Software Verification and Validation (VIMMDO052)

Integration testing, system testing,
validation testing

Istvan Majzik
majzik@mit.bme.hu

Budapest University of Technology and Economics
Dept. of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Measurement and Information Systems

‘ﬂ..||..ﬂ‘
MUEGYETEM 1782

Typical development steps and V&V tasks

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

System
integration

System
delivery

Operation,
maintenance

Checking completeness, consistency, feasibility, verifiability
Assuring traceability

Trade-off analysis, interface analysis, fault effects analysis
Model based quantitative evaluation

Formal verification by (temporal logic based) model checking
Equivalence checking

Source code analysis

Software model checking with abstraction

Proof of program correctness by theorem proving
Module testing (unit testing)

Integration testing
System testing

Validation testing

Integration testing

Testing and test design in the V-model

Requirement
analysis

N\

System
specification

\

Architecture
design

\

System val.
design

System test
design

Operation,
maintenance

A

System
validation

/

System
verification

Integration test
design

integ

System

ration

Module
design

Module test
design

Module

verification

\/

Module
implementation

Software integration testing

Software architecture
design

Software construction
design

Software integration
test plan

Software quality
assurance plan

Software integration
testing

Software integration
test report

Goals, methods and approaches

" Goal and motivation:
o Testing the interactions of modules

o The system-level interaction of modules may be incorrect
despite the fact that all modules are correct
= Methods: Testing interaction scenarios
o Sometimes the scenarios are part of the specification
o Systematic testing: Covering all / representative scenarios

o The concept of equivalence partitions and boundary values
applied for interactions (scenario / input data level)

= Approaches
o “Big bang” testing: integration of all modules before testing
o Incremental testing: stepwise integration+testing

“Big bang” testing

" |ntegration of all modules then testing
using the external interfaces of the integrated system

= External test executor

= Based of the functional specification of the system

" To be applied only in case of small systems

Tester2

2 Debugging is difficult!]

Incremental integration and testing

= Applied in case of complex systems (to support debugging)

= Adapted to module hierarchy (calling levels)

A A A3 A31 A311 A312

Al A2 A3

A3l A32 A33

A311 A312 A313

Module testing: Isolation of modules

= Modules are tested in isolation separately
= Test drivers and test doubles (used for substitution w.r.t dependencies)
= Dependency: Anything collaborating with the SUT (does not belong to it)

Al A2 ‘ A3 \

|
IWodMetobél‘“““‘-~J A31 A32 A33
tested I
AN

Test Test

double double

General problems: Handling dependencies

= Several approaches for substituting dependencies

o See "isolation frameworks” (e.g., Mockito, JIMock, ...)

o Generic name of substitute: Test double

- StUb Class under test ﬁ
o Predefined replies to calls .
o Checks the state of the SUT \

= Mock

o Expected and checked behavior
o Check the interactions of the SUT

(number of calls, with parameters ...)

Class under test

= Dummy

Mock

o Not used object (filler)
= Fake

o Working, but not the real one

Test

Top-down integration testing

= Modules are tested from the caller modules

= Stubs replace the lower-level modules that are called
= Requirement-oriented testing
= Module modification: modifies the testing of lower levels

Tested module:
test driver
‘ A3

Al

A

A2

|

Module
to be tested

A33

Bottom-up integration testing

Modules use already tested modules
Test executor is needed

Testing is performed in parallel with integration
Module modification: modifies the testing of upper levels

Al

A

A2

|

Module
to be tested

A3

Test
driver

|

\\!_

| A3l

A32

A33

S

N

Tested
module

A313

Tested Tested
module module

Top down vs. bottom up testing

= Top down
+ Requirement oriented
+ Working “skeleton” early
- Harder to create stubs than drivers
- Tests inputs are far from module to integrate

= Bottom up
+ Integration oriented, more constructive
+ Easier to control and observe the system

- System is assembled only at the end

Functional integration

= Motivation:
o There are several system-level functions
o Priorities among these regarding criticality
— prioritizing testing
= Basic idea:
o Integration on the basis of system functions
o Each function is integrated and tested, top-down

= Specific case of top-down integration testing
o Requirement oriented (w.r.t. the given function)
o Test doubles (stubs) are needed
o Top level is tested with more and more functions
o Module modification: modifies the testing of lower levels

Integration with the runtime environment

= Motivation:

O

It is hard to construct stubs for the runtime environment

o See e.g., platform services, RT-0S, task scheduler, ...

