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Typical development steps and V&V tasks 

Requirement 
analysis 

System 
specification 

Architecture 
design 

Module  
design 

Module 
implementation 

System 
integration 

System  
delivery 

Operation, 
maintenance 

• Checking completeness, consistency, feasibility, verifiability 
• Assuring traceability 

• Trade-off analysis, interface analysis, fault effects analysis 
• Model based quantitative evaluation 

• Formal verification by (temporal logic based) model checking 
• Equivalence checking 

• Source code analysis 
• Software model checking with abstraction 
• Proof of program correctness by theorem proving 
• Module testing (unit testing)  model based techniques 

2 



Overview 

 Introduction 
o The role of models in testing 
o Use cases for model based testing 

 Test case generation for test coverage metrics 
o Using graph-based (direct) algorithms 
o Using model checkers 
o Using bounded model checkers 

 Test case generation on the basis of mutations 
o Model mutations 

 Conformance and refinement relations for testing 
o May and must preorder, IOCO 

+ Tools for model based test case generation 
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Introduction 
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Common practice: UML models in manual testing 

 Use case diagrams: 
o Validation (acceptance) testing: Covering use cases 

 Class and object diagrams 
o Module testing: Identifying sw components, interfaces 

 State machine and activity diagrams: 
o Module testing: Reference for structure based testing 

 Sequence and collaboration diagrams: 
o Integration testing: Identifying scenarios 

 Component diagram: 
o System testing: Identifying physical components 

 Deployment diagram: 
o System testing: Designing test configuration 
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Model based test case generation: Typical approach 

Test cases on the basis of the specification 

Design model  
(specification) 

Formal verification 
(e.g., model checking) 

Implementation 

Test cases 

Manual coding 

Test case generation 

Automated 
code generation 
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Use cases for model based testing 

 In case of manual coding: Conformance checking 

 

 

 

 

 In case of automated code generation: Validation 

Model 

Implementation 

Abstract test cases 

Concrete test cases 

manual 
coding 

test generation 

mapping 
automated 
testing 

Model 

Implementation 

Abstract test cases 

Concrete test cases 

code 
generation 

test generation 

mapping 
manual  
evaluation 

validation 
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Abstract and concrete test cases 
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Source: M. Utting, A. Pretschner, B. Legeard. „A taxonomy of model-based testing approaches”, STVR 2012; 22:297–312 

State, path, 
requirement 

coverage 

Abstract  
test cases: 

events, actions 

Concrete test 
cases: inputs, 
function calls 



The role of models 
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Using the design models 
as specifications:  
Testing the conformance 
of the model and the 
implementation 

Using separate  
test models: 
Specifying what to 
test, how to test 

A. Pretschner, J. Philipps. „Methodological Issues in Model-Based Testing”, Model-Based Testing of Reactive Systems, 2005. 



Basic tasks for model based testing (MBT) 

 Based on the model and the test criteria: 

o Test case generation (for coverage or behavior conformance) 

o Test oracle generation (synthesis)  

o Test coverage analysis (for the model) 

o Conformance verdict (between model and implementation) 

Test criteria 

Test case 
generation 

Model 

Test oracle 
Coverage Conformance 

Implementation 

Test cases 
Testing 
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Example open source tool: GraphWalker 

11 

 Finite state machine modell + simple guards 

 Tests for state and transition coverage 

 Traversing the graph: random walk, graph based search, shortest path 

 Generating JUnit test stubs (adapter) 

Source: GraphWalker 

http://graphwalker.github.io/introduction/


Example industrial MBT tool: Conformiq 

 State machine models + Java action code 

 Tests for state, transition, requirement coverage 

 Integration with other tools for testing 
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Example industrial MBT tool: SpecExplorer 

 C# model program + adapter code 

 Tests for covering scenarios, action patterns 

Source: https://visualstudiogallery.msdn.microsoft.com/ 
271d0904-f178-4ce9-956b-d9bfa4902745 
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Overview of algorithms for model based test generation 

 Graph-based algorithms 
o Model represented as a graph + traversal/search in this graph 

 Application of model checkers 
o Counterexample is a test sequence for specified coverage 
o Symbolic or bounded model checkers 

 Mutation based test generation algorithms 
o Test goal: Detect model mutations  detect code bugs 

 Planner based methods 
o The planner constructs an operation sequence for a test goal 

 Evolutionary algorithms (e.g., genetic algorithms) 
o Modifying an initial test suite generated by random walk 
o Optimization: increase coverage, reduce test length, … 

 Symbolic execution 
o Control flow automata model 
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Graph-based algorithms for test 
generation 
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Typical applications of graph-based algorithms 

 Model: Represents state based, event driven behavior 
o Transitions triggered by input events 

o Actions are given as outputs 

 Basic formalisms: 
o Finite state automata (FSM; Mealy, Moore, Büchi, …) 

o Higher level formalisms mapped to automata (UML statecharts, SCADE Safe 
Statechart, Simulink Stateflow, …) 

 Typical applications 
o User interfaces, web based applications 

o Embedded controllers 

o Communication protocols 

 Graph based algorithms 
o Different algorithms for various testing tasks and test criteria 

o Generating optimal test suite: Typically NP-complete 
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Graph-based algorithm for transition coverage 

 Mapping the problem 
o Testing problem: Coverage of transitions 

• All transitions shall be covered by a test sequence 

• The test sequence shall go back to the initial state 

o Graph-based problem: ”New York street sweeper” problem 

• In a directed graph, what is the (shortest) path that covers all transitions and 
goes back to the initial state? 

