {a,ab}

 here <a,{c}> is a failure

Tests of T2 that are always successful: {a,ab,ac}
 here <a,{c}> is not a failure

59

Example: Must preorder

Tests of T1 that are always successful: {a,ab}

Tests of T2 that are always successful: {a,ab,ad}
 the set of failures is reduced

60

Conformance relation for testing: IOCO

Input Output Conformance

61

Desirable properties of a conformance relation

 Trace based relation (for test evaluation)
• Goal is to compare the behavior observed during testing and

the behavior described in the specification (to identify faulty behavior)

• For black box testing: Distinguishing inputs, outputs, and internal (invisible)
actions

• Arbitrary interleaving of inputs and outputs (not fixed as input-output pairs)

• The lack of output action is considered as a specific behavior
(i.e., there is fault if the specification does not allow the lack of output)

• Nondeterministic behavior shall be possible

 Model: More precise than LTS
o Action types

• Input actions: Provided by the test driver

• Output actions: Observable by the test evaluator

• Internal (invisible) action: Not controlled by the environment

o Quiescent state:
• There is no output transition labelled by output action or internal action

  Output transition(s) labelled only by input action(s)

62

The IOLTS formalism

 Input-Output Labelled Transition System (IOLTS):

 Actin input, Actout output actions,  internal action

 Properties of an IOLTS:
o Complete, if in each state there is transition defined for each action

o Input complete (weakly input enabled), if in each state there is transition
defined for each input action, possibly after *

• Property of implementation model: Each input is handled somehow

o Deterministic, if there is only a single target state in case of each observable
action sequence

 

0

0

(, , ,)

 is the set of states, initial state

 is the set of actions:

 is the state transition relation

in out

IOLTS S Act s

S s

Act Act Act Act

S Act S



 

  

  

63

IOLTS examples

Coffee automaton IOLTS:

o Actin={1,2} inputs (coins)

• Notation: with ? prefix: ?1, ?2

o Actout={c,t} outputs (coffee or tee)

• Notation: with ! prefix: !c, !t

64

Further notations and transformations

 Notations:
•  observable action sequence
• (T) set of observable action sequences of IOLTS T
• In(s) set of input actions on transitions from state s
• Out(s) set of observable output actions from state s
• Out(S) set of observable output actions from state set S
• Reachable states: with an “after” operator

 Handling quiescent states in a uniform way:
o The quiescent states (i.e., waiting for input) are denoted by

a loop transition labelled with a specific  output action
• This way we get an extended IOLTS T

o In this IOLTS quiescence can be “observed” as output 

 after s' | ' s s s



 

  
 

S after (after)
s S

s 




65

Example: IOLTS extended with quiescence

Coffee automaton IOLTS:

o Actin={1,2} inputs (coins), ? prefix

o Actout={c,t} outputs (coffee or tee), ! prefix

If there is no output action from a state then a
 loop transition is added

Extended with
quiescence:

66

Example: IOLTS made complete

Coffee automaton IOLTS:

o Actin={1,2} inputs (coins), ? prefix

o Actout={c,t} outputs (coffee or tee), ! prefix

Loop transitions for actions that were missing:

Extended with
quiescence:

Then made
input
complete:

67

k-equivalence for IOLTS

 Elements of the definition:
o T IOLTS as “specification” (expected behavior)
o M IOLTS as “implementation” (provided behavior)
o Outputs follow inputs (reactive behavior)

 Definition:

o In the “specification” T and ”implementation” M,
the same input sequence results in
the same output sequence for the first k steps

 Properties
o Simple relation

o Strict for testing (in k steps):
Restrictions, extensions of the behavior are not allowed

68

IOCO relation for IOLTS

 Elements of the definition:
o T IOLTS as “specification” (expected behavior)

o M IOLTS as “implementation”, that is made input complete

o The set of potential actions is the same

 Definition: M ioco T (”M is ioco conform to specification T”)
For all observable action sequence in the specification: In each state that is
reachable by such action sequence, the output actions provided by
implementation M form a subset of the output actions given in specification T

For all observable
action sequence 
in the specification

Observable output
actions in the
implementation
after 

Observable output
actions in the
specification
after 

0, 0,() : Out(after) Out(after)M TT s s
     

69

Properties of IOCO

 Explaining the definition:
o Def.: For all observable action sequence in the specification: In each state

that is reachable by such action sequence, the output actions provided by
implementation M form a subset of the output actions given in specification T

o The specification provides limits for the allowed behavior

o The implementation fits the frame given by the specification

 What are allowed?
o Restricted behavior: The implementation may contain less potential output

action than in the specification
• E.g., in case of a partial implementation, or partial resolution of nondeterminism

o Extended behavior: The implementation may contain outputs after action
sequences that are not included in the specification
• E.g., the specification is not complete (some action sequences are not included)

 What is not allowed?
o Implementation (its outputs) cannot be extended in case of action sequences

that are included in the specification, i.e., it is not allowed to “provide more”