= Strategy:

1.

Top-down integration of the application modules to the
level of the runtime environment

Bottom-up testing of the runtime environment

* [solation testing of functions (if necessary)

* Testing with the lowest level of the application module hierarchy

Integration of the application with the runtime
environment, finishing top-down integration

Coverage metrics: State based approach

= Goal: Coverage of interactions among modules
o Basic case: Coverage of interface functions (by calls)

= State based coverage metrics:

o Coverage of interface functions for all relevant states
(or state partitions) of the caller and the called module

o Extension: With all triggers and conditions for the call

opB2() call can be served
Comp. A in two states of comp. B
A4

m1
A3 A0 187 Comp. B
A1 143 opA20)|[x =53] opX30) S opB2 onBd tB5
opdA (i int) [i=0] £ x =i j tBE § opBE30) [B3]

T—— ORE4() tA4

A4
12 opA1(i: int) [i==0] ;2; 40 61 tB3 opB2() [y=0]

tAS v - \ OPB2() [y==0] l—
: B1 N B2 |
opAS() A3 ._ l ﬂ
k;] m2 opB1(j:int) Jy:=

B2

Coverage metrics: Data flow based approach

= Data flow based metrics:
o Coverage extended for coupling paths
(among function calls and returns)
* Applying def-use labels
o Coverage metrics:
* All-coupling-defs
* all-coupling-uses
* all-coupling-paths
= Testing robustness of interfaces

o Extreme and boundary values of call
parameters

o Mutating call scenarios (omission,
duplication, change of ordering,
extreme parameters etc.)

y =47

returmy

last-def-before-call
call site

first-use-after-call

first-use-in-callee

last-def-before return

all-coupling-paths

|

all-coupling-uses

|

all-coupling-defs

!

call coupling

System testing

Testing and test design in the V-model

Requirement
analysis

N\

System
specification

\

Architecture

System val.
design

System test
design

Operation,
maintenance

A

System
validation

System
verification

Integration test

integ

System

ration

/

design design
Module Module test
design T design

Module

verification

\/

Module
implementation

System testing

Testing on the basis of the system specification

= Characteristics:
o Performed after hardware-software integration

o Testing functional specification +
testing extra-functional properties

= Testing aspects:
o Data integrity
o User profile (workload)

o Checking application conditions of the system
(resource usage, saturation)

o Testing fault handling
o ... (depending on the system specification)

Types of system tests (examples)

Performance testing

>

/figurationtesting [- Hardware and software settings]
=

i _ e Increasing the number of users
Concurrency testing . .
- \ e Checking deadlock, livelock
ester Q_

Stress testing [- Checking saturation effects]

Q [e Checking the effects of faults]

Reliability testing

e Real workload
e Response times

e Checking the use of redundancy
Failover testing by failover/failback

Validation testing

Testing and test design in the V-model

Requirement
analysis

N\

System
specification

\

Architecture

System val.

design

System test
design

Integration test

design design
Module Module test
design T design

Operation,
maintenance

System
validation

System
verification

/

System
integration

/

Module
verification

\/

Module
implementation

Software validation

System requirements
specification

Software requirements
specification

Software requirements
test specification

Software validation
plan

Software validation
test report

Software validation

Software validation
report

Validation testing

= Goal: Testing in real environment
o User requirements and expectations are taken into account
o Non-specified expectations may come up
o Reaction to unexpected inputs/conditions is checked
o Events of low probability may appear
= Timing aspects
o Constraints and conditions of the real environment
o Real-time testing and monitoring is needed