• (The same problem in undirected graphs: ”Chinese postman” problem) 

 Basic idea for the algorithm: Euler-graph  Euler-circuit 
o Computing the polarity of vertices: nr. of incoming minus outgoing edges 

o Duplicating edges that lead from a vertex with positive polarity to vertex 
with negative polarity, until all edges have zero polarity 

o Finding an Euler-circuit in the resulting graph (linear algorithm) 

• Euler-circuit: All edges are covered, it can always be constructed in such graph 

o The traversal of the Euler-circuit defines the test sequence 
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Example: Transition coverage 

Original graph with 
polarities of vertices 

Sequence for traversal (Euler-circuit): 

  a b c b f e g d e g 

Graph with duplicated edges 

(this way having an Euler-graph) 
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Graph-based algorithm for covering transition pairs 

 Mapping the problem 
o Testing problem: Coverage of transition sequences 

• All possible sequences of n subsequent transitions shall 
be covered by a test sequence 

• The test sequence shall go back to the initial state 

• Simplest case: Covering all transition pairs 

o Graph-based problem: “Safecracker” sequence 

• (Shortest) edge sequence that includes all possible sequences of n subsequent 
edges (simplest case: n=2) 

 Basic idea of the algorithm for n=2 (de Bruijn algorithm): 
o Constructing a dual graph 

• Edges of the original graph are mapped to vertices 

• If there is a pair of subsequent edges in the original graph then an edge is drawn 
in the dual graph between the vertices that represent these edges 

o Forming an Euler-graph (by duplicating edges) 

o Finding an Euler-circuit that defines the test sequence 
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Example: Covering transition pairs 

Original graph 

Sequence for traversal that cover all transition pairs: 

  a b c b f e c b g d e f e g 

Dual graph with edges representing 
edge pairs in the original graph 
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Graph-based algorithm for concurrent testing 

 Mapping the problem 
o Testing problem: Covering all transitions by concurrent testers 

• Goal is complete transition coverage 

• There are several testers that share (preferably equally)  
the testing task to finish it in the shortest time 

• All testers start in the initial state 

• Condition: The tested system shall be resetable to the initial state 

o Graph-based problems: ”Street sweepers brigade” problem 

 Solution with heuristics (not an optimal solution) 
o Giving an upper limit k of the length of the test sequence for each tester 

o Generating an edge sequence in the Euler-graph that contains the highest 
number of edges that were not covered yet, and consists of at most k edges 

o Generating additional test sequences until uncovered edge exists 

o Trying to lower the limit k until the number of testers can be increased  
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Example for concurrent transition coverage 

Original test sequence (Euler-circuit, for 1 tester): 
  a b c b f e g d e g 
A potential set of concurrent test sequences (k=7): 

o Tester 1:  a b c b f e g 
o Tester 2:  d e g 

 A better set of concurrent test sequences (k=5): 
o Tester 1:  a b c b g 
o Tester 2:  d e f e g 
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Test generation by model checking 
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Basic idea 

 Typical test coverage criteria (for the model): 
o Control flow based:  

• State coverage, transition coverage 

• Incoming-outgoing transition pairs coverage 

o Data flow based:  
• Variable definition and usage coverage (for all variables) 

 Required for test generation: 
o Traversal of the state space  Model checker can perform it 

 Basic idea: 
o Let the model checker traverse the state space 

o Let control the model checker in such a way that the counter-
examples generated by the model checker form test sequences 

o Proper requirements (temporal logic properties to be checked) 
are needed – depending on the coverage criteria 
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PowerOff 

LineOk 

LineWeak 

Ready 

keyNo 

keyYes 

Error 

3. The counterexample generated 

by the model checker demonstrates 

that the given state can be reached  

4. The counterexample is a test 

sequence covering the state 

LineWeak 

Basic idea: Using a model checker for test generation 

2.Specifying property for the 

model checker: The state 

LineWeak cannot be reached:  

 EF LineWeak 

1. Test sequence to be generated: 

Coverage of the state LineWeak 
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Formal model 

 

 Engineering 
model 

 Test coverage 
criteria 

Model 
checker 

 Set of TL formula 

 Counterexamples 
as test sequences 

Framework for automated test generation 
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UML 
statechart 

 Test coverage 
criteria 

 
SPIN model 

checker 
 

 LTL formula 

  
PROMELA 

model 
 

 XML based 
test sequences 

A possible implementation of the framework 
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Representing test coverage criteria by TL formula 

 Labels in the model for variable v (predicates): 
o def(v) 

o c-use(v) 

o p-use(v) 

o implicit-use(v) 