70

specification

specification

Examples for satisfying IOCO

ioco

ioco The implementation
may contain additional
action sequences,
but keeps the behavior for
action sequences given in
the specification

The observable output
actions shall be checked
after each observable
action sequence

71

72

Examples for violating IOCO

not ioco

k0 after ?1 = {!c,} e0 after ?1 = {!c}

not ioco k0 after <?1, , ?1>

l0 after <?1, , ?1>

The implementation
extends the behavior in
case of action
sequences given in the
specification

specification

specification

Summary of IOCO features

Input-output conformance relation (IOCO) by Tretmans, 1996:
 This relation is designed for functional black box testing of systems

with inputs and outputs

 Inputs are under control of the environment, i.e. the tester, while
outputs are under control of the implementation under test

 IOCO allows one to use incomplete specifications

 The specification and the implementation can be non-deterministic

 The models used for IOCO allow arbitrary interleaving of inputs and
outputs

 IOCO considers the absence of outputs as error if this behavior is
not allowed by the specification

These properties make input-output conformance testing
applicable to practical applications

73

Summary of the studied behavioral equivalences

 Equivalences: For verification
o Trace equivalence:
o Strong bisimulation:
o Observation equivalence:

 Preorders: For model refinement

oMay preorder:
o Must preorder:

 Conformance relation: For testing

o k-equivalence
o Input-output conformance (IOCO)

' iff (s)= (s')T T  

~ ' iff : (, ')T T B s s B 

' iff : (, ')T T WB s s WB  

' iff (s) (s')T T   

' iff F(s) (s')FT T F 

74

Other techniques and tools
for model based test generation

77

Using a planner for test generation

 Planning problem in AI

o Construction of an action sequence to reach a goal state from an
initial state (using a set of actions with conditions and effects)

 Elements of the planning problem for test generation:

o Initial state: Initial state of application (model)

o Goal state: State to be reached (covered)

o Actions: Activities (functions) executed on the basis of inputs in the
application

 Test: Determined by the generated action sequence

o Instances of actions: Determine required inputs for triggering

o Partial ordering of actions (as given by mapping the conditions and
effects)  partial ordering of inputs

o Test input sequence results from linearization of the input sequence

78

Application for GUI testing (1): GUI model

Operator model of the GUI: Basis of model based test generation

 System objects
o Elements of the background application: text, data, files, …

 Events on the GUI
o Menu events (ME): Expanding operations (e.g. File/Save)

o Focus extension events (FEE): Opening new windows, palettes, etc.

o System related events (SRE): Changing the state of system objects

 Operators
o GUI operators: Combining ME and FEE

• Using GUI widgets (e.g., opening a new file selection window by File/Open)

o System related operators: (ME,FEE)*SRE

• Initiating the change of system objects (e.g., Edit/Cut and its effect on the text)

o Composite (abstract) operators: Sequences of basic operators

• E.g., saving a file to a selected folder

Application for GUI testing (2): Testing approach

Scenario based testing approach:

1. Specifying test elements and goals
o Identification of operators and system objects

o Identification of use case scenarios (with initial and goal state)

2. Construction of operator sequences
o Implementation of the use cases with composite operators

3. Mapping each operator sequence to a concrete event sequence
o Test sequence is defined by the GUI event sequence

o Composite operators can be resolved by a planner

Application for GUI testing (3): Using the planner

Solving a planning problem for test generation:
 Elements of the planning problem for GUI testing:

o Initial state: Initial state of the GUI and system objects

o Goal state: GUI and system state to be reached (covered)

o Actions (with conditions and effects): GUI operators and events, variables of
operators are system objects

 Solution by the planner: Plan to reach goal state from the initial state

o Actions are identified (with partial ordering)  GUI operators and events

o Conditions and effects of actions  Conditions and changes in system objects

o Variables of actions  Instantiated with system objects

 Test sequence is derived by ordering (linearization)

Application for GUI testing (4): Example

High level
plan:

Resulting
sequence:

Mapping
with planner:

Application for GUI testing (5): Example (mod.)

High level
plan:

Resulting
sequence:

Mapping
with planner:

Using evolutionary algorithms for test generation

 Evolutionary algorithms (e.g., genetic algorithms)
o Modifying an initial test suite generated by random walk

o Modifications: mutation of a test input sequence, merging
test input sequences (parts of sequences)

o Test suite that has better properties w.r.t. given test criteria
is kept for further modifications

 Test criteria:
o Control flow based criteria: Coverage of states, branches,

conditions, paths, …

o Data flow based criteria: All-defs, all-uses coverage

o Test length, execution time, …

 Example tool:
o Java: DOTgEAr

84

Recap: Using symbolic execution

 Static program analysis technique: Here applied for models (e.g., CFA)
o Following computation of paths with symbolic variables

o Deriving reachability conditions as constraints

o Constraint solving (e.g., SMT solver): Yields inputs to execute a given path

 Test input generation: Inputs for covering the paths of the program
o Generation of expected outputs by path simulation

o Checking generic correctness criteria (lack of exceptions, no crash)