" Environment simulation

o If given situations cannot be tested in a real environment
(e.g., protection systems)

o Simulators shall be validated somehow

Summary: Testing levels

1. Module (unit) testing
o Isolation testing

2. Integration testing
o "Big bang” testing
o Top-down testing
o Bottom-up testing
o Functional integration
o Integration with the runtime environment

3. System testing
o Testing the integrated system

4. Validation testing
o Testing user expectations in the real environment
o Environment simulation

Design and documentation of testing

Standard test documentation (IEEE 829:1998)

Standard for Software Test Documentation
Test planning:

Test Plan: What is tested, by whom, how, in what time frame, to what quality
SPACEDIRT: Scope, People, Approach, Criteria, Environment, Deliverables, Incidentals,
Risks, Tasks

Test specification:

Test Design Specifications: Test conditions, expected outcome,
what is a successful test

Test Case Specifications: The specific test data (test suites)

Test Procedure Specifications: What kind of physical set-up is required, how the tester
runs the test, what steps need to be followed

Test reporting

Test Item Transmittal Report: When specific tested items are passed from one stage of
testing to another

Test Log: What tests cases were run, by whom, in what order, and whether individual
tests were passed or failed

Test Incident Report: Details of test failure (when, why)
Test Summary Report: Assessment about the quality of the system

Standard test documentation (IEEE 829:2008)

Standard for Software and System Test Documentation

Test planning:

Master Test Plan (MTP): Overall test planning for multiple levels
Level Test Plan (LTP): Scope, approach, resources, and schedule of the testing

Test design:

Level Test Design (LTD): Test cases, the expected results, the test pass criteria
Level Test Case (LTC): Specifying the test data for use in running the test cases
Level Test Procedure (LTPr): How to run each test (preconditions and the steps)

Test reporting:

Level Test Log (LTL): Record of relevant details about the execution
Anomaly Report (AR): Events that occur during testing and require investigation
Level Interim Test Status Report (LITSR): Summarize/evaluate interim results

Level Test Report (LTR): Summarize/evaluate the results after test execution has finished
for the specific test level

Master Test Report (MTR): Summarize/evaluate the results of the levels

U2TP: UML 2 Testing Profile (OMG, 2004)

= Able to capture all needed information for functional black-box
testing (specification of test artifacts)

o Mapping rules to TTCN-3, JUnit
= Language (notation) and not a method (how to test)

Packages (concept groups):
= Test Architecture

o Elements and relationship involved in test
o Importing the UML design model of the SUT

= Test Data

o Structures and values to be processed in a test
= Test Behavior

o Observations and activities during testing

= Time Concepts
o Timer (start, stop, read, timeout), TimeZone (synchronized)

U2TP Test Architecture package

ldentification of main components:
= SUT: System Under Test

o Characterized by interfaces to control and observation
o System, subsystem, component, class, object
= Test Component: part of the test system (e.g., simulator)

o Realizes the behavior of a test case
(Test Stimulus, Test Observation, Validation Action, Log Action)

= Test Context: collaboration of test architecture elements
o Initial test configuration (test components)
o Test control (decision on execution, e.g., if a test fails)

= Scheduler: controls the execution of test components
o Creation and destruction of test components

= Arbiter: calculation of final test results
o E.g., threshold on the basis of test component verdicts

U2TP Test Architecture example

S g)
SUT parts
/—‘/
atesiContaxts
SWIFTSuite
77
swiftPort swiftPort Vd
«Sub] nét?uu:;k' C «SUbs
euBank : Bank g SWIFTNetv(rork N usBank : Bank