 Characteristic functions (with state variables): 
o s: being in state s 

o t: executing a given transition t (reaching the target state from 
the source state) 

 State sets ( represented by characteristic functions): 
o d(v): all def(v) 

o u(v): all c-use(v) or p-use(v) 

o im-u(v): all implicit-use(v) 

o start: state for starting new test (e.g., initial state) 

Using the variable in condition for an 
implicit transition 
Implicit transition: The state does not 
change if the condition of the implicit 
transition holds 
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Formula for control flow based coverage criteria 

 State coverage: 
{EF s |  s basic state} 

  

 If a predefined start state shall be reached for the 
subsequent test: 
{EF (s  EF start) |  s basic state} 
   (EF start is omitted from the next formula) 

 
 Weak transition coverage: 

{EF t |  t transition} 

 Strong transition coverage: 
{EF t |  t transition}   {EF it |  it implicit transition} 

Strong coverage: Implicit 
transitions (not leaving the 
given state) are also tested 

Set of formula is defined 
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Recap: Data flow based test coverage criteria 

 All-defs: 

 

 

 

 

 All-uses: 

use v use v use v 

def v For all v, from all def v: 

at least one  
def-clear path: 

to at least  
one use v: 

For all v, from all def v: 

at least one  
def-clear path: 

to all use v: 
use v use v use v 

def v 
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Formula for data flow based test coverage criteria 

 Weak all-defs coverage: 
{EF (t  EX E(d(v) U u(v))) | v variable, td(v)} 
 

 Weak all-uses coverage: 
{EF (t  EX E(d(v) U t’))  | v variable, td(v), t’u(v)} 

 
 Strong all-defs coverage: 

{EF (t  EX E(d(v) U (u(v)  im-u(v))))  
| v variable, td(v)} 

 Strong all-uses coverage: 
{EF (t  EX E(d(v) U t’))  

| v variable, td(v), t’ u(v)  im-u(v)} 

One def-clear path traversed from all 
def(v) to one use(v) 

One def-clear path traversed from all 
def(v) to all use(v) 

Implicit variable usage: in conditions for 
not leaving the state 
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Features of model checker based test generation  

 Capabilities of model checkers: 

o Generating (typically) a single counterexample 

o Test sequences are hard to generate for coverage criteria 
that require all paths (this way all counterexamples) 

• E.g., all-du-paths criterion  
(all def-clear path for a given def-use pair) 

 Abstract test sequences are generated 

o Defining the sequence of inputs 

o Expected outputs shall be determined (e.g., by simulation 
in the model) 

o Mapping is needed to concrete test sequences: concrete 
steps (calls) in a concrete test execution environment 
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Optimization of test sequences 

 Task of model checking: 

o Efficient traversal of the state space: Fast, with low memory needs 

 Required for test generation: 
Finding fast a counterexample that is as short as possible 

→ Specific settings are needed in the model checker 

o Generating the shortest test sequences: NP-complete problem 

 Possible settings (e.g., in case of model checker SPIN): 

o Breadth first search (BFS) in the state space 

o Depth first search, but with limited depth (limited DFS) 

o Finding shorter test sequences in an iterative way 

o Approximate model checking (hash function for storing checked states) 

• Some states (also covered by the hash function) will not be traversed 

• If a counterexample is found then it is a real test sequence for coverage 
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Example: Results for generating test sequences 

Options 
(compile time 
or run-time) 

Time required  
for test 

generation 

Length of  
all test  

sequences 

Longest test 
sequence 
generated 

 -I 22m 32.46s 17 3 

-dBFS 11m 48.83s 17 3 

 -i -m1000 4m 47.23s 17 3 

 -I  2m 48.78s 25 6 

 default 2m 04.86s 385 94 

 -I -m1000 1m 46.64s 22 4 

 -m1000 1m 25.48s 97 16 

-m200 –w24 46.7s 17 3 

Settings: 
• -i iterative, -I approx. iterative 
• -dBFS breadth first search 
• -m limit for depth first search 
• -w hash table size 

State machine model of the 
behavior of a mobile phone 
(10 states, 11 transitions)  
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• Timed automata models 
• Specific model checker: UPPAAL 

Clock variables: 
Modelling time dependency 
(conditions, state invariants) 

Extension of MBT to testing time-dependent behavior 
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State: 
( input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait ) 
t=0 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5  
 
Delay: 6 
 
State: 
( input.sending mobile.PowerOn mobile1.LineOK mobile2.CallWait ) 
t=6 inputEvent=28 outputEvent=14 in_PowerOn=1 #depth=5  
 
Transitions: 
input.sending->input.sendInput { 1, inputChannel!, 1 } 
mobile2.CallWait->mobile2.VoiceMail { inputEvent == evKeyYes && t > 

5 && in_PowerOn, inputChannel?, 1 } 

Delays are included between the 
inputs of the test sequence 

Generated counterexamples with timing 
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Test generation by bounded model 
checking 