 Challenges
o Loops (with a large number of paths)

o Complex types and operations (to be supported by the SMT solver)

o Handling dependencies and libraries

 Example tools
o Java: Symbolic PathFinder (based on Java PathFinder)

o .Net: PEX, IntelliTest

o C: KLEE, CUTE, EXE

85

Examples for automated test generation tools (1)

 Test generation with model checkers
o FSHELL: For C programs

• CBMC (bounded model checker) generates a counterexample to
be used as test sequence for a specified test goal

o BLAST:
• Counterexample generated: Abstract test case for a test goal

• Includes symbolic execution (for CEGAR): Generated test data

o UPPAAL CoVer, TRON:
• Modeling time-dependent behavior by timed automata

• Counterexamples for non-coverage are generated by the UPPAAL
model checker

• Conformance relation for testing:
Relativized timed input-output conformance (RTIOCO) –
consistent with IOCO in untimed models

86

Examples for automated test generation tools (2)

 Testing based on abstract data types

o Test inputs are generated on the basis of the axioms given in
the abstract data type
• Equivalence partitions, boundary values can be used

 Tools supporting specific modeling languages

o Conformiq: For UML (statechart) models

o AGATHA: UML, SDL, STATEMATE models
• Generating path conditions and constraint solving to get test inputs

o Autolink: SDL and MSC models are supported

o STG: For LOTOS language

o TDE/UML: Coverage criteria and constraints can be specified

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models

88

Abstract data types: Operations with axioms

Type Boolean is

 sorts Bool

 opns

 false, true : -> Bool

 not : Bool -> Bool

 and : Bool, Bool -> Bool

 eqns

 forall x, y: Bool

 ofsort Bool

 not(true) = false;

 not(false) = true;

 x and true = x;

Examples for automated test generation tools (2)

 Testing based on abstract data types

o Test inputs are generated on the basis of the axioms given in
the abstract data type
• Equivalence partitions, boundary values can be used

 Tools supporting specific modeling languages

o Conformiq: For UML (statechart) models

o AGATHA: UML, SDL, STATEMATE models
• Generating path conditions and constraint solving to get test inputs

o Autolink: SDL and MSC models are supported

o STG: For LOTOS language

o TDE/UML: Coverage criteria and constraints can be specified

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models

89

Example: MOGENTES project for model based test generation

90

Example: Model checking based TCG in MOGENTES

Transformation

from UML to SMTE

Transformation

from SMTE to UPPAAL

UML statechart

model SMTE model

UPPAAL model

Test goals

State Machine with Time Extension:

Flattened state machine

• Structure for classes

• Timed automata

• Event queue handling

• Tracing

• Coverage

UPPAAL based TCG

(verifyta, CoVer)
Trace

Abstract

test case
Mapping

91

Example: Mutation based TCG in MOGENTES (1)

UML based TCG:

 Generation of mutations:
o Applied on UML models

o Based on a fault library defined
on models

 Internal formalism:
o OO Action System

o Guarded action language

 Test generation:
o Detect mutation based on IOCO

relation

o SMT solver is used

o Bounded length of the test
cases can be specified

UML2AS

transformations

Parameterized UML

model

Mutation

generator

Mutated UML model

UML to OOAS

transformation

Reference OOAS

model

Mutated OOAS

model

UML to OOAS

transformation

OOAS to AS

transformation

Reference AS model Mutated AS model

OOAS to AS

transformation

TCG with AS (Ulysses)

Qualitative

Action

Systems

Fault

model

Abstract Test Suite

92

Example: Mutation based TCG in MOGENTES (2)

Simulink based TCG:

 Generation of mutations:
o Applied on C programs

generated from Simulink
models (with automated code
generator)

o Based on a fault library defined
on source code

 Bounded model checking:
o CBMC for C programs

 Test generation:
o Detect mutation based on IOCO

relation

Simulink model

Simulink to AS

transformation

CBMC guarded

assignments

TCG with CBMC

SAT/SMT solver

SMT formula

CBMC

Mutated internal model

Conformance transformation

Miter model

Abstract Test Suite

Mutation

generator Fault model

result

93

Summary

 Model based test case generation

o On the basis of coverage criteria

• Control flow oriented: states, transitions coverage

• Data flow oriented: def-use coverage

o On the basis of mutations

• Using conformance relations (k-equivalence, IOCO) for distinguishing original
and mutated behavior

 Algorithms and tools

o Direct (graph-based) algorithms

o Model checkers: Counterexample as test case

o Planner algorithms: Goal-oriented action sequence

o Evolutionary algorithms: Optimizing (random) test suite

o Symbolic execution: Path coverage

o Test for (abstract) data types: On the basis of operators’ axioms

94