™1 1
bankPort accountPort i bankPort accountPort bankPort
bankCo bankCom

Lt J

«Suts «Suts

euATM: ATM usATM: ATM

™1 [g |

atmPort atmPort
L]
«testComponents EI]
tc: PR
oy transactionControll ——— [Test component
Utility part parts
dp: «testc?rrrrlw-ponent» Ia:
dataPool loadMénager LoadArbiter

U2TP Test Data package

= |dentification of types and values for test
(sent and received data)

o Wildcards (* or ?)

o Test Parameter
e Stimulus and observation

o Argument
* Concrete physical value

o Data Partition: Equivalence class for a given type
 Class of physical values, e.g., valid names

o Data Selector: Retrieving data out of a data pool
* Operating on contained values or value sets

o Templates

U2TP Test Data example

TestData

TrxnData

account : String
balance: Integer
amount: IMoney
cardData: CardData

s

:EUTrxnData[1]

account = "Fred Bloggs”
balance = 10,000
amount = 3500
cardData = Card1

:EUTrxnDatal2]

account = "Dr Watson”

<<<DataPartition>> <<<DataPartition>> balance = 10,000
EUTrxnData USTrxnData amount = 20
cardData = Card2
<<DataSelector>> <<DataSelector>> :USTrxnData[1]
getEUTrxnData(): TrxnData | |getUSTrxnData(): TrxnData .
B > account = "Joe Senior’
| balance = 10,000
amount = 3500
1 cardData = Card3
«DataPool»
: [2]
DataPool USTrxnDatal2
account = "Barbara Wall”
balance = 10,000
<<DataSelector>> amount = 20
getDistributioninterval():Integer cardData = Card4

U2TP Test Behavior package

= Specification of default/expected behavior

= |dentification of behavioral elements:
o Test Stimulus: test data sent to SUT
o Test Observation: reactions from the SUT
o Verdict: pass, fail, error, inconclusive values
o Actions: Validation Action (inform Arbiter), Log Action

= Test Case: Specifies one case to test the SUT
o Test Objective: named element

o Test Trace: result of test execution
* Messages exchanged

o Verdict

U2TP Test Behavior example

Test suite object
performing the test case

sd addSameMonfg’%
seif Class instances
of the SUT

Money(20, "USD") «sut»

money1: Money

sd Wiring(DataPeol p))

I
|
:
| «testComponents asuty «Suts asuts
" euBank
Money(S0, "USD") { Im usATM usBank
|
|
|
|
|
|
|

__<_<C_fea_te>>> stestComponents

add(money2) & o P t]c
"""" X !
- wof j runEUTrxn(p.getEUTrxnData())
.24 2 new Money (70, "USD?) ou | Lo
ref runUSTrxn(p.getUSTrxnData())
v I

[«validationAction» pass

\& test verdict

<

— Return of
return passJ_L

v
|

J

Example: BlueTooth roaming

System under test:

Slave: Master:
. . Data Exchange . X
Slave Application -—— == 2 - > Master Application
SRI I-II'IIIIHI'II'II-III|H|-II-+'|III-II'II-IHIIII'II-II'IHIIII'II-II'IIIIHI-I {Vlnual CGHHBCtlﬂn} I-IHIIII'II-II'IHIIII'II'II-IHIIII-II'II'III|H+II-|I'|IIIHI'II'II-IIII‘II-II'II MRI
Slav Master
Roaming Layer Roaming Layer
HCTI |I-I|-I||IHI-||-I|-I|IIHI-II-I:I-IIII‘II-II-IHIIII-II-II-IHIIII-II-II-IIIIHI- HCI IIIIilIIIIIIIlIIII |I|I|Ill|l|l|ill|l LNTI
Link Manager T T Link Manager
! Slave Master '
Baseband BT- BT- ‘ Baseband LAN
. Hardware Hardware .
Bluetooth Radio 1 l/ L |Eluetouth Radio
A M _
Radio Connection Fixed Connection

Test ovujeLuve.