39 



Recap: Bounded model checking 

 Using SAT solvers for checking reachability of specific states 
o Given a Boolean formula (Boolean function), SAT solver generates a variable 

assignment (substitution) that makes the formula true 

 Mapping the verification problem to Boolean function: 
o Predicate for initial states: I(s) 

o Predicate for specified “bad” states: p(s)  

o State transition relation: R(s, s’) 

o “Stepping forward” along the state transitions: R(si, si+1) 

 The characterization of a counterexample (with conjunction): 

o Starting from the initial state: I(s)  

o „Stepping” along the transition relation: CR(s,s’)  

o Specifying that p(si) holds somewhere along the path 
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Recap: Encoding a model 

Initial state: 
   I(x,y) = (xy) 

s1 

s2 

s3 

(0,0) 

(0,1) 

(1,1) 

(0,0) (0,1) (1,1) 

s0: 

s1: 

s2: 

s3: 

41 

Transition relation: 
   CR(x,y, x’,y’) = (xy   x’  y’)  
              (x  y      x’  y’)  
              (   x  y   x’  y’)  
              (   x  y   x’y’) 

Paths with 3 steps from the initial state: 

     I(x0,y0)  path(s0,s1,s2,s3) =  

        = I(x0,y0)  
   CR(x0,y0, x1,y1)  
   CR(x1,y1, x2,y2)  
   CR(x2,y2, x3,y3) 



SAT based test generation for coverage criteria 

 Constructing the Boolean function: 
o Encoding paths with k steps from the initial state 

o Specifying test criterion: In general, a TG formula 

• Reaching (covering) a state 

• Executing (covering) a transition 

• Traversing (covering) a part of the model, … 

 

 

 

 

 

 
 If this formula can be satisfied, then the substitution gives a test 

o This test is according to TG and limited to k steps 

o If there is no substitution then there is no test for TG in k steps 

State 
sequence 

Model paths  
of k length 

Test 
goal 

0 10

1

0
1 ( ), ,..., : ( , )

k

i i
i

k I s Ts Rs s Gs s





  
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Features of BMC based test generation 

 Limitations for test generation 

o Test of max. k steps can be generated 

o The length of paths can be increased iteratively 

o If a test sequence is found then it can be used 

o If there is no test found then a longer test sequence may exist 

 Mapping the test generation problem to SAT problem can 
be made automatically 

 The specification of test goals can be simplified 

o For C programs: FQL language for test goals (FSHELL tool) 
    in /code.c/ cover @line(6),@call(f1) passing @file(code.c) \ @call(f2) 

o Specifying pre- and postconditions: Is there a test when the 
postcondition is not satisfied (although the precondition holds)? 
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Test generation based on mutations 
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Using fault sets for test generation 

 Experience in software testing: 
o Coupling effect: Test cases that are efficient to find simple faults are also 

efficient for finding more complex faults 

o Competent programmer hypothesis: The programs are typically good, and 
the majority of faults are often occurring typical faults 

 Basic idea:  
o Generating “mutant” models that contain typical simple faults,  

and generate tests for detecting these faults 

o There tests are expected to be more efficient in detecting more complex 
faults than random tests 

 Typical “mutations”: 
o Changing arithmetic operations in conditions 

o Changing the ordering of actions, messages 

o Omission of actions, messages, function calls 

o … 
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Equivalence relation for BMC based test generation 

 Inputs and outputs are distinguished in the model 
o in(s) – inputs (events) in state s 

o out(s) – observable outputs (actions) in state s 

o  action: lack of observable output 

 Definition of the k-equivalence for the behaviour of two models:  

  For the first k steps, providing identical input sequences,  
 the outputs of the two models are the same 

 

 Notation: 
        Original model M:     Mutated model M’: 

Predicate for initial state:     I(s0)    I’(s’0) 

State transition relation:      R(si, si+1)   R’(s’i, s’i+1) 

 
Paths of length k from the initial state: 

1

0 1
0

( ) ( , )
k

i i
i

I s R s s






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Mutation based test generation using k-equivalence 

 Construction of a SAT formula for detecting a mutation: 
o Providing the same input sequence for the two models 

o Traversing paths of k length in the original model 

o Traversing paths of k length in the mutant model 

o At least one output shall be different in the two models 

 

 

 

 
 

 If this formula can be satisfied then the substitution defines a test 
o The test detects the mutation: An output is different if the mutation is 

included in the model 

o If there is no substitution then there is no test for k steps 

1
'

1

0 1

' ' '' '

1
0

0
00 0

' (out(( ) ( , ) ) ou(in( ) in ( ) ( , )( ) t ))) (
k

i
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i i
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i

k

i ii
ii

i
i

I sI s R s ss s sR s ss








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     

The same 
inputs 

Original 
model 

Mutant 
model 

At least one 
output is different 
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More general problem: Conformance in testing 

 Test generation for mutations: 
o Construction of test input sequences that result in different behavior in the 

original (fault-free) and in the mutated model 

o Expected output sequence of the mutation test: Belonging to the mutation 

o These are so-called negative tests (failed test: no mutation) 

 How to define the “difference” between two models: 
What are the faults/mutations that are allowed? 
o Additional behavior besides the specified behavior? 

o Omission of some output? 

 Typical solutions 
o Safety critical systems: Equivalent behavior, strictly according to the 

specification (complete specification and implementation are assumed) 

o “Common” systems: Conformant behavior, the specification provides the 
frame (limits) for acceptable behavior (incomplete specification and 
incomplete implementation are allowed) 
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Refinement relations and testing 

May preorder 

Must preorder 
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Recap: Classification of relations 

 Equivalence relations, denoted in general by = 
o Reflexive, transitive, symmetric 

 Some equivalence relations are congruence: 
o If T1=T2, then for all C[ ] context C[T1]=C[T2] 
o The same context preserves the equivalence 
o Dependent on the formalism: how to embed in C[ ] 
 

 Refinement relations, denoted by  
o Reflexive, transitive, anti-symmetric ( partial order) 

 Precongruence relation: 
o If T1T2, then for all C[ ] context C[T1]  C[T2] 
o The same context preserves the refinement 
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Recap: Modelling behavior and internal actions 

a 

e f 

c b d 

a 

b 

c 

d 

a 

  

c b d 

Internal behavior 
of the component: 
e and f are internal actions 

Observable behavior 
of the component: 
e and f are mapped to  
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Recap: The notion of “test” and “deadlock” 

 “Test” in LTS based behavior checking: 
o Test: A sequence of actions that is expected (from initial state) 

• Analogy: interactions on ports during testing 

• Test steps are actions that may represent: sending or 
receiving messages, raising or processing events etc. 

 “Deadlock” in LTS based behavior checking: 
o A given action cannot be provided by the system in an expected 

action sequence (test) 

• Analogy: no interaction is possible on a port 

• The deadlock is given by the action that is not possible;  
it may represent that is not possible to send or receive 
message, process an event etc. 

o Failure of a test: The action that cannot be provided (deadlock) 

o Successful test: The action sequence can be provided 
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May preorder: Definition 

 Notation: 

 
 
 
 
 

 

 Definition of the may preorder refinement relation: 

 For T1 and T2  LTSs with initial states s1 and s2, Act actions: 
 

 

 Here T2 offers more observable action sequences 
 (more possible behaviors that can be observed) 

*( )  observable action sequence (  deleted)Act   

* ˆ'   if  : '  and  s s Act s s
 

      

( ) is the set of observable action sequences from : 

      ( ) | ' : '  

s s

s s s s






 
    

 

1 2 1 2  iff  (s ) (s )T T   
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Example: May preorder 

 ( ) , ,s a ab ac 

Two LTSs with observable action sequences: 

 ( ) , , , ,  t a ab ac ad ace 

54 

1 2T T



May preorder: Relationship with testing 

 In case of 
o Each test that may be successful in case of T1,  

may also be successful in case of T2 
• When a test “may be successful”: due to nondeterministic 

behavior or internal actions it may also fail 

o The relation preserves the possibly successful tests: 
Possibly successful tests of T1 are included in the possibly 
successful tests of T2 

 Refinement defined by may preorder: 
o Possible observable behavior is preserved (not lost) 

 To be defined: Another refinement relation: 
o Mandatory observable behavior is preserved 

o Preserves the tests that are always successful (never fail) 

1 2T T
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Must preorder: Notation for failed tests 

    actions, if : there is refuses no '
e

s E Act e E s s    

0 1 0 1

  ( ), 

      if ... infinite sequence, where

dive

  and

rgen

 

t

i i

s s

s s s s s s






  

'

  on  action sequence ( ), 

      if '  prefix of ,  such 

divergen

that '  an  

t

d '

s s
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Must preorder: Definition 

Refinement relation: Covering failures 

 

 
 

The role of failures: 
o Failures: Refusing actions directly of because of divergence 

o Less failures: Less possible refusals, more successful 
actions (action sequences) 

o If the behavior is extended in the usual way then the 
number of failures will decrease (actions become possible) 

o Reducing nondeterminism may also result in decrease of 
the number of failures 

1 2 1 2

2 1

  iff  F(s ) (s )

     i.e., there are less failures in  than in .

FT T F

T T

 
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Must preorder: Relationship with testing 

 In case of  
o Each test that is always successful in case of T1,  

also always successful in case of T2 
• T2 has less failures, cannot refuse more actions (tests) 

o The refinement preserves the tests that are always 
successful: 
• Tests that are always successful in T1 are included  

in the tests that are always successful in T2 

 Characteristics of must preorder: 
o The refined LTS preserves observable behaviors that 

were already included in the more abstract LTS 

 Relation with deadlock possibility: 
o The refinement is sensitive to deadlocks 

1 2FT T
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Example: Must preorder 

Tests of T1 that are always successful: {a,ab} 

          here <a,{c}> is a failure 

Tests of T2 that are always successful: {a,ab,ac} 
         here <a,{c}> is not a failure 
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Example: Must preorder 

Tests of T1 that are always successful: {a,ab} 

Tests of T2 that are always successful: {a,ab,ad} 
  the set of failures is reduced 
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Conformance relation for testing: IOCO 

Input Output Conformance 
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Desirable properties of a conformance relation 