= Slave Roaming Layer functionality
o Monitoring link quality
o Connecting to a different master

Example: Components

" testcomponent BluetoothTest]
{ Uity part ' - _==mpot Bluetooth
Location-DataBase <<Tesﬂonmbﬂ’b: - FIDamir‘ig
L <<TestConioxts> Slave-
Test- % : SRR BluetoothSuite Application
Coordinator | E Sarver
— NI s LNT TCI
PE L 8 =
—_ | ==TesComponontsx= << TesiComponants>
— Hardware Master
o Tei ATa
" test componant test component test component —TesiConponants 1£m .
SlaveApp P Masteri g Master2 i Test- pig Location
Coordinator DataBase
Slave P Master Master Tor
Application| | | Application Application i

Cl}

%m L uen Sum Test package

SUT
[| Master Master i
Slave . |BTRoaming . |BTRoaming| <<TestContext>>
{ |BTRoaming BluetoothSuite
(- e e T RLst Tist
HCl HCI Hel
__ SR SO - threshold: Integer
testcomponent Hardware - verdict: Verdict
Slave Master i + Connect_to_Master()
BT-HW BT-HWs + Bad_Link_Quality()
j + Good_Link_Quality()
<<TestCase>>
P R - testo o — TestRoaming_noWarning(): Verdict
t . System Under Test | |:| . Test Component ¢« est Lomponents TestC
" (SU 5 " wi | * with existing classes <<lesiLase>>
"__'I S R | Wit new class ? — TestRoaming_withWarning(): Verdict

Overview Test context

Example: Test configuration and control

<< lestContext>:
BluetoothSuite

< Tesilomporn st
sa: Slave-
Application

1

p_=

<< lesiComponants
co: Test—Coordinator

Location-
Database

—
<= TastComponants
hw: Hardware

<< JestConfextsx
BluetoothSuite

gd Bluatooth_TestContnol |

Test configuration

ref | yerdict:=
TestRoaming_noWarning

[verdict==fail]
[verdict=pass]
ref | verdict :=
TestRoaming_withWarning

®

Test control

Example:

Test scenario

Test case
implementa-
tion

(see Blue-
ToothSuite)

e References
e Timers
e Defaults

sd TestRoaming_n oWarning{):Verd[t_:l;

a‘;—

o Dela ult=F
Coord-Defaul
ompon wSUT = <fTesComponen}== . Ts*s!lf:ompc:nsnf = pe Te@Component> JTestComponenth> [TastComponen
;arsglgva— = sr:Slave hw:Hardware co: Tast- m: Master m2: Mastar m3: Mastar
Application Roaming Coordinatol
i T1(6s)
rof
Connect_To_Master("M1")
data _ d
[ref] . . :
Good_Link_Qualit
{0.5s..} ! IR y :
i data . . data
i Bad_Link_Quality

icon_request("M2’)

con request

i gon_request

T2(2s) |

écon_req ue st{'h.-"@;"}

con_reguest;

con_request

T2

i con_accept

coré_confim["MS‘} |

. con_confirm_slave

<<Defaults> |
Conf Default ™

con_confirm("M3")

raf :

makeList

roamingList(["M1" “M2" "M4"])

' roamingList(["M1 " "M2" "M4"])

roamingList(["M1 " SN2 M4 '

ref .
Disconnect
T %
—=ValdhonAchion]

pass

Test scenarios (details)

sd Good_Link_Quality

<<SUT>
sr:Slave

Roaming

v

i< TestComponents
hw:Hardware

get_link_quality

quality(good)

sdBad_Link_Quality |

cxSUT>=
sr:Slave
Roaming

W

<< TestComponent=
hw:Hardware

get_link_quality

. quality(bad)

Sequence diagrams

woDefaul x>

statemachine Coord_

Dsis

Ti/setverdict(fail)

/

&

=

e

U

*fsetverdict{inconc)

T2zetverdict{fail)

Default behaviors specified
to catch the observations

that lead to verdicts

e Here: Processing timer events