 Trace based relation (for test evaluation) 
• Goal is to compare the behavior observed during testing and  

the behavior described in the specification (to identify faulty behavior) 

• For black box testing: Distinguishing inputs, outputs, and internal (invisible) 
actions 

• Arbitrary interleaving of inputs and outputs (not fixed as input-output pairs) 

• The lack of output action is considered as a specific behavior 
(i.e., there is fault if the specification does not allow the lack of output) 

• Nondeterministic behavior shall be possible 

 Model: More precise than LTS 
o Action types 

• Input actions: Provided by the test driver 

• Output actions: Observable by the test evaluator 

• Internal (invisible) action: Not controlled by the environment 

o Quiescent state:  
• There is no output transition labelled by output action or internal action 

     Output transition(s) labelled only by input action(s) 
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The IOLTS formalism 

 Input-Output Labelled Transition System (IOLTS): 
 

 

 

 

 

 

 Actin input, Actout output actions,  internal action 

 Properties of an IOLTS: 
o Complete, if in each state there is transition defined for each action 

o Input complete (weakly input enabled), if in each state there is transition 
defined for each input action, possibly after *  

• Property of implementation model: Each input is handled somehow 

o Deterministic, if there is only a single target state in case of each observable 
action sequence 

 

0

0

( , , , )

    is the set of states,  initial state

    is the set of actions: 

    is the state transition relation

in out

IOLTS S Act s

S s

Act Act Act Act

S Act S



 

  

  
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IOLTS examples 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins) 

• Notation: with ? prefix: ?1, ?2 

o Actout={c,t} outputs (coffee or tee) 

• Notation: with ! prefix: !c, !t  
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Further notations and transformations 

 Notations: 
•  observable action sequence 
• (T) set of observable action sequences of IOLTS T 
• In(s) set of input actions on transitions from state s 
• Out(s) set of observable output actions from state s 
• Out(S) set of observable output actions from state set S 
• Reachable states: with an “after” operator 
 
 

 Handling quiescent states in a uniform way: 
o The quiescent states (i.e., waiting for input) are denoted by 

a loop transition labelled with a specific  output action 
• This way we get an extended IOLTS T   

o In this IOLTS quiescence can be “observed” as output  

 after  s' | '  s s s



 

  
 

S after  (  after )  
s S

s 



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Example: IOLTS extended with quiescence 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins), ? prefix 

o Actout={c,t} outputs (coffee or tee), ! prefix 

If there is no output action from a state then a 
 loop transition is added 

Extended with 
quiescence: 
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Example: IOLTS made complete 

Coffee automaton IOLTS: 

o Actin={1,2} inputs (coins), ? prefix 

o Actout={c,t} outputs (coffee or tee), ! prefix 

Loop transitions for actions that were missing: 

Extended with 
quiescence: 

Then made 
input  
complete: 
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k-equivalence for IOLTS 

 Elements of the definition: 
o T IOLTS as “specification” (expected behavior) 
o M IOLTS as “implementation” (provided behavior) 
o Outputs follow inputs (reactive behavior) 

 Definition: 

o In the “specification” T and ”implementation” M,  
the same input sequence results in  
the same output sequence for the first k steps 

 Properties 
o Simple relation 

o Strict for testing (in k steps): 
Restrictions, extensions of the behavior are not allowed 
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IOCO relation for IOLTS 

 Elements of the definition: 
o T IOLTS as “specification” (expected behavior) 

o M IOLTS as “implementation”, that is made input complete 

o The set of potential actions is the same 

 Definition: M ioco T (”M is ioco conform to specification T”) 
For all observable action sequence in the specification: In each state that is 
reachable by such action sequence, the output actions provided by 
implementation M form a subset of the output actions given in specification T 

For all observable 
action sequence  
in the specification 

Observable output  
actions in the 
implementation 
after  

Observable output  
actions in the 
specification 
after  

0, 0,( ) : Out( after ) Out( after )M TT s s
     
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Properties of IOCO 

 Explaining the definition:  
o Def.: For all observable action sequence in the specification: In each state 

that is reachable by such action sequence, the output actions provided by 
implementation M form a subset of the output actions given in specification T 

o The specification provides limits for the allowed behavior 

o The implementation fits the frame given by the specification 

 What are allowed? 
o Restricted behavior: The implementation may contain less potential output 

action than in the specification 
• E.g., in case of a partial implementation, or partial resolution of nondeterminism 

o Extended behavior: The implementation may contain outputs after action 
sequences that are not included in the specification 
• E.g., the specification is not complete (some action sequences are not included) 

 What is not allowed? 
o Implementation (its outputs) cannot be extended in case of action sequences 

that are included in the specification, i.e., it is not allowed to “provide more” 
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Examples for satisfying  IOCO 

ioco 

ioco The implementation 
may contain additional 
action sequences,  
but keeps the behavior for 
action sequences given in 
the specification 

The observable output 
actions shall be checked 
after each observable 
action sequence 
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Examples for violating IOCO 

not ioco 

k0 after ?1 = {!c,} e0 after ?1 = {!c} 

not ioco k0 after <?1, , ?1> 

l0 after <?1, , ?1> 

The implementation 
extends the behavior in 
case of action 
sequences given in the 
specification 

specification 

specification 



Summary of IOCO features 

Input-output conformance relation (IOCO) by Tretmans, 1996: 
 This relation is designed for functional black box testing of systems 

with inputs and outputs 

 Inputs are under control of the environment, i.e. the tester, while 
outputs are under control of the implementation under test 

 IOCO allows one to use incomplete specifications 

 The specification and the implementation can be non-deterministic 

 The models used for IOCO allow arbitrary interleaving of inputs and 
outputs 

 IOCO considers the absence of outputs as error if this behavior is 
not allowed by the specification 

 

These properties make input-output conformance testing 
applicable to practical applications 
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Summary of the studied behavioral equivalences 

 Equivalences: For verification 
o Trace equivalence:  
o Strong bisimulation: 
o Observation equivalence: 

 
 Preorders: For model refinement 

oMay preorder: 
o Must preorder: 

 
 Conformance relation: For testing 

o k-equivalence 
o Input-output conformance (IOCO) 

'   iff  (s)= (s')T T  

~ '   iff  : ( , ')T T B s s B 

'   iff  : ( , ')T T WB s s WB  

'   iff  (s) (s')T T   

'   iff  F(s) (s')FT T F 
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Other techniques and tools  
for model based test generation 
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Using a planner for test generation 

 Planning problem in AI 

o Construction of an action sequence to reach a goal state from an 
initial state (using a set of actions with conditions and effects) 

 Elements of the planning problem for test generation: 

o Initial state: Initial state of application (model)  

o Goal state: State to be reached (covered) 

o Actions: Activities (functions) executed on the basis of inputs in the 
application 

 Test: Determined by the generated action sequence 

o Instances of actions: Determine required inputs for triggering 

o Partial ordering of actions (as given by mapping the conditions and 
effects)  partial ordering of inputs 

o Test input sequence results from linearization of the input sequence 
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Application for GUI testing (1): GUI model 

Operator model of the GUI: Basis of model based test generation 

 System objects 
o Elements of the background application: text, data, files, … 

 Events on the GUI 
o Menu events (ME): Expanding operations (e.g. File/Save) 

o Focus extension events (FEE): Opening new windows, palettes, etc. 

o System related events (SRE): Changing the state of system objects 

 Operators 
o GUI operators: Combining ME and FEE 

• Using GUI widgets (e.g., opening a new file selection window by File/Open) 

o System related operators: (ME,FEE)*SRE 

• Initiating the change of system objects (e.g., Edit/Cut and its effect on the text) 

o Composite (abstract) operators: Sequences of basic operators 

• E.g., saving a file to a selected folder 



Application for GUI testing (2): Testing approach 

Scenario based testing approach: 

1. Specifying test elements and goals 
o Identification of operators and system objects 

o Identification of use case scenarios (with initial and goal state) 

2. Construction of operator sequences 
o Implementation of the use cases with composite operators 

3. Mapping each operator sequence to a concrete event sequence 
o Test sequence is defined by the GUI event sequence 

o Composite operators can be resolved by a planner 



Application for GUI testing (3): Using the planner 

Solving a planning problem for test generation: 
 Elements of the planning problem for GUI testing: 

o Initial state: Initial state of the GUI and system objects 

o Goal state: GUI and system state to be reached (covered) 

o Actions (with conditions and effects): GUI operators and events, variables of 
operators are system objects 

 Solution by the planner: Plan to reach goal state from the initial state 

o Actions are identified (with partial ordering)  GUI operators and events 

o Conditions and effects of actions  Conditions and changes in system objects 

o Variables of actions  Instantiated with system objects 

 Test sequence is derived by ordering (linearization) 



Application for GUI testing (4): Example 

High level  
plan: 

Resulting  
sequence: 

Mapping  
with planner: 



Application for GUI testing (5): Example (mod.) 

High level  
plan: 

Resulting  
sequence: 

Mapping  
with planner: 



Using evolutionary algorithms for test generation 

 Evolutionary algorithms (e.g., genetic algorithms) 
o Modifying an initial test suite generated by random walk 

o Modifications: mutation of a test input sequence, merging 
test input sequences (parts of sequences) 

o Test suite that has better properties w.r.t. given test criteria 
is kept for further modifications 

 Test criteria: 
o Control flow based criteria: Coverage of states, branches, 

conditions, paths, … 

o Data flow based criteria: All-defs, all-uses coverage 

o Test length, execution time, … 

 Example tool: 
o Java: DOTgEAr 
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Recap: Using symbolic execution 

 Static program analysis technique: Here applied for models (e.g., CFA) 
o Following computation of paths with symbolic variables 

o Deriving reachability conditions as constraints 

o Constraint solving (e.g., SMT solver):  Yields inputs to execute a given path 

 Test input generation: Inputs for covering the paths of the program 
o Generation of expected outputs by path simulation 

o Checking generic correctness criteria (lack of exceptions, no crash) 

 Challenges 
o Loops (with a large number of paths) 

o Complex types and operations (to be supported by the SMT solver) 

o Handling dependencies and libraries 

 Example tools 
o Java: Symbolic PathFinder (based on Java PathFinder) 

o .Net: PEX, IntelliTest 

o C: KLEE, CUTE, EXE 
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Examples for automated test generation tools (1) 

 Test generation with model checkers 
o FSHELL: For C programs 

• CBMC (bounded model checker) generates a counterexample to 
be used as test sequence for a specified test goal 

o BLAST:  
• Counterexample generated: Abstract test case for a test goal 

• Includes symbolic execution (for CEGAR): Generated test data 

o UPPAAL CoVer, TRON: 
• Modeling time-dependent behavior by timed automata 

• Counterexamples for non-coverage are generated by the UPPAAL 
model checker 

• Conformance relation for testing: 
Relativized timed input-output conformance (RTIOCO) – 
consistent with IOCO in untimed models 
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Examples for automated test generation tools (2) 

 Testing based on abstract data types 

o Test inputs are generated on the basis of the axioms given in 
the abstract data type 
• Equivalence partitions, boundary values can be used 

 Tools supporting specific modeling languages 

o Conformiq: For UML (statechart) models 

o AGATHA: UML, SDL, STATEMATE models 
• Generating path conditions and constraint solving to get test inputs 

o Autolink: SDL and MSC models are supported 

o STG: For LOTOS language 

o TDE/UML: Coverage criteria and constraints can be specified 

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models 
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Abstract data types: Operations with axioms 
 

Type Boolean is 

 sorts Bool 

 opns  

  false, true : -> Bool 

  not : Bool -> Bool 

  and : Bool, Bool -> Bool 

 eqns 

  forall x, y: Bool 

  ofsort Bool 

   not(true) = false; 

   not(false) = true; 

   x and true = x; 



Examples for automated test generation tools (2) 

 Testing based on abstract data types 

o Test inputs are generated on the basis of the axioms given in 
the abstract data type 
• Equivalence partitions, boundary values can be used 

 Tools supporting specific modeling languages 

o Conformiq: For UML (statechart) models 

o AGATHA: UML, SDL, STATEMATE models 
• Generating path conditions and constraint solving to get test inputs 

o Autolink: SDL and MSC models are supported 

o STG: For LOTOS language 

o TDE/UML: Coverage criteria and constraints can be specified 

o T-Vec, DesignVerifier, Reactis, AutoFocus: For Simulink models 
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Example: MOGENTES project for model based test generation 
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Example: Model checking based TCG in MOGENTES 

Transformation  

from UML to SMTE 

Transformation  

from SMTE to UPPAAL 

UML statechart 

model SMTE model 

UPPAAL model 

Test goals 

State Machine with Time Extension:  

Flattened state machine 

• Structure for classes  

• Timed automata 

• Event queue handling 

• Tracing 

• Coverage 

UPPAAL based TCG 

(verifyta, CoVer) 
Trace 

Abstract  

test case 
Mapping 
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Example: Mutation based TCG in MOGENTES (1) 

UML based TCG: 

 Generation of mutations:  
o Applied on UML models 

o Based on a fault library defined 
on models 

 Internal formalism: 
o OO Action System 

o Guarded action language 

 Test generation:  
o Detect mutation based on IOCO 

relation 

o SMT solver is used 

o Bounded length of the test 
cases can be specified 

UML2AS 

transformations

Parameterized UML 

model

Mutation 

generator

Mutated UML model

UML to OOAS 

transformation

Reference OOAS 

model

Mutated OOAS 

model

UML to OOAS 

transformation

OOAS to AS 

transformation

Reference AS model Mutated AS model

OOAS to AS 

transformation

TCG with AS (Ulysses)

Qualitative

Action

Systems

Fault 

model

Abstract Test Suite
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Example: Mutation based TCG in MOGENTES (2) 

Simulink based TCG: 

 Generation of mutations:  
o Applied on C programs 

generated from Simulink 
models (with automated code 
generator) 

o Based on a fault library defined 
on source code 

 Bounded model checking: 
o CBMC for C programs 

 Test generation:  
o Detect mutation based on IOCO 

relation 

Simulink model

Simulink to AS 

transformation

CBMC guarded 

assignments

TCG with CBMC

SAT/SMT solver

SMT formula

CBMC

Mutated internal model

Conformance transformation

Miter model

Abstract Test Suite

Mutation 

generator Fault model

result
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Summary 

 Model based test case generation 

o On the basis of coverage criteria 

• Control flow oriented: states, transitions coverage 

• Data flow oriented: def-use coverage 

o On the basis of mutations 

• Using conformance relations (k-equivalence, IOCO) for distinguishing original 
and mutated behavior 

 Algorithms and tools 

o Direct (graph-based) algorithms 

o Model checkers: Counterexample as test case 

o Planner algorithms: Goal-oriented action sequence 

o Evolutionary algorithms: Optimizing (random) test suite 

o Symbolic execution: Path coverage 

o Test for (abstract) data types: On the basis of operators’ axioms 
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